

ECT* 18th-22nd July 2022

Radiative corrections from medium to high energy experiments

The McMule framework for NNLO QED calculations

Adrian Signer

Paul Scherrer Institut / Universität Zürich

 $21^{\rm st}$ July 2022

A. Signer, 21.07.22 - p.1/21

McMule

Monte Carlo for MUons and other LEptons

https://mule-tools.gitlab.io

P. Banerjee, A. Coutinho, T. Engel, A. Gurgone, F. Hagelstein, S. Kollatzsch, L. Naterop, A. Proust, M. Rocco, N. Schalch, V. Sharkovska, A. Signer, Y. Ulrich

- fixed-order QED corrections for (leptonic) scattering and decay processes some NLO, most NNLO, toying with N³LO, but no TPE and no parton shower (yet)
- fully differential Monte Carlo integrator
- really NNLO, i.e. make no approximation (nearly possible ...)
- whenever possible make use of progress made for QCD @ LHC

QCD @ LHC	\Leftrightarrow	QED @ low & med	ium energy
non-abelian	$\leq \langle$	abelian	matrix ele
non-abelian	\gg	abelian	IR structu
massless fermions	\ll	massive fermions	loop ampl
jets	<	exclusive w.r.t.	numerics
-		collinear radiation	much har

matrix elements somewhat easier IR structure much easier (1) loop amplitudes much harder (2) numerics harder $\supset \log(m^2/Q^2) \equiv L$ much harder for small masses (3)

stealing from QCD

- master integrals (reduction and computation), automated tools, EFT methods
- use dimensional regularisation for IR singularities, not photon mass
- use subtraction method for phase-space integration, not slicing method
- for the future: match fixed-order result to parton shower

physical $(2 \rightarrow 2)$ cross section (e.g. Møller)

challenges

- fully differential phase-space integration
- $\Rightarrow FKS^{\ell}$
- virtual amplitudes with massive particles
- ⇒ one-loop: OpenLoops
- \Rightarrow two-loop: massification
 - numerical instabilities due to pseudo-singularities
- ⇒ next-to-soft stabilisation

only soft singularities

$$\begin{split} \mathcal{M}_{n+1}^{(\ell)} &= \mathcal{E} \, \mathcal{M}_n^{(\ell)} \ + \ \mathcal{O}(E_{\gamma}^{-1}) \\ \text{eikonal } \mathcal{E} &= \sum_{i,j} \frac{p_i \cdot p_j}{(p_{\gamma} \cdot p_i) \ (p_{\gamma} \cdot p_j)} \sim \mathcal{O}(E_{\gamma}^{-2}) \end{split}$$

 \Rightarrow subtraction scheme (FKS^{ℓ})

(1) $\mathsf{FKS}^{\ell=1}$

divergent but easy $E_{\gamma} \simeq \xi_1 Q$; auxiliary unphysical parameter $0 < \xi_c \leq 1$

$$\int \mathrm{d}\Phi_{\gamma} \bigoplus_{i=1}^{\xi_{c}} \mathrm{d}\xi_{1} \xi_{1} \frac{1}{\xi_{1}^{2}} \xrightarrow{\text{dim. reg.}} \int_{0}^{\xi_{c}} \mathrm{d}\xi_{1} \xi_{1}^{-1-\epsilon} \Rightarrow \underbrace{\hat{\mathcal{E}}(\xi_{c})}_{1/\epsilon} \mathcal{M}_{n}^{(0)}$$

complicated but finite

$$\int d\Phi_{\gamma} \left(\sum_{k=1}^{3} - \Phi_{k}^{d} \right) = \int d\Phi_{n+1}^{d=4} \left(\frac{1}{\xi_{1}} \right)_{c} \left(\xi_{1} \mathcal{M}_{n+1}^{(0)} \right)$$
$$\int_{0}^{1} d\xi_{1} \left(\frac{1}{\xi_{1}} \right)_{c} f(\xi_{1}) \equiv \int_{0}^{1} d\xi_{1} \frac{f(\xi_{1}) - f(0)\theta(\xi_{c} - \xi_{1})}{\xi_{1}}$$

