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backgrounds and corrections associated with each of the two halves of 
the experiment, are provided in Methods.

The asymmetry measurement results are Aep = −223.5 ± 15.0 
(statistical) ± 10.1 (systematic) p.p.b. in the first half of the experi-
ment, and Aep = −227.2 ± 8.3 (statistical) ± 5.6 (systematic) p.p.b. in 
the second half. These values are in excellent agreement with each 
other and consistent with our previously published commissioning 
result3. Accounting for correlations in some systematic uncertainties  
between the two measurement periods, the combined result is 
Aep = −226.5 ± 7.3 (statistical) ± 5.8 (systematic) p.p.b. The total 
uncertainty achieved (9.3 p.p.b.) sets a new level of precision for  
parity-violating electron scattering (PVES) from a nucleus.

The relationship between the measured asymmetries Aep and the 
proton’s weak charge Qw

p  is expressed by equation (3), where the  
hadronic-structure-dependent term B(Q2, θ) grows with the momen-
tum transfer Q2. Higher-Q2 data from previous PVES experiments (see 
online references, Methods) were included in a global fit3,7,8 to con-
strain the proton-structure contributions for the short extrapolation 
from our datum to Q2 = 0 in order to determine Qw

p, the intercept of 
equation (3). The average Q2 of this experiment (0.0248 GeV2 c−2) is 
much smaller than that of any other PVES experiments used in this fit, 
with correspondingly smaller contributions from the proton structure. 
The superior precision of the Qweak measurement tightly constrains the 
fit near Q2 = 0, where the connection to Qw

p can be made.
The parameters of the global fit3,7,8 to the PVES data are the  

axial-electron–vector-quark weak-coupling constants C1u and C1d, the 
strange charge radius ρs and strange magnetic moment µs (which char-
acterize the strength of the proton’s electric and magnetic strange-quark 
form factors) and the strength of the neutral weak (Z0 exchange) isovector  
(T = 1) axial form factor =G Z T

A
( 1). The EM form factors GE and GM used 

in the fit were taken from ref. 9; uncertainties in this input were 
accounted for in the result for Qw

p and in its uncertainty.
The ep asymmetries shown in Fig. 2 were corrected1,3 for the energy- 

dependent part of the γZ-box weak radiative correction10–13 and its 
uncertainty. No other electroweak radiative corrections need to be 
applied to determine Qw

p. However, ordinary electromagnetic radiative 
corrections (bremsstrahlung) were accounted for in the asymmetries 
used in the fit, including our datum. Details of the fitting procedure, as 

well as a description of the corrections applied to the asymmetry for 
this experiment, are described in Methods.

The global fit is shown in Fig. 2 together with the ep data, expressed 
as Aep(Q2, θ = 0)/Α0. To isolate the Q2 dependence for this figure,  
the θ dimension was projected to 0° by subtracting [Acalc(Q2, θ) −  
Acalc(Q2, θ = 0)] from the measured asymmetries Aep(Q2, θ), as 
described in refs 3,8. Here Acalc refers to the asymmetries determined 
from the global fit. The fit includes all relevant PVES data for the 
scattering of polarized electrons on protons (ep), deuterons (e2H) and 
4He (e4He); see Methods. The PVES database provides a data-driven 
(as opposed to a more theoretical) constraint on the nucleon structure 
uncertainties in the extrapolation to Q2 = 0. We consider this to be 
the best method to provide our main result (denoted in Table 1 as 
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Fig. 1 | Parity-violating electron scattering from the proton. An 
incoming electron, e, with helicity +1 scatters away from the plane of  
the ‘parity-violating mirror’. The image in the parity-violating mirror 
shows the incoming electron with the opposite helicity, −1; instead of 
scattering into the plane of the parity-violating mirror (as it would in a  
real mirror), it scatters out of the plane of the parity-violating mirror.  
The dominant electromagnetic interaction, mediated by the photon  
(γ, blue wavy line), conserves parity. The weak interaction, mediated 
by the neutral Z0 boson (dashed red line), violates parity. The weak 
interaction is studied experimentally by exploiting parity violation through 
reversals of the incident-beam helicity, which mimic the parity-violating 
mirror ‘reflection’.
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Fig. 2 | The reduced asymmetry θ= / = +A A Q Q B Q 0( , )ep 0 w
p 2 2  versus Q2.  

The global fit is illustrated using ep asymmetries from this experiment 
(Qweak 2018), from the commissioning phase of this experiment3 (Qweak 
2013), as well as from the earlier experiments HAPPEX, SAMPLE, PVA4 
and G0 (see Methods), projected to θ = 0° and reduced by a factor A0(Q2) 
appropriate for each datum. The data shown here include the γZ-box 
radiative correction and uncertainty. Inner error bars correspond to one 
standard deviation (s.d.) and include statistical and systematic uncertainties. 
Outer error bars on the data indicate the additional uncertainty estimated 
from the forward-angle projection (for some data points, inner and outer 
error bars coincide). The solid line represents the global fit to the complete 
PVES database (see Methods), and the yellow band indicates the fit 
uncertainty (1 s.d.). The arrowhead at Q2 = 0 indicates the standard-model 
prediction2, = .Q 0 0708(3)w

p , which agrees well with the intercept of the fit 
( = . ± .Q 0 0719 0 0045w

p ). The inset shows a magnification of the region 
around this experiment’s result, at 〈 〉 = . −Q c0 0248 GeV2 2 2.

Table 1 | Results extracted from the asymmetry measured in the 
Qweak experiment

Method Quantity Value Error

PVES !t Qw
p 0.0719 0.0045

ρs 0.20 0.11
µs −0.19 0.14

=GZ T
A

( 1) −0.64 0.30
PVES !t + APV Qw

p 0.0718 0.0044
Qw

n −0.9808 0.0063
C1u −0.1874 0.0022
C1d 0.3389 0.0025
C1 correlation −0.9318

PVES !t + LQCD Qw
p 0.0685 0.0038

Qweak datum only Qw
p 0.0706 0.0047

Standard model Qw
p 0.0708 0.0003

‘PVES !t’ refers to a global !t incorporating the Qweak result and the PVES database, as described 
in Methods. When combined with APV14,15 (to improve the C1d precision), this method is denoted 
as ‘PVES !t + APV’. If the strange form factors in the global !t (without APV) are constrained to 
match LQCD calculations16, we label the result as ‘PVES !t + LQCD’. The method labelled ‘Qweak 
datum only’ uses the Qweak datum, together with electromagnetic9, strange16 and axial18 form 
factors from the literature in lieu of the global !t. Uncertainties are 1 s.d.
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Standard Model: success story with open questions
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Standard Model: 

- Renormalizable non-Abelian  
         gauge field theory 

- Incorporates observed symmetries 
- Symmetry breaking 
- “small” number of parameters 

Together with gravity describes how things work on Earth, in the solar system, in stars 

Yet it is also notoriously insufficient (Dark Matter & Dark Energy, Matter-Antimatter 
asymmetry in the Universe, Hierarchy problem, Fine tuning of SM parameters, …) 

Searches for beyond Standard Model (BSM) particles and interaction along three frontiers:  
High-Energy frontier; Astrophysics frontier; Precision frontier 

Low-Energy precision tests: compare accurate experimental measurements with equally 
accurate theory calculations and deduce information about BSM from this comparison



Precision tests of SM at low energies - basics

•  SM parameters: charges, masses, mixing 

•  At low energy quarks are bound in hadrons - how can we access their 
fundamental properties through hadronic mess?  

