Radiative corrections for the MUSE experiment

Supported in parts by the U.S. National Science Foundation: NSF PHY-2111050. The MUSE experiment is supported by the U.S. Department of Energy, the U.S. National Science Foundation, the Paul Scherrer Institute, and the US-Israel Binational Science Foundation.

ECT* Workshop "Radiative Corrections from medium to high-energy experiments", Trento, July 18–22, 2022

- Lin Li and Steffen Strauch University of South Carolina
- for the MUSE Collaboration

MUon Scattering Experiment (MUSE) at PSI

Direct test of up and ep interactions in a scattering experiment:

- higher precision than previously for µp,
- low-Q² region for sensitivity to the proton charge radius, $Q^2 = 0.002$ to 0.07 GeV²,
- with μ^+ , μ^- and e^+ , e^- to study possible 2γ mechanisms,
- with μp and e p to have direct μ/e comparison.

MUSE

$$e^{-}p \rightarrow e^{-}p$$
$$e^{+}p \rightarrow e^{+}p$$
$$\mu^{-}p \rightarrow \mu^{-}p$$
$$\mu^{+}p \rightarrow \mu^{+}p$$

Projected MUSE proton charge-radius results

How different are the e/μ radii?

(truncation error largely cancels) Sensitivity to differences in extracted e/μ radii:

 $\sigma(r_{e}-r_{\mu}) \approx 0.005 \text{ fm}$

What is the radius?

Absolute values of extracted e/µ radii (assuming no +/- difference seen):

 $\sigma(r_{\rm e}), \sigma(r_{\mu}) \approx 0.008 \text{ fm}$

Comparisons of **e to** μ or of **positive to negative** are insensitive to many of the systematics

The MUon Scattering Experiment at PSI (MUSE), MUSE Technical Design Report, arXiv:1709.09753 [physics.ins-det].

Anticipated e and μ data for G_E from MUSE

E. Cline, et al., SciPost Phys. Proc. 5, 023 (2021)

- PRad dataPRad fit
- ----- Mainz data
 - Mainz fit
 - Mainz fit uncertainty
 - Mainz fit, forced $r_p = 0.841$ fm
- ----- Arrington 07
 - Alarcón 19, $r_p = 0.841$ fm
 - \dashv MUSE data uncertainty on G_E
 - Projected MUSE uncertainty

MUSE can help clarify the tension between the Mainz and new PRad data.

PRad-II will bring a factor of 4 improvement over PRad.

MUSE directly compares µp to ep cross sections

Projected relative statistical uncertainties in the ratio of μp to ep elastic cross sections. Systematics $\approx 0.5\%$.

The relative statistical uncertainties in the form factors are half as large.

The MUon Scattering Experiment at PSI (MUSE), MUSE Technical Design Report, arXiv:1709.09753 [physics.ins-det].

MUSE allows to study two-photon exchange

%

Projected relative uncertainty in the ratio of μ^+p to μ^-p elastic cross sections. Systematics: 0.2% in the cross section ratio (0.1% in $\delta_{2\nu}$).

The MUon Scattering Experiment at PSI (MUSE), MUSE Technical Design Report, arXiv:1709.09753 [physics.ins-det].

TPE correction at leading order, $\delta_{2\nu}$

$$\sigma^{\pm} = \sigma_{1\gamma}(1 \pm \delta_{2\gamma})$$
$$\frac{\sigma^{+}}{\sigma^{-}} \approx 1 + 2\delta_{2\gamma}$$

Prediction: Due to the cancellation of the helicity-flip and non-flip contributions, TPE in μp smaller than in ep.

Oleksandr Tomalak, Few-Body Systems, **59**, 87 (2018)

MUSE at the secondary beam line π M1

Beam

- 50 MHz RF (20 ns bunch separation)
- e, μ , π beams with large emittance
- Flux: 3.3 MHz
- Momentum: 115, 160, 210 MeV/c

Beam line detectors:

• Timing, identifying, and tracking of beam particles to the target and beyond

Scattered particle detectors:

 Timing and tracking of scattered particles with large solid-angle coverage

Radiative corrections needed to obtain Born cross-section

Experimental Bremsstrahlung cross-section

$$\frac{d\sigma^{exp}}{d\Omega_l}(p'_{l,min}) = \int_{p'_l} \int_{\Omega_{\gamma}} \frac{d\sigma_{\text{brems}}}{d\Omega_l d\Omega_{\gamma} dp'_l} d\Omega_{\gamma} dp'_l$$

ESEPP (Gramolin et al.) Heavy baryon chiral perturbation theory (F. Myhrer et al.) ELRADGEN (A. Afanasev et al.) McMULE (P. Banerjee, T. Engel, A. Signer, Y. Ulrich)

. . .