A. Signer, 21.07.22 - p.6/21

subtraction scheme

we do not write $\sigma_n^{(1)} = \sigma_n^{(v)}(\lambda) + \sigma_n^{(s)}(\lambda, \omega) + \sigma_{n+1}^{(h)}(\omega)$ photon mass λ , resolution ω we do write $\sigma_n^{(1)} = \sigma_n^{(1)}(\xi_c) + \sigma_{n+1}^{(1)}(\xi_c)$

$$\sigma_n^{(1)}(\xi_c) = \int d\Phi_n^{d=4} \left(\underbrace{\mathcal{M}_n^{(1)}}_{1/\epsilon} + \underbrace{\hat{\mathcal{E}}(\xi_c)}_{1/\epsilon} \mathcal{M}_n^{(0)} \right) = \int d\Phi_n^{d=4} \underbrace{\mathcal{M}_n^{(1)f}(\xi_c)}_{\text{finite}} \sigma_{n+1}^{(1)}(\xi_c) = \int d\Phi_{n+1}^{d=4} \left(\frac{1}{\xi_1} \right)_c \left(\xi_1 \, \mathcal{M}_{n+1}^{(0)f} \right)$$

the ξ_c dependence cancels between the two terms (implementation/stability check)

A. Signer, 21.07.22 - p.7/21

$\mathsf{FKS}^{\ell=2}$ "double virtual", "real-virtual"", "double real"

$$\sigma_{n}^{(2)}(\xi_{c}) = \int d\Phi_{n}^{d=4} \left(\underbrace{\mathcal{M}_{n}^{(2)}}_{1/\epsilon^{2}} + \underbrace{\hat{\mathcal{E}}(\xi_{c})}_{1/\epsilon} \underbrace{\mathcal{M}_{n}^{(1)}}_{1/\epsilon} + \frac{1}{2!} \mathcal{M}_{n}^{(0)} \underbrace{\hat{\mathcal{E}}(\xi_{c})^{2}}_{1/\epsilon^{2}} \right) = \int d\Phi_{n}^{d=4} \underbrace{\mathcal{M}_{n}^{(2)f}(\xi_{c})}_{\text{finite}} \\ \sigma_{n+1}^{(2)}(\xi_{c}) = \int d\Phi_{n+1}^{d=4} \left(\frac{1}{\xi_{1}} \right)_{c} \left(\xi_{1} \mathcal{M}_{n+1}^{(1)f}(\xi_{c}) \right), \\ \sigma_{n+2}^{(2)}(\xi_{c}) = \int d\Phi_{n+2}^{d=4} \left(\frac{1}{\xi_{1}} \right)_{c} \left(\xi_{1} \mathcal{M}_{n+1}^{(0)f}(\xi_{c}) \right)$$

simple generalisation [Engel,AS,Ulrich,1909.10244], QED eikonal does not get further corrections

A. Signer, 21.07.22 - p.8/21

(1) FKS $^{\ell=2}$

consistency/implementation/stability check here e.g. for $\mu e \rightarrow \mu e$ ("mixed" = TPE)

- ξ_c (in)dependence
- no approximations made (subtraction not slicing)
- in principle any ξ_c is ok
- use 'good' $\xi_c \sim 10^{-1}$ for actual runs (no large cancellations)

 FKS^ℓ for $\mathsf{N}^\ell\mathsf{LO}$

$$\begin{aligned} \mathsf{YFS:} \quad e^{\hat{\mathcal{E}}} & \sum_{\ell=0}^{\infty} \mathcal{M}_n^{(\ell)} = \sum_{\ell=0}^{\infty} \mathcal{M}_n^{(\ell)f} \\ \sigma^{(\ell)} &= \sum_{j=0}^{\ell} \sigma_{n+j}^{(\ell)}(\xi_c) \quad \text{with} \quad \sigma_{n+j}^{(\ell)}(\xi_c) = \int \mathrm{d}\Phi_{n+j}^{d=4} \left(\prod_{i=1}^j \left(\frac{1}{\xi_i}\right)_c \xi_i\right) \mathcal{M}_{n+j}^{(\ell-j)f}(\xi_c) \end{aligned}$$

in principle: if we have all matrix elements, we can get fully differential cross sections at any order in $\alpha \to ~(1)$

in practice: wishful thinking $\ldots \rightarrow (2)$ and (3)

- ready for a full (e.g. Møller) NNLO calculation photonic and fermionic contributions
- compute double-real amplitudes
- use OpenLoops [Buccioni, Pozzorini, Zoller] for real-virtual amplitudes, numerical stability \rightarrow (3)
- (3) \rightarrow apply next-to-soft stabilisation
- massive two-loop integrals not all known ightarrow (2)
- ② → massify massless two-loop amplitudes [Bern,Dixon,Ghinculov] (and one-loop squared)
- use FKS² (open e^+e^- production not yet included)
- let the mule trot [McMule, 2107.12311]

2 loops with masses

- scales (e.g. masses) are the enemy of loop-integral calculators
- for one-loop amplitudes we use OpenLoops, remarkable numerical stability
- but massive two-loop integrals for $2 \rightarrow 2$ are not all known

[here should go a list of an army of loop-calculating theoreticians ... sorry]