•  A charge associated with a conserved current is not renormalized by 
strong interaction - the charge of a composite = ∑ charges of constituents 

•  Strong interaction may modify observables at NLO in αem/π ≈ 2 ∙10-3  

•  Experiment + pure EW RC - accuracy at 10-4 level or better 

•  This accuracy corresponds to ~50 TeV scale of heavy BSM particles 

•  In many low-energy tests hadron structure effects is the main limitation!
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Precise determination of SM mixing parameters: 

Weak mixing angle  
Cabibbo angle 

sin2 θW
Vud



Precision measurements of weak mixing angleStandard Model
3 interactions, 3 generations of quarks and leptons, Higgs

In SM fermions interact via exchange of a vector boson (or a Higgs)
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WMA: mixing of gauge fields
Weak mixing angle - mixing of the NC gauge fields
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The SM running of the weak mixing angle

WMA determines the relative strength 
of the weak NC vs. e.-m. interaction Qp=+1 QpW =1-4sin2θW
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SM running of the weak mixing angle
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Universal quantum corrections  
can be absorbed into running,  
scale-dependent sin2θW(μ)

SM uncertainty: few x 10-5

Universal running - clean prediction of SM 
Deviation anywhere - BSM signal
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Weinberg angle at low energy
Q2Elastic e-p scattering 

with polarized e�beam

APV (✏, Q2) = � GF Q2
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W = 1� 4 sin2 ✓tree

W ⇡ 0.05SM at tree-level: suppressed
Good candidate for BSM search

Proton’s weak charge

Elastic scattering of longitudinally polarized electrons  
off unpolarized nuclei at low momentum transfer

Proton (Z=1, N=0):  in SMQp
W = 1 − 4 sin2 θW ≈ 0.07

APV = σ→ − σ←
σ→ + σ←

= − GFQ2

4 2πα

QW

Z
(1 + Δ)

Nuclear weak charge QW(Z, N ) = − N + Z(1 − 4 sin2 θW)

Hadronic weak charges from PVES

P2 @ MESA/Mainz: go down to Q2 ~ 0.005 GeV2 — tiny asymmetry to 1.5-2%

Qweak@JLab: Q2~0.03 GeV2          (rel. 6%)APV = − (226.5 ± 9.3) ppb Qp
W = 0.0718 ± 0.0044

D. Androic et al [Qweak Coll.], Nature 557 (2018), 207

: hadronic structure (size, spin, strangeness; suppressed at low ; trivial E-dependence)        

Non-universal RC: boxes ( ; unsuppressed by ; nontrivial E-dependence)

Δ Q2

αem /π ∼ 10−3 Q2

Qp, 1�loop
W = (1 + �⇢ + �e)(1� 4 sin2 ✓̂W + �0

e) + ⇤WW + ⇤ZZ + ⇤�Z

Marciano, Sirlin PRD 1984



Precise beta decays: universality of weak interaction
Standard Model

3 interactions, 3 generations of quarks and leptons, Higgs

Charged current interaction - β-decay (μ, π±, n)

π±
μ±

νμ-
e-

νμ 

-νe 
n

e-

-νe 

p

CKM - Determines the rela1ve strength of the  
weak CC interac1on of quarks vs. that of leptons

CKM unitarity - measure of completeness of the SM:  |Vud|2+ |Vus|2+ |Vub|2=1

Rates close but not the same: CKM mixing matrix + Radia1ve Correc1ons 
Crucial ingredients for establishing the Standard Model
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1.1 State-of-the-art and preliminary work

Universality of weak interaction and CKM unitarity in the top row: Explaining the rates of all
weak decays by a parity-violating universal V � A interaction [16–18] served a basis for devel-
oping the electroweak Standard Model [19, 20]. Studies of 1-loop radiative corrections to muon
decay were of no less importance for devising the form of SM: a demonstration that they are
UV finite only in the V � A theory [21] provided a strong argument for this kind of theory
and allowed to identify the Fermi constant Gµ = 1.1663787(6) ⇥ 10�5 GeV�2 as one of the
most precisely measured fundamental constants in particle physics. Analyzing the rates of the
0+ � 0+ nuclear � decays it was found that the weak vector coupling in the light quark sector
gV is nearly the same as Gµ [18], suggesting universality of weak interaction and conservation
of vector current (CVC) in presence of strong interactions. Understanding radiative corrections
to weak decays of hadrons proved more involved as they turned out to be logarithmically UV
divergent in the V � A theory [22, 23], only rendered finite by the existence of massive weak
bosons. Since the large logarithm increases the decay rate, some 5% strength of weak inter-
action in the elementary process d ! u + e

� + ⌫̄e underlying � decays, was missing, violating
universality. Larger lifetimes of strange particles, e.g. kaons, suggested even less strength in
the underlying strangeness changing �S = 1 process s ! u + `

� + ⌫̄`, with ` = e, µ. An
elegant solution was found by Cabibbo who suggested that the strength of weak interaction
observed in the leptonic sector is redistributed among the quarks via a simple rotation ma-
trix that connects the quark mass and flavor eigenstates by the Cabibbo angle ✓C [12], such
that gV (�S = 0) = Gµ cos ✓C , gV (�S = 1) = Gµ sin ✓C and the universality is restored if
|gV (�S = 0)|2 + |gV (�S = 1)|2 = G

2
µ. With the discovery of the bottom and top quarks,

Kobayashi and Maskawa generalized this rotation matrix to include all three quark families [13].
The 3 ⇥ 3 Cabibbo-Kobayashi-Maskawa (CKM) matrix Vij with i = u, c, t and j = d, s, b is
required to be unitary, VijV

⇤
kj = �ik. Of the various equations implied for the CKM matrix ele-

ments by this matrix identity, the one involving the top-row elements, |Vud|2+ |Vus|2+ |Vub|2 = 1,
plays a special role because all three matrix elements are known to high precision [14] |Vud| =
0.9737(1)exp., nucl(1)RC, |Vus| = 0.2245(8), |Vub| = 0.00382(24) [14]. Together, these numbers lead
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Figure 2: Current status of CAA vs. that of 2018

to a 3� unitarity deficit in the CKM top
row or, upon dropping |Vub|2 ⇠ 10�5,
the Cabibbo angle anomaly (CAA),

cos2 ✓C + sin2
✓C = 0.9985(3)Vud(4)Vus . (1)

Fig. 2 summarizes the current status of
CAA (with Vud = cos ✓C , Vus = sin ✓C).
The main view shows Vud from superal-
lowed nuclear � decays with Vus, sepa-
rately from K`2 and K`3, and the uni-
tarity limit. In the subview, |Vud|2 and
|Vus|2 are shown along with the uni-
tarity limit, as well as the status as
of 2018 [24] when no anomaly was detected, |V 2018

ud | = 0.97420(10)exp., nucl(18)RC, |V 2018
us | =

0.2243(5),
⇥
cos2 ✓C + sin2

✓C
⇤2018

= 0.9994(5).

Status of Vus: The central value of Vus hardly changed since 2018, but the uncertainty is dou-
bled [14] following recent lattice QCD calculations [25] which confirmed the discrepancy between
Vus extracted from K`2 and K`3 decays (see Fig. 2). Here, my works [26–29] addressed theoreti-
cal uncertainties of radiative corrections in the Ke3 channel: the unknown low-energy constants

2

|Vud | = cos θC, |Vus | = sin θC

Neglec1ng : Cabibbo angle Vub ∼ 10−3 θC

PDG 2022:

Reason: re-evalua1on of SM RC to  ( -box)Vud γW



BSM searches at low energies vs. colliders
WMA measurements on the Z-pole  
most straightforward:  
Z on-shell, corrections non-resonant 

Downside: BSM enters quadratically  
SM amplitude imaginary,  
BSM amplitude real 

Low energies: 
BSM in linear interference with SM 
Sensitivity to heavy and light BSM 
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Figure 14: (Left) 90% CL constraints on ✏S,T at µ = 2 GeV from �-decay data, cf. Eq. (87), with ��2 = 4.61, (black ellipse), from the
analysis of pp ! e + MET + X at the 8-TeV LHC (20 fb�1) [12] (blue ellipse), and from radiative pion decay, cf. Eq. (118) [23] (orange
band). The green band shows the 90% CL bound (��2 = 2.71) using only superallowed Fermi decays. (Right) Same figure but using projected
�-decay data, cf. Eq. (100) (black) and projected LHC bounds from pp ! e+MET+X searches with 14 TeV and 300 fb�1 [23] (blue).