Elastic Scattering of Electrons and Positrons on Protons (ESEPP)

first Born approximation

first-order bremsstrahlung processes

virtual-photon corrections

vacuum polarization

lepton/proton vertex corrections

ESEPP includes emission of hard radiated photon, beyond soft-photon approximation and the mass of lepton.

A.V. Gramolin et al., J. Phys. G: Nucl. Part. Phys. 41 (2014) 115001 (28pp)

 $l^{\pm}p \rightarrow l'^{\pm}p'\gamma$

TPE corrections

The ESEPP event generator 10⁷ **10⁶** $p_0(e) = 161 \text{ MeV/c}, \theta = 60.0^{\circ}$ ep**10**⁵ $\mathbf{\Lambda}$ $E_{\gamma} < E_{\gamma}^{\text{Cut}}$ epCounts **10**⁴ "elastic" **10³** "inelastic" 10² $ep \rightarrow ep\gamma$ 10 0 2 4 $\Delta E_e = E_e^{elas} - E'_e$ (MeV)

A.V. Gramolin et al., J. Phys. G: Nucl. Part. Phys. 41 (2014) 115001 (28pp)

- ESEPP generates unweighted events
- Two types of events: elastic (analytical integration) and inelastic (numerical integration)
- First-order ulletbremsstrahlung is taken into account in both cases

Bremsstrahl cross section from ESEPP in MUSE kinematics

Lepton Momentum p' (MeV/c)

11

Radiative tail spectrum

Low-energy lepton-proton bremsstrahlung via effective field theory

P. Talukdar, F. Myhrer, G. Meher, and U. Raha, Eur. Phys. J. A (2018) 54: 195.

$ep \rightarrow e'p\gamma$ Cross section in MUSE kinematics

161 MeV/c

ESEPP events in the MUSE setup

Examples: $ep \rightarrow e'p\gamma$

Initial-state radiation low photon energy

 $p'_e > p'_{min}$

Initial-state radiation high photon energy

 $p'_e < p'_{min}$

 $p_0 = 161 \text{ MeV/c}$ $\theta \approx 60^{\circ}$

Final-state radiation

The size of the radiative corrections depends on the detector properties and event selection

Scattered lepton (GEM, STT, SPS)

- angular acceptance
- particle momentum (magnitude not precisely measured)

Internal Bremsstrahlung (CAL) e.g., initial-state radiation

Recoiling proton remains unobserved

MUSE detector system for TOF measurements

$$\beta_i^{\mu,\pi} = \frac{L}{ct} = \frac{t_i^e - t_0^e}{t_i^{\mu,\pi} - t_0^{\mu,\pi}}$$

Beam hodoscope planes C & D

Beam monitor SC bars in center

Electron time-of-flight provides **path length** information.

- Measure the μ and π average particle speeds over the
- paths L1, L2, and L3 to obtain **beam momenta**.

 $\sigma_{p_0} pprox 0.002 \cdot p_0$

MUSE tracking detectors

GEM detectors (Hampton Univ.)

- Set of three GEM detectors.
- Measure trajectories into the target to reconstruct the scattering kinematics.

(Hebrew University of Jerusalem + Temple)

- Two STT chambers with 5 vertical and 5 horizontal planes each (3000 straws total).
- The Straw Tube Tracker provides high-resolution and high-efficiency tracking of the scattered particles from the target.

Reconstruction of scattering angle

 $\delta = \delta(p_0, \theta_l, p'_{min}, \Omega_{\gamma})$

Position resolution: GEM 70 μm and STT 120 $\mu m.$

Full Geant4 simulation including detector material and target.

Scattering-angular resolution for <u>one</u> event is dominated by multiple scattering and \leq 20 mrad.

MUSE systematic uncertainties of the scattering angle is \leq 1 mrad

Scattered-particle scintillators as event trigger and for reaction ID

Front wall: 18 bars (6 cm x 3 cm x 120 cm) Rear wall: 28 bars (6 cm x 6 cm x 220 cm)

Scattered-particle scintillators exceed required time resolution: $\sigma(\text{Front}) < 50 \text{ ps}, \sigma(\text{Rear}) < 60 \text{ ps}$

calibration of SPS bars

SPS threshold of 2 MeV.