(2) loops with masses

multiple polylogarithms (MPL)

simple loop integrals, one scale $z \Rightarrow \log s$ and dilogs = polylogs $\operatorname{Li}_1(z) = -\log(1-z)$ and $\operatorname{Li}_n(z) = \int_0^z \frac{\mathrm{d}t}{t} \operatorname{Li}_{n-1}(z)$

more complicated loop integrals, many scales $a_1 \dots a_n, z \Rightarrow$ multiple polylogs

$$G(a_1 \dots a_n; z) = \int_0^z \frac{\mathrm{d}t}{t - a_1} G(a_2 \dots a_n; z)$$

for $a_i \in \{-1, 0, 1\}$: harmonic polylogs (HPL) [Remiddi, Vermaseren]

for generic a_i : generalised polylogs (GPL) [Goncharov]

for Monte Carlo need fast (Fortran) numerical evaluation [handyG 1909.01656]

sadly, this is not the end \Rightarrow elliptic integrals . . .

2 massification

collinear factorization \Rightarrow massification [Penin; Becher, Melnikov; Engel, Gnendiger, AS, Ulrich] get leading mass effects based on massless loops, miss terms $\lim_{m\to 0} = 0$ e.g. m^2/Q^2

process e.g $\mu e \to \mu e$ at NNLO $\mathcal{A}(m) = \mathcal{S} \times Z \times Z \times \mathcal{A}(0) + \mathcal{O}(m) \supset \{1/\epsilon^2, L^2\}$

based on factorisation, SCET, and method of regions [Beneke, Smirnov]

soft: process dependent in QED S = 1 + fermion loops \rightarrow compute separately with full m dependence collinear: universal 'converts' $1/\epsilon \rightarrow L$ hard: massless electron $\mathcal{A}(0) \sim 1/\epsilon^4$

(2) muon decay

test massification α^2 coefficient of positron energy spectrum in muon decay

- exact result available [McMule 1909.10244]
- error in massification few % × NNLO
 - ${\rm few}\cdot 10^{-2}\times (\alpha/\pi)^2 L^2$
- in agreement with estimate
 - $\sim (\alpha/\pi)^2 \, m_e^2/m_\mu^2 \times L^2$
- about same size as α^3 contribution

3 next-to-soft stabilisation

real-virtual corrections trivial in principle, extremely delicate numerically

- soft limit (of collinear emission) $E_{\gamma} = \xi \sqrt{s}/2$
- Bhabha scattering (as example) [McMule, 2106.07469]
- M_{exact} Mathematica expression
- full *M* vs soft limit
- stability problem

extend LBK theorem [Low 1958; Burnett, Kroll 1968] to one-loop [Engel, AS, Ulrich, 2112.07570]

use again EFT (HQEFT) and method of region, hard and soft can be extended beyond NLO (almost certainly) but not (universally) beyond NTS

3 next-to-soft stabilisation

+ $\mathcal{O}(E_{\gamma}^0)$

real-virtual corrections trivial in principle, extremely delicate numerically

soft limit (of collinear emission)

 $\xrightarrow{E_{\gamma} \to 0}$

- Bhabha scattering (as example) [McMule, 2106.07469]
- M_{exact} Mathematica expression
- full M vs next-to-soft limit
- stability problem solved

+

3 next-to-soft stabilisation

test next-to-soft stabilisation vs OL4 (OpenLoops quad) for $\mu e \rightarrow \mu e$ real-virtual

- e.g. $\xi_c = 10^{-4}$
- for $\theta_e > 23\,\mathrm{mrad}$ few events
- same statistics, same result
- 70 days vs 4 days

• integrated results for
$$\xi_c = 10^{-4/5/6}:$$

NTS	OL4
-0.29268(4)	-0.29267(4)
-0.44789(6)	-0.44778(6)
-0.64662(9)	-0.64649(9)

final hurdles

[Levine, Roskies 1974; Laporta, Fael]

collinear pseudo-singularities $\lim_{\to 0} \sphericalangle(p_{\gamma}, p_i) \Rightarrow L$

partitioning of phase space \Rightarrow at most one small angle per region tune phase space \Rightarrow [Vegas] $x_i \leftrightarrow \cos \triangleleft$

the NNLO era is here, not only for QCD, also for QED

to tackle state-of-the-art problems, a modern approach to QED is required

future steps

- add TPE for $\ell p
 ightarrow \ell p$ (done for pointlike p)
- NNNLO 'form factor' contributions $\gamma^* o \ell^+ \ell^-$ (MUonE)
- combine fixed-order QED with (YFS?) parton shower
- combine fixed-order QED with electroweak
- polarised leptons
- generally towards higher energies (mainly numerical)
- integrator → generator (desired ??)

MCMULE

A. Signer, 21.07.22 - p.21/21