Requiring that the leading logarithmic part of the 2-loop correction is not larger than current bounds on the neutrino
mass, the following bounds were found [13]

|✏̃L| . 10�2
, (129)

|✏̃S ± ✏̃P | . 2⇥ 10�3
, (130)

|✏̃T | . 0.5⇥ 10�3
, (131)

where µ = 1 TeV was used as the initial running scale. The bounds on scalar and tensor interactions are about 3 times
stronger than those derived from LHC data in Eqs. (121)-(122) and orders of magnitude stronger than those from � decay,
cf. Section 4.5. The bound on the pseudoscalar coupling is also 3 times stronger than the LHC one, but still weaker than
that from pion decay, cf. Eq. (114). Finally, the neutrino-mass considerations above o↵er a valuable alternative probe for
the ✏̃L coupling, which can also be accessed through CKM unitarity, but with slightly less accuracy, cf. Eq. (79).

5.5. Electric dipole moments

It can be shown that in the SMEFT framework, the same dimension-6 e↵ective operators generating CP-violating
e↵ects in � decay would also generate at tree- or one-loop-level a non-zero nuclear and neutron Electric Dipole Moment
(EDM) [473]. As a result one can translate the stringent EDM bounds [474] in indirect limits on the �-decay CP-
violating coe�cients, such as D or R, which are two orders of magnitudes stronger than their direct limits from �-decay
measurements [13]. This takes into account the calculation of Ref. [475] that relaxed the EDM bound by an order of
magnitude with respect to Ref. [473].

In principle, these indirect bounds can be avoided through a fine-tuned cancellation with additional dimension-6
operators contributing to the EDMs, or using dimension-8 operators. The precise realization in specific models is however
nontrivial, as shown for instance for leptoquark models, where the connection with EDMs is still present, although the
indirect bounds can be relaxed in this case [473]. Finally, the EDM bounds can be avoided abandoning altogether the
SMEFT framework, introducing for example light new particles. Thus, current measurements of CP-violating coe�cients
in � decay can be considered as probes of the SMEFT framework itself, or at least its simpler realizations where large
fine-tunings are not considered. A recent and detailed review of the connection between EDMs and �-decay measurements
is presented in Ref. [13].

6. Conclusions

We have reviewed the role of precision measurements in nuclear and neutron � decay, as useful tools to improve our
understanding of fundamental interactions. Transitions with small nuclear-structure uncertainties (or none in neutron
decay) are used to learn about QCD, to extract the values of fundamental SM parameters such as Vud, and to search for
new physics.

First, we have introduced the theoretical formalism that describes � decay at the elementary level with special attention
to the latest developments, such as the precise calculations of the hadronic charges in the lattice, or the SMEFT framework

55

BSM searches: 
LHC vs -decaysβ

Constraints on non-standard 
Scalar/Tensor CC interactions 
Complementarity to LHC  
Now and in the future

LHC: pp —> e + MET + X 

Gonzalez Alonso et al, PPNP 2019
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Dispersion theory of electroweak boxes

A complete change of landscape is expected following
the first direct application of the lattice QCD to RC in
leptonic meson decays, K → μνμ and π → μνμ [9]. Very
recently, the first ever direct lattice calculation of the RC in
semileptonic β decay was presented, where the relevant
hadronic matrix element responsible for the γW-box dia-
gram in the pion is calculated to high precision as a function
of Q2 [10]. As a result, the theory uncertainty of the
πe3ðπ− → π0eν̄eÞ decay rate is reduced by a factor of 3.
While theoretically very clean, πe3 is not the easiest avenue
to extract Vud due to its tiny branching ratio ∼10−8.
Nonetheless, it provides useful information about the
involved nonperturbative dynamics, especially its low-Q2

behavior and its smooth transition to the perturbative
regime. Using the same method or other approaches such
as Feynman-Hellmann theorem [11,12], a first-principle
calculation of the RC to the free neutron β decay, while very
challenging, is expected to be performed in the near future.
In this paper, we perform a combined lattice QCD—

phenomenological analysis. Making use of a body of
hadron-hadron scattering data, known meson decay widths
and the guidance of Regge theory and vector dominance,
along with constraints from isospin symmetry, analyticity,
and unitarity, we are able to unambiguously relate the input
into the dispersion integral for the γW-box RC on the pion
and on the neutron. Fixing the strength of the pion matrix
element from the lattice, we thus obtain an estimate of an
analogous matrix element on the neutron, in accord with all
the aforementioned physics constraints.
We start by writing down the dispersive representation of

the contribution of the γW box diagram (see Fig. 1) to the
rate of the Fermi part of a semileptonic β decay process of
Hi → Hfeν̄e [3,4]:

δVAγW;H ¼ 3α
π

Z
∞

0

dQ2

Q2

M2
W

M2
W þQ2

Mð0Þ
3Hð1; Q2Þ; ð1Þ

where α is the fine-structure constant. The above definition
of the γW-box correction corresponds to a shift jVudj2 →
jVudj2ð1þ δVAγW;HÞ, affecting the apparent value of Vud

extracted from an experiment. The function

Mð0Þ
3Hð1; Q2Þ ¼ 4

3

Z
1

0
dx

1þ 2rH
ð1þ rHÞ2

Fð0Þ
3Hðx;Q2Þ
FH
þ

ð2Þ

stands for the first Nachtmann moment of the (spin-
independent) parity-odd structure function Fð0Þ

3Hðx;Q2Þ,

resulting from the product between the axial charged weak
current and the isoscalar electromagnetic current:

iϵμναβpαqβ
2p · q

Fð0Þ
3Hðx;Q2Þ

¼ 1

8π

X

X

ð2πÞ4δð4Þðpþ q − pXÞ

× hHfðpÞjJ
ð0Þμ
em jXihXjðJνWÞAjHiðpÞi: ð3Þ

Above, MH is the average mass of Hi, Hf, Q2 ¼ −q2,
x ¼ Q2=2p · q, and rH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2

Hx
2=Q2

p
, and the fac-

tor FH
þ defines the normalization of the tree-level hadronic

matrix element of the vector charged weak current:

hHfðpÞjðJμWÞV jHiðpÞi ¼ VudFH
þ2pμ: ð4Þ

By isospin symmetry, Fn
þ ¼ 1 and Fπ−

þ ¼
ffiffiffi
2

p
.