Anne Flannery, APS 2021

Geometrical Mean, Q (QDC Channels)

20

Electron detection threshold in the SPS

p'min is primarily determined by the SPS detector:

- Function of the SPS thresholds in the front and rear walls
- Function of the lepton-scattering angle

Determination of p'min (e-) for MUSE

 $\int_{0}^{p_{max}} \epsilon(p') \frac{d\sigma(p')}{dp'} dp' = \int_{p'}^{p_{max}} \frac{d\sigma(p')}{dp'} dp'$

$p' = (N \langle n \rangle / \langle n \rangle)$	Weight					
$\rho \min(iviev/C)$	1	σ	σ with γ vet			
25°	14.6	14.8	13.7			
60°	13.2	12.5	13.0			
95°	14.9	14.0	14.4			

Effective p'min also

- depends on the cross-section weight,
- is affected by calorimeter analysis.

< 2 MeV/c $\sigma_{p'_{min}}$

Muon detection threshold in the SPS

Muons detected in the SPS detectors

The muon-detection threshold is complicated The elastic muon-proton cross section is minimal close to threshold threshold

Muons or **secondaries** detected in the SPS detectors

Upgraded photon calorimeter was commissioned in 2022 Pulse-height distributions from the 64 channels

64 lead-glass crystals (4 cm x 4 cm x 30 cm)

 $\delta = \delta(p_0, \theta_l, p'_{min}, \Omega_{\gamma})$

Win Lin's analysis of cosmic-ray events

Measurements with the original calorimeter with 32 crystals; Win Lin's analysis

Calorimeter can be used to suppress initialstate bremsstrahlung

Simulation of measured photon spectrum:

- 1. ESEPP bremsstrahlung spectrum
- 2. within the CAL acceptance,
- 3. folded with the known detector resolution

Simulated downstream $ep \rightarrow e'p\gamma$ photon distribution

photons with low reconstructed momentum, below selected calorimeter cutoff energy

 $p_0 = 161 \text{ MeV/c}$ $\theta_{e'} = 60^{\circ}$

distribution after cut on calorimeter signal

Radiative corrections for *e*⁻*p* **scattering data in MUSE kinematics**

Rapidly changing radiative corrections for small p'min.

(> 1% change / MeV/c)

CAL veto on downstream photons reduces radiative corrections and p'min dependence, reducing uncertainty.

Radiative corrections for $\mu^- p$ scattering data in MUSE kinematics

Radiative corrections are less than 1%

Corrections are nearly independent of p'min

Calorimeter cut is without effect on the data

Uncertainties in the radiative corrections

for **electrons** are 0.2% - 0.5%.*

σ δ(e⁻)	115 MeV/c		161 MeV/c			210 MeV/c			
	20°	60°	100°	20°	60°	100°	20°	60°	100°
p 'min	0.05%	0.18%	0.30%	0.03%	0.16%	0.31%	0.02%	0.13%	0.31%
θ	0.01%	0.01%	0.00%	0.01%	0.00%	0.00%	0.00%	0.03%	0.01%
P 0	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Eγ	0.32%	0.33%	0.33%	0.25%	0.25%	0.26%	0.20%	0.22%	0.22%
Total	0.32%	0.38%	0.45%	0.25%	0.30%	0.40%	0.20%	0.26%	0.38%

- for **muons** are smaller than 0.01%.*
- * Not including model uncertainties.

The preliminary estimates of the total uncertainties in the radiative corrections

angledependent uncertainty, relevant for radius extraction, ≲ 0.3%

angleindependent uncertainty, not relevant for radius extraction

The preliminary estimates of the total uncertainties in the radiative corrections

Cross-section asymmetries (differential)

The interference-TPE term and the interference-bremsstrahlung terms change sign depending on the sign of the lepton's charge.

Cross-section asymmetries (integrated)

Asymmetries of the integrated cross sections

- Decreasing asymmetry with decreasing p'min ${\bullet}$
- Decreasing asymmetry with decreasing Q² \bullet
- Higher asymmetry for the lighter lepton (close to the elastic peak)

The low values of p'min will result in small cross-section asymmetries for MUSE

See also: A. Afanasev and A. Ilyichev, Phys. Rev. D 105, L011301 (2022)

Summary

- The MUSE setup has unique implications for the determination of radiative corrections:
 - lepton momenta.
 - effects.
- the electron cross section be up to 0.3%.
- Most critical for determination of accurate corrections are:
 - Understanding of the SPS detection threshold and CAL response
 - Validity of the theoretical model

Without a magnetic spectrometer, MUSE integrates over a range of final-state

A dedicated downstream photon detector helps to suppress initial-state radiation

ESEPP simulations show <u>angular-dependent</u> uncertainties in radiative corrections to