The quantity δVAγW;H is the source of the largest theory
uncertainty of the RC in the πe3, free neutron β decay, and
the universal RC in superallowed nuclear β decays, and has
long been the limiting factor for the precise determination
of Vud. To obtain δVAγW;H we need to know the Nachtmann

moment Mð0Þ
3Hð1; Q2Þ as a function of Q2. At large Q2, the

product of currents in Eq. (3) is given by the leading-order
(LO) operator product expansion (OPE) and the perturba-
tive QCD (pQCD) corrections. The LO OPEþ pQCD
result is independent of the external state H and is known
up to order Oðα4sÞ [13,14], with αs the strong coupling
constant. However, at low Q2 the structure function
Fð0Þ
3Hðx;Q2Þ depends on details of different on-shell inter-

mediate states jXi that dominate different regions of
fx;Q2g (see Fig. 2 of Ref. [3] for the explanation).
Also, the transition point between perturbative and non-
perturbative regime is a priori unknown, or uncertain.
The first calculation of Mð0Þ

3π ð1; Q2Þ on the lattice in
Ref. [10] serves as an important step in addressing the
questions above. Its result is presented in Fig. 2 as a
function ofQ2. At low Q2 where the integral (1) is strongly
weighted, lattice provides an extremely precise description
ofMð0Þ

3π ð1; Q2Þ, but its uncertainty increases at largeQ2 due
to the discretization error. Fortunately, at Q2 > 2 GeV2

there exists very precise data for the first Nachtmann
moment of the parity-odd structure function Fνpþν̄p

3 mea-
sured in the ν=ν̄ scattering on light nuclei by the CCFR
Collaboration [15,16]. Their good agreement with pQCD
prediction indicates a smooth transition to the perturbative
regime atQ2 > 2 GeV2, which also implies that these data,
upon simple rescaling, can be converted to Mð0Þ

3π ð1; Q2Þ.1

FIG. 1. The γW box diagram in free neutron decay.

1Strictly speaking, the pQCD correction to Fνpþν̄p
3 differs from

that of Fð0Þ
3H at Oðα3sÞ, but such a difference is numerically

insignificant at Q2 > 2 GeV2.

SENG, FENG, GORCHTEIN, and JIN PHYS. REV. D 101, 111301 (2020)

111301-2

TγW = − 2e2GFVud ∫ d4q
(2π)2

ūeγμ( /k − /q + me)γν(1 − γ5)vνT γW
μν

q2[(k − q)2 − m2e ][1 − q2/M2
W]

Evaluate the box at zero momentum transfer

E.g., for -box ( -box analogous)γW γZ

section, and note here that the splitting of the loop integral
into short-, long- and intermediate-distance contributions is
rather arbitrary, and so are the uncertainties assigned to
each contribution. It is our motivation to independently
reassess the model-dependent part of ΔR and the uncer-
tainty thereof in a data-driven dispersive approach.

III. DISPERSION REPRESENTATION OF THE
“INNER” γW-BOX CORRECTION TO gV

The γW-box correction is shown in Fig. 1 and is
defined as

TγW ¼ −
ffiffiffi
2

p
e2GFVud

×
Z

d4q
ð2πÞ4

ūeγμð=k − =qþmeÞγνð1 − γ5ÞvνT
γW
μν

q2½ðk − qÞ2 −m2
e&½1 − q2=M2

W &
;

ð12Þ

where k is the outgoing momentum of the electron. The
forward generalized Compton tensor for the β− decay
processWþn → γp (W−p → γn for the βþ process relevant
for nuclei) represented by the lower blob in Fig. 1 is given by

Tμν
γW ¼ 1

2

Z
dxeiq·xhpjT½JμemðxÞJνWð0Þ&jni ð13Þ

with the following definitions of the electromagnetic and
charged weak current:

Jμem ¼ 2

3
ūγμu −

1

3
d̄γμd;

JμW ¼ ūγμð1 − γ5Þd: ð14Þ

Notice that the definition of Tμν
γW above follows that in the

seminal paper by Sirlin [3]. The apparent extra factor of 1=2
is due to the difference in the normalization of the charged
weak current: Sirlin defined Jμw ¼ ūLγμdL (in the Vud ¼ 1
limit)whereas our definition is 2 times larger, as the latter is a
more commondefinition inmodern theory and experimental
papers.
As the box diagram contains only one heavy boson

propagator, it receives contribution from the loop momen-
tum q at all scales, ranging from infrared (i.e., q ∼me) to
ultraviolet. The infrared-singular piece inTγW , together with
the electron and proton wave function renormalization, as

well as the real-photon bremsstrahlung diagrams, give rise to
the Fermi function FðβÞ and the outer correction ḡðEmÞ
which are known analytically. In themeantime,most parts of
the inner corrections from TγW to gV are either exactly
known due to current algebra or depend only on physics at
high scale and are calculable perturbatively. The only piece
that depends on the physics at the hadron scale involves the
vector-axial vector correlator in Tμν

γW . Following a notation
similar to that in Ref. [4], we define its correction to the tree-
level W exchange Fermi amplitude as

TW þ TVA
γW ¼ −

ffiffiffi
2

p
GFVudð1þ□

VA
γWÞūe=pð1 − γ5Þvν; ð15Þ

so that it is straightforwardly connected to the universal
radiative correction ΔV

R via

□

VA
γW ¼ 1

2
ðΔV

RÞVAγW: ð16Þ

The explicit expression of □VA
γW is given by

□

VA
γW ¼ 4παRe

Z
d4q
ð2πÞ4

M2
W

M2
W þQ2

Q2 þ ν2

Q4

T3ðν; Q2Þ
Mν

;

ð17Þ

whereQ2 ¼ −q2, ν ¼ p · q=M withM the average nucleon
mass, and T3ðν; Q2Þ the parity-odd spin-independent
invariant amplitude of the forward Compton tensor Tμν

γW

defined through

Tμν
γW ¼

"
−gμν þ qμqν

q2

#
T1 þ

p̂μp̂ν

ðp · qÞ
T2 þ

iϵμναβpαqβ
2ðp · qÞ

T3;

ð18Þ

with p̂μ ¼ pμ − qμðp · qÞ=q2. Notice that since □

VA
γW is

insensitive to physics at the scale q ∼me, we have set me,
k → 0 as well as mn ¼ mp ¼ M to arrive at Eq. (17).
Furthermore, the fact that the electromagnetic current
comes as a mixture of an isoscalar and isovector permits
a decomposition of the forward amplitude in two isospin
channels:

T3 ¼ Tð0Þ
3 þ Tð3Þ

3 : ð19Þ

We apply Cauchy’s theorem to the definite isospin

amplitudes TðIÞ
3 ðν; Q2Þ (I ¼ 0, 3) accounting for their

singularities in the complex ν plane. These lie on the
real axis: poles due to a single nucleon intermediate state
in the s and u channels at ν ¼ 'νB ¼ ' Q2

2M, respectively,
and unitarity cuts at ν ≥ νπ and ν ≤ −νπ, where
νπ ¼ ð2Mmπ þm2

π þQ2Þ=ð2MÞ, mπ being the pion mass.
The contour is constructed such as to go around all these
singularities and is closed at infinity; see Fig. 2. The
discontinuity of the forward amplitude in the physical

FIG. 1. The γW-box diagram relevant for the neutron decay.
The blob represents the generalized forward Compton tensor.
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Generalized Compton tensor (lower blob):  
incorporate all symmetries; consider spin-independent part only (vector charges)

To evaluate the loop — need to know forward Compton amplitudes 
T1,2,3 - analytic functions inside C in the complex ν-plane  
determined by singularities on the real axis: poles + cuts 

Forward box: only -analyticity needed;  
if finite t also t-analyticity generally required - complicated

ν
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Dispersive Approach: Formalism

Forward amplitudes Ti - unknown; 
Their absorptive parts can be related to  
production of on-shell intermediate states 
—> a 'W ('Z) structure functions F1,2,3

Im T γW
i (ν, Q2) = 2πFγW

i (ν, Q2)

Structure functions are data 
Structure functions are NOT data but can be related to data

FγZ
i

FγW
i

X = inclusive strongly-interacting  
on-shell physical states

X

Im T γZ
i (ν, Q2) = 2πFγZ

i (ν, Q2)

Dispersion theory of electroweak boxes

Define box corrections according to

TW + TγW = − 2GFVudūe /p(1 − γ5)vν(1 + □γW )

TZ + TγZ = − GF

2 2
ūe /p(1 − γ5)ueFweak(Q2)[QW + □γZ (E, Q2)]
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Dispersion representation of □γW/γZ

Dispersion representation of Compton amplitudes: 
Combine left-hand and right-hand singularities 

Re Ti(ν, Q2) = 1
π ∫

∞

0
dν′ [ 1

ν′ − ν
± 1

ν′ + ν ] Im Ti(ν′ , Q2)
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Crossing behavior 

: same initial and final state —> definite crossing:  even,  odd function of  

: initial and final state different —> mixed crossing, depends on the isospin of  

  

with  even,  

 odd function of 

γZ T1 T2,3 ν

γW γ

T γW
i = T (Iγ=0)

i + T (Iγ=1)
i

T(0)
1 , T(1)

2,3

T(1)
1 , T(0)

2,3 ν
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Electron carries away energy E < Q-value of a decay

Radiative corrections to tree-level amplitude ∼ α/2π ≈ 10−3

Precision goal for Vud extraction 1 × 10−4

α
2π ( E

Λ , ln E
Λ , …)E-dep RC:

Nuclear scale

Λhad = 300 MeV
Hadronic scale

MZ, MW ∼ 90 GeV
Weak boson scale

me ≈ 0.5 MeV

Qif = Mi − Mf = 1 − 10 MeV
Electron mass

Decay Q-value (endpoint energy)

Λnuc = 10 − 30 MeV

Λ

Energy scales Λ

Dispersion theory of : relevant scales□γW

Leading energy behavior ( ) sufficientE0, E1
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Radiative corrections to tree-level amplitude ∼ α/2π ≈ 10−3

Λ

Electron energy E from ~100 MeV to ~12 GeV

Precision goal for  extractionQW 1 × 10−4

Nuclear scale

Λhad = 300 MeV
Hadronic scale

MZ, MW ∼ 90 GeV
Weak boson scale

me ≈ 0.5 MeV
Electron mass

Λnuc = 10 − 30 MeV

Energy scales Λ

Dispersion theory of : relevant scales□γZ

Full energy dependence necessary!
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Dispersion representation of □γW/γZ

□V
γZ (E) = α

π

∞

∫
0

dQ2

1 + Q2

M2
Z

∞

∫
0

dν {[ 1
2E

ln E + Em

E − Em
− 1

Em ] FγZ
1

ME
+

FγZ
2

2EνEm

+[(1 − Q2

4E2 ) ln E + Em

E − Em
+ ν

E
ln |E2 − E2

m |
E2m ] FγZ

2
νQ2 }

□A
γZ (E) = 1

2πME ∫
∞

0
dQ2 ve(Q2)α(Q2)

1 + Q2/M2
Z ∫

∞

0

dν
ν [ln E + Em

E − Em
+ ν

2E
ln |E2 − E2

m |
E2m ] FγZ

3

□even
γW = α

πM ∫
∞

0
dQ2 ∫

∞

νthr

dν
ν + 2q

ν(ν + q)2 F(0)
3 (ν, Q2) + O(E2)

□odd
γW = 2αE

3πM ∫
∞

0
dQ2 ∫

∞

νthr

dν
ν + 3q

ν(ν + q)3 F(1)
3 (ν, Q2) + O(E3)

Em =
ν + ν2 + Q2

2

Even:

Odd:

-box:γZ

-box:γW

Only E = 0 (EVEN) results were included in the original RC analysis of Marciano & Sirlin



Energy dependence of the -boxγZ
MG, Horowitz, PRL 102 (2009) 091806;
Nagata, Yang, Kao, PRC 79 (2009) 062501;  
Tjon, Blunden, Melnitchouk, PRC 79 (2009) 055201; 
Zhou, Nagata, Yang, Kao, PRC 81 (2010) 035208; 
Sibirtsev, Blunden, Melnitchouk, PRD 82 (2010) 013011; 
Rislow, Carlson, PRD 83 (2011) 113007; 
MG, Horowitz, Ramsey-Musolf, PRC 84 (2011) 015502;
Blunden, Melnitchouk, Thomas, PRL 107 (2011) 081801; 
Rislow, Carlson PRD 85 (2012) 073002; 
Blunden, Melnitchouk, Thomas, PRL 109 (2012) 262301; 
Hall et al., PRD 88 (2013) 013011; 
Rislow, Carlson, PRD 88 (2013) 013018; 
Hall et al., PLB 731 (2014) 287; 
MG, Zhang, PLB 747 (2015) 305;
Hall et al., PLB 753 (2016) 221; 
MG, Spiesberger, Zhang, PLB 752 (2016) 135;
Erler, MG, Koshchii, Seng, Spiesberger, PRD100 (2019), 053007

Steep energy dependence observed - added strong motivation for P2 @ MESA

Reference value: 1-loop SM   Erler, Ferro-Hernandez, arXiv:1712.09146Qp, SM
W = 0.0713(7)
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 by different groups (parametrizations & uncertainty treatments) closely agree 
(Theory is) looking forward to new measurements of WMA at low energies!
□γZ



 box from dispersion relations: 

Taming the uncertainties

γW



'W-box at zero energy
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Rewrite in terms of the first Nachtmann moment of F3

□even
γW = 3α

2π ∫
∞

0

dQ2M2
W

Q2(M2
W + Q2) M(0)

3 (1,Q2)

M(0)
3 (1,Q2) = 4

3 ∫
1

0
dx

1 + 2 1 + 4M2x2/Q2

(1 + 1 + 4M2x2/Q2)2
F(0)

3 (x, Q2)

□even
γW = α

πM ∫
∞

0

dQ2M2
W

M2
W + Q2 ∫

∞

0

dν
ν

ν + 2q
(ν + q)2 F(0)

3 (ν, Q2)

□odd
γW (E = 0) = 0

x = Q2

2Mν

First Nachtmann moment of  was studied extensively in 1980-1990’s  
in  scattering in the context of the Gross-Llewellyn-Smith (GLS) sum rule. 

In a nutshell: the use of those data allowed to improve the  calculation

F3
ν/ν̄

□γW

Dispersion representation of □γW



Input into dispersion integral

5

FIG. 3: Idealized structure of virtual photoabsorption on the nucleon (upper panel) and nuclei (lower panel). Plot taken from
the web but we’d need to make one ourselves.

Caution: We need to put back the superscript V A to ⇤�W because ⇤�W 6= ⇤V A
�W !! (i.e. V ⇥ A is NOT the only

non-zero piece in �W box diagram)
Compared to the old result by MS

⇤V A
�W =

↵

8⇡

Z 1

0

dQ2M2
W

M2
W +Q2

F (Q2), (17)

which only explicitly considered Q2 as a dynamical variable, our result allows for a greater detalization as we provide
a dispersion representation of that function,

F (Q2) =

Z 1

0
d⌫

8(⌫ + 2q)

M⌫(⌫ + q)2
F (0)
3 (⌫, Q2). (18)

This is the first essentially new result of our work. Armed with this new dispersive representation we can address
model dependence of the box graph calculation on a qualitatively new level. In doing so we can also rely on experi-
mental data: while F �W

3 (⌫, Q2) itself is not directly observable, its weak isospin partners F �Z
3 (⌫, Q2), FZZ

3 (⌫, Q2) and
FWW
3 (⌫, Q2) enter observables in inclusive electron and neutrino scattering.

IV. PHYSICS INPUT INTO THE DISPERSION RELATION FOR F
�W
3

It is informative to take a look at the general structure of the virtual photoabsorption spectrum displayed in Fig.
3. For a fixed value of Q2 one clearly sees three major structures as one goes from low to high energy ⌫: elastic peak
at Q2/(2M) (broadened by radiative corrections); nucleon resonances and non-resonant pion production starting
from the pion threshold [Q2 + (M +m⇡)2 �M2]/(2M) and up to roughly 2.5 GeV above the threshold; high-energy
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Dispersive Approach: Formalism

Dispersion in energy:  
scanning hadronic intermediate states

Dispersion in Q2:  
scanning dominant physics pictures

2W

2Q

( )2πmM +2M

Bo
rn

Parton + pQCD

Nπ Res.
+B.G

Regge
+VMD

2GeV2~

2GeV5~

Boundaries between regions - approximate 

Input in DR related (directly or indirectly) 
to experimentally accessible data 

20

W2 = M2 + 2Mν − Q2



Input into dispersion integral
Unfortunately, no data can be obtained for 

Data exist for the pure CC processes 

F �W (0)
3

21

Z 1

0
dx(up

v(x) + dpv(x)) = 3

�⌫p � �⌫̄p ⇠ F ⌫p
3 + F ⌫̄p

3 = up
v(x) + dpv(x)

Gross-Llewellyn-Smith sum rule
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M3WW (1,Q2) M3γW (1,Q2)Isospin symmetry

M & S : □(0)
γW = 0.00324 ± 0.00018

New DR : □(0)
γW = 0.00379 ± 0.00010

Previous calculation by Marciano&Sirlin ’06: 
No use of neutrino data, ad-hoc connection  
of low and high scales



For low : direct lattice calculation of the generalized Compton tensorQ2 ≤ 2 GeV2

2

tablished [2] that only the axial �W -box contribution is
sensitive to hadronic scales; see Fig. 1 for the �W dia-
grams. The relevant hadronic tensor TV A

µ⌫
is defined as

TV A

µ⌫
=
1

2 �
d4xeiqx�Hf(p)�T �J

em

µ
(x)JW,A

⌫
(0)� �Hi(p)�,

(1)
for a semileptonic decay process Hi → Hfe⌫̄e. Above,
Hi�f are given by neutron and proton for the neutron
beta decay, and by ⇡− and ⇡0 for the pion semileptonic
decay, respectively. Furthermore, Jem

µ
=

2
3 ū�µu−

1
3 d̄�µd−

1
3 s̄�µs is the electromagnetic quark current, and JW,A

⌫
=

ū�⌫�5d is the axial part of the weak charged current.

Figure 1. The �W -box diagrams for the semileptonic decay
process Hi →Hfe⌫̄e.

The spin-independent part of TV A

µ⌫
has only one term,

TV A

µ⌫
= i✏µ⌫↵�q

↵p�T3 + . . . , where T3 is a scalar function.
For the neutron beta decay, the spin-dependent contri-
butions, denoted by the ellipses here, are absorbed into
the definition of the nucleon axial charge gA, which can
be measured directly from experiments. According to
current algebra [2], it is this spin-independent term that
gives rise to the hadron structure-dependent contribution
and dominates the uncertainty in the theoretical predic-
tion. Using T3 as input, the axial �W -box correction to
the tree-level amplitude is given as [3]

�
V A

�W
�
H
=

1

FH+
↵e

⇡ �
∞

0
dQ2 m2

W

m2
W
+Q2

×�

�
Q2

−�Q2

dQ0

⇡

(Q2
−Q2

0)
3
2

(Q2)2
T3(Q0,Q

2
). (2)

Here Q2
= −q2 > 0 is the spacelike four-momentum

square. The normalization factor FH+ arises from the lo-
cal matrix element �Hf(p

′
)�JW,V

µ
�Hi(p)� = (p + p

′
)µF

H+ ,

with FH+ = 1 for the neutron and
√
2 for the pion decay.

Methodology – In the framework of lattice QCD, the
hadronic tensor TV A

µ⌫
in Euclidean spacetime is given by

TV A

µ⌫
=
1

2 �
dt e−iQ0t

� d3xe−i �Q⋅�xHV A

µ⌫
(t, �x) (3)

with HV A

µ⌫
(t, �x) defined as

H
V A

µ⌫
(t, �x) ≡ �Hf(P )�T �J

em

µ
(t, �x)JW,A

⌫
(0)� �Hi(P )�. (4)

Here the Euclidean momenta P and Q are chosen as

P = (imH ,�0), Q = (Q0, �Q) (5)

with mH the hadron mass.
By multiplying ✏µ⌫↵�Q↵P� to TV A

µ⌫
, we can extract the

function T3(Q0,Q
2
) through

T3(Q0,Q
2
) = −

I

2m2
H
� �Q�2

, I = ✏µ⌫↵�Q↵P�T
V A

µ⌫
. (6)

Here I can be written in terms of HV A

µ⌫
as

I =
i

2
✏µ⌫↵0Q↵mH � dt e−iQ0t

� d3�xe−i �Q⋅�xHV A

µ⌫

=
mH

2 �
dt e−iQ0t

� d3�xe−i �Q⋅�x✏µ⌫↵0 @H
V A

µ⌫

@x↵

. (7)

We can average over the spatial directions for �Q and have

I =
mH

2 �
dt e−iQ0t

� d3�x j0 �� �Q���x�� ✏µ⌫↵0
@HV A

µ⌫

@x↵

=
mH

2 �
dt e−iQ0t

� d3�x
� �Q�

��x�
j1 �� �Q���x�� ✏µ⌫↵0x↵H

V A

µ⌫
,

(8)

where jn(x) are the spherical Bessel functions. A key
ingredient in this approach is that once the Lorentz scalar
function ✏µ⌫↵0x↵H

V A

µ⌫
is prepared, e.g. from a lattice

QCD calculation, one can determine T3(Q0,Q
2
) directly.

Putting Eqs. (8) and (6) into Eq. (2) and changing

the variables as � �Q� =
�

Q2 cos ✓ and Q0 =
�

Q2 sin ✓, we
obtain the master formula

�
V A

�W
�
H
=
3↵e

2⇡ �
dQ2

Q2

m2
W

m2
W
+Q2

MH(Q
2
) (9)

with

MH(Q
2
) = −

1

6

1

FH+

�

Q2

mH

� d4x!(t, �x)✏µ⌫↵0x↵H
V A

µ⌫
(t, �x),

!(t, �x) = �

⇡
2

−⇡
2

cos3 ✓ d✓

⇡

j1 �
�

Q2��x� cos ✓�

��x�
cos �
�

Q2t sin ✓� .

(10)

For small Q2, lattice QCD can determine the function
MH(Q

2
) with lattice discretization errors under control.

For largeQ2, we utilize the operator product expansion

1

2 �
d4xe−iQxT �Jem

µ
(x)JW,A

⌫
(0)�

=
i

2Q2
�Ca(Q

2
)�µ⌫Q↵ −Cb(Q

2
)�µ↵Q⌫

−Cc(Q
2
)�⌫↵Qµ�J

W,A

↵
(0)

+
1

6Q2
Cd(Q

2
)✏µ⌫↵�Q↵J

W,V

�
(0) +�. (11)

There are only four possible local operators at leading
twist. (For the pion decay, the hadronic matrix ele-
ments for the first three operators vanish.) Multiplying

MγW(0)
3π (Q2) = − 1

6 2
Q
mπ ∫ d4xω(Q, x)εμνα0xαℋVA

μν (x)

Main executors: Xu Feng (Peking U.), Lu-Chang Jin (UConn/RIKEN BNL) 
Supercomputers: Blue Gene/Q Mira computer (Argonne, USA),  

       Tianhe 3 prototype (Tianjin, China)

Feng, MG, Jin, Ma, Seng 2003.09798

Lattice setup: 
5 LQCD gauge ensembles at physical pion mass 
Generated by RBC and UKQCD collaborations  
w. 2+1 flavor domain wall fermion

9

At low Q2 (< 2 GeV2): direct lattice computation of the generalized Compton tensor

First lattice QCD calculation

Lattice setup:
Five lattice QCD gauge ensembles
at the physical pion mass, generated 
by RBC and UKQCD Collaborations using
2+1 flavor domain wall fermion.

Blue: DSDR  
Red : Iwasaki

Quark contraction diagrams

9

At low Q2 (< 2 GeV2): direct lattice computation of the generalized Compton tensor

First lattice QCD calculation

Lattice setup:
Five lattice QCD gauge ensembles
at the physical pion mass, generated 
by RBC and UKQCD Collaborations using
2+1 flavor domain wall fermion.

Blue: DSDR  
Red : Iwasaki

Quark contraction diagrams

22

First lattice QCD calculation of -boxγW



10

First lattice QCD calculation

(integral range, 64I)

Estimate of major systematic effects:
● Lattice discretization effect: Estimated using the discrepancy between DSDR and Iwasaki
● pQCD calculation: Estimated from the difference between 3-loop and 4-loop results
● Higher-twist effects at large Q2: Estimated from lattice calculation of type (A) diagrams  

Final result:

1% precision!

(before cont. extrapolation) (after cont. extrapolation)

First lattice QCD calculation of -boxγW

Uncertainty of RC to : 1 o.o.m. reductionπe3 δ : 0.0334(10)LEC(3)HO → 0.0332(1)γW(3)HO

23

Cleanest way to access  theoretically:  
Next-gen experiments: aim at 1 o.o.m. exp. uncertainty improvement 

Vud |Vud | = 0.9740(28)exp(1)th
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Implications for the free nucleon -boxγW

12

Implications of the study

2. On free neutron and superallowed nuclear decays:

The “asymptotic” contribution is extracted 
from the pion lattice curve; result consistent

 with 2018 but much more solid

2018

2020 pQCD

It provides an independent assessment 
of the single-nucleon RC:

CYS, Feng, Gorchtein and Jin,
2020 PRD

Main uncertainty of the DR calculation of the free neutron -box: 
Poorly constrained parameters of the Regge contribution which dominates  
the Nachtmann moment at  
Use the Regge universality and a body of , N, NN scattering data.

γW

Q2 ∼ 1 − 2 GeV2

ππ π

Seng, MG, Feng, Jin, 2003.11264

3

Figure 3: The Regge-exchange contribution to F (0)
3 for neu-

tron and pion. The vertical propagator represents the ex-
change of the ⇢-trajectory.

low 2 GeV2 e↵ects of generic higher-twist terms start to
show up, and the LO OPE+pQCD prediction disagrees
significantly with the lattice result.

We shall describe how the lattice result for �V A

�W
on the

pion can be used to improve our understanding of �V A

�W

on the neutron. First, for the neutron we parametrized

the structure function F
(0)
3N (hence, also M

(0)
3N ) as [3, 4]:

F
(0)
3N = F

(0)
3N,el +

(
F

(0)
3N,res + F

(0)
3N,⇡N

+ F
(0)
3N,R, Q

2
 Q

2
0,

F
(0)
3N,pQCD, Q

2
� Q

2
0,

(5)
where Q

2
0 ⇡ 2 GeV2 is the scale above which the LO

OPE + pQCD description is valid. Above, we isolated
the contributions from the elastic intermediate state (el)
fixed by the nucleon magnetic [17, 18] and axial elastic
form factor [19], from the non-resonance ⇡N continuum
(⇡N) in the low-energy region, from the N

⇤ resonances
(res) 2, and the Regge contribution (R) that allow to
economically describe the multi-hadron continuum.

In a similar way, we parametrize the pion structure
function as

F
(0)
3⇡ =

(
F

(0)
3⇡,res + F

(0)
3⇡,R, Q

2
 Q

2
0,

F
(0)
3⇡,pQCD, Q

2
� Q

2
0.

(6)

We note the absence of the elastic and the low-energy
continuum contributions. The former is identically zero
because the axial current does not couple to the spin-0
pion ground state. The latter would correspond to the
non-resonant part of the ⇡⇡ continuum in the p-wave;
however, this partial wave is known to be entirely domi-
nated by the ⇢

0 resonance up to the KK̄ threshold.
Comparing the parameterizations of Eqs. (5,6), we

make an important observation. Among the various con-
tributions there are the process-specific ones that reside
in the lower part of the spectrum (elastic, resonance and

that of F
(0)
3H at O(↵3

s), but such a di↵erence is numerically in-

significant at Q2 > 2 GeV2.
2 � resonances do not contribute due to the isoscalar nature of the
photon.

low-energy continuum). They have to be explicitly cal-
culated for the pion and for the nucleon and cannot be
related to each other. On the other hand, the asymptotic
contributions (Regge and pQCD) are universal. This is
the central point of our analysis.
Universality of the OPE is straightforward. The only

di↵erence between F
(0)
3N,pQCD and F

(0)
3⇡,pQCD is in the

normalization of the isospin states, thus F
(0)
3⇡,pQCD =

(F⇡
�

+ /F
n

+)F
(0)
3N,pQCD.

Universality is among the central predictions of Regge
theory. It dictates that the upper and lower vertices in
the Regge ⇢-exchange amplitudes T ⇢(W++⇡

�
! �+⇡

0)
and T

⇢(W+ + n ! � + p) in Fig. 3 factorize, so that,
e.g.,

R⇡/N =
T

⇢

W++⇡�!�+⇡0

T
⇢

W++n!�+p

=
T

⇢

⇡⇡!⇡⇡

T
⇢

⇡N!⇡N

=
T

⇢

⇡N!⇡N

T
⇢

NN!NN

, (7)

where T
⇢

⇡⇡!⇡⇡
, T

⇢

⇡N!⇡N
, T

⇢

NN!NN
stand for the ampli-

tudes in elastic ⇡⇡, ⇡N, NN scattering in the channel
that corresponds to an exchange of the quantum num-
bers of the ⇢ meson in the t-channel. Regge factorization
has been tested on global data sets for elastic pion, pion-
nucleon and nucleon-nucleon scattering.
This leads to a prediction based on Regge universality,

F
(0)
3N,R(x,Q

2) = R
�1
⇡/N

F
n

+A(Q2)fN

th(W
2)

✓
Q

2

x

◆↵
⇢
0

(8)

F
(0)
3⇡,R(x,Q

2) = F
⇡
�

+ A(Q2)f⇡

th(W
2)

✓
Q

2

x

◆↵
⇢
0

,

with ↵
⇢

0 = 0.477 [20]. Here we define the threshold func-
tion f

H

th = ⇥(W 2
�W

2
th,H)(1� exp[(W 2

th,H �W
2)/⇤2]),

where W
2 = M

2
H
+Q

2( 1
x
� 1) and ⇤ = 1GeV2 [21]. The

threshold parameter Wth,H characterizes the threshold
for the multi-hadron contributions. In Ref. [3] we fixed
Wth,N = mN + 2M⇡, such that the threshold function
f
N

th ⇡ 1 for W & 2.5GeV. In the pion sector, one expects
Wth,⇡ to lie between M⇢ and 1.2 GeV, the scale above
which Regge description is valid [22]. In this work we
choose Wth,⇡ ⇡ 1 GeV, and account for the uncertainty
due to its variation between the two boundaries.
The function A(Q2) describes the interaction at the

upper half of Fig.3 and is, within the Regge framework,
common for neutron and pion. It is generally unknown
but is now completely fixed by the lattice result plotted
in Fig.2—upon subtracting the resonance contribution.
With these ingredients, the ratio of the first Nachtmann
moments of the Regge contributions reads,

M
(0)
3N,R(1, Q

2)

M
(0)
3⇡,R(1, Q

2)
=

1

R⇡/N

R 1
0 dx

1+2rN
(1+rN )2 f

N

th(W
2)x�↵

⇢
0

R 1
0 dx

1+2r⇡
(1+r⇡)2

f
⇡

th(W
2)x�↵

⇢
0

. (9)

To fully specify the parametrization of F (0)
3⇡ we turn

now to the resonance contribution depicted in Fig. 4.

Independent confirmation of the empirical DR result AND uncertainty 
□(0)

γW = 0.00379(10)DR → 0.00384(11)LQCD+DR



Vud extraction and CKM unitarity

Marciano, Sirlin 2006:  —> ΔV
R = 0.02361(38) |Vud | = 0.97420(10)Ft(18)RC

DR (Seng et al. 2018):  —> ΔV
R = 0.02467(22) |Vud | = 0.97370(10)Ft(10)RC

 —> ΔV
R = 0.02421(32) |Vud | = 0.97391(10)Ft(15)RC

In July 2019 Czarnecki, Marciano and Sirlin published an update 1907.06737
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18

25

With new RC   unitarity deficit  
(a.k.a. Cabibbo angle anomaly)

∼ 3σ

DR (Shiells, Blunden, Melnitchouk) 2012.01580 — closely agrees with Seng et al.

 —> ΔV
R = 0.02472(18) |Vud | = 0.97368(14)

Combine -box with other universal RCγW

of the chiral perturbation theory [30, 31] were connected to correlators that can be calculated
on the lattice. A joint dispersion relations (DR) - lattice approach confirmed previous estimates
and reduced uncertainties by an order of magnitude. Further progress is likely to come from
more advanced lattice QCD calculations of the kaon form factor, and future experiments [32,33].

Status of Vud: As clearly seen in Fig. 2, the main source of CAA is in a significant shift of
the central value of Vud obtained from superallowed 0+ � 0+ nuclear decays, accompanied by a
reduction of its uncertainty. Importantly, both changes are of a purely theoretical origin. The
advantage of superallowed 0+ �0+ decays (using the spin-parity notation J

⇡ = 0+) is that their
rates only depend on the conserved vector weak coupling gV = GµVud. Then, all such decays
should occur with the same rate, upon correcting for the decay-specific phase space. Including
order O(↵) radiative corrections (RC), a precise extraction of Vud from a joint analysis of all
superallowed decays is warranted via the master formula

|Vud|2 =
2984.431(3) s

Ft(1 + �V
R)

, Ft = fV t1/2(1 + �
0
R)(1 � �C + �NS). (2)

The phase-space factor fV and the half-life t1/2 summarize experimental information on each
individual decay, and are corrected by absorbing all process-specific corrections into a nucleus-
independent corrected half-life Ft. RCs are split into the universal, nucleus-independent �V

R [34]
and process specific ones, quantum electrodynamics (QED) �

0
R [35–38], isospin symmetry break-

ing (ISB) �C and nuclear structure �NS corrections [39–41].

Figure 3: �W -box graphs

�V
R contains large logarithms that come from loop mo-

menta MZ and are model independent,

�V
R =

↵

2⇡


3 ln

MZ

M
+ ln

MZ

MW

�
+ 2⇤V

�W , (3)

while the last term represents the �W -box diagram,
Fig. 3, that is sensitive to momenta at all scales and
bears model dependence.
In my earlier works [i], [ii] and [42–45] I for the first time applied DR to the �Z-box correction
to parity-violating electron scattering (PVES), a formalism that became the state-of-the-art for
the electroweak box diagrams. I extended this approach to � decays in Refs. [iii], [iv], [v]. A
DR representation of ⇤V

�W reads,

⇤V
�W =

↵

⇡M

1Z

0

dQ
2
M

2
W

M2
W + Q2

1Z

0

d⌫
(⌫ + 2q)

⌫(⌫ + q)2
F

(0)
3 (⌫, Q

2) =
3↵

2⇡

Z 1

0

dQ
2
M

2
W

Q2[M2
W + Q2]

M
(0)
3 (1, Q

2), (4)

where the structure function F
(0)
3 is the parity-violating structure function resulting from an

interference between the axial weak current with the isoscalar electromagnetic current, repre-
sented by the hatched blob in Fig. 3. At the second step in Eq. (4) the ⌫-integral was absorbed

into the definition of M
(0)
3 (1, Q

2), the first Nachtmann moment of F3 [46, 47]. In Refs. [iii],

[iv] we exploited isospin symmetry that relates F
�W (0)
3 to the di↵erence of the inclusive cross

sections for neutrino and antineutrino scattering proportional to F
⌫p+⌫̄p
3 . The structure function

F
⌫p+⌫̄p
3 and its first Nachtmann moment has been extensively studied experimentally in the con-

text of the Gross-Llewellyn-Smith sum rule [52] which relates the first moment of F
⌫p+⌫̄p
3 to the

number of valence quarks in the nucleon, modulo perturbative QCD (pQCD) corrections known
to 4 loops [53,54]. We used those data to constrain the input to the dispersion integrals, Eq. (4).

3



 box on nuclei γW
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Nuclear effects modify the free-nucleon structure functions: FA
1,2,3 ≠ ∑

N∈A
FN

1,2,3
Towards a coherent and unified picture of neutrino-nucleus interactions

* An accurate understanding of nuclear structure and dynamics is required to

disentangle new physics from nuclear effects *

* ω ∼ few MeV, q ∼ 0: β -decay, ββ -decays

* ω ∼ few MeV, q ∼ 102 MeV: Neutrinoless ββ -decays

* ω ! tens MeV: Nuclear Rates for Astrophysics

* ω ∼ 102 MeV: Accelerator neutrinos, ν-nucleus scattering
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Low-energy part of the spectrum is qualitatively modified in nuclei

High-energy part of the spectrum: shadowing 
Extensively studied in HE real photoabsorption

Aeff /A =
σγA

Z⟨σγp⟩ + N⟨σγn⟩

Medium  also modified (e.g. EMC effect) 

At asymptotic : expect to recover OPE

Q2

Q2

C. Nuclear density effect

As previously mentioned, nuclear medium effects are
generally expected to depend on nuclear parameters like the
average nuclear density r(A) or the mass number A . To
check this expectation we fitted the total cross-section values
obtained on different nuclei for each invariant mass W with a
linear function of the nuclear density sA(W)/A
5b(W)[11b(W)r(A)]. In the fits we assumed that the av-
erage nuclear densities were r(A)53A/4pR3 with
R255^r2&/3, ^r2& being the rms electron-scattering radius of
the nucleus @41#.
In Fig. 12 are shown all the linear coefficient values,

b(W), obtained from our data together with the ones ob-
tained from the data measured at higher energies on the same
nuclei @9#, except the lithium. As shown the qualitative en-
ergy behavior for the b(W) parameter is very close to the
one obtained for the ratio of cross sections shown in Fig. 10,
thus experimentally indicating that nuclear medium effect
really increases with the nuclear density, at least up to the
D13-resonance region. In the F15-resonance region, where
the nonresonant background is large and where many reso-
nances overlap, no definite indication can be derived.
It is worth mentioning that we also fitted our data to a

power law sA(W)/A5a(W)Aa(W): the result for the energy
dependence of the a(W) parameter was very similar to the
one for the b(W) parameter but with a worse total reduced
x2 ~1.62 against 1.03 of the density fit!.

For a more quantitative evaluation, the same procedure
used to fit the average-nucleus cross-section data was em-
ployed to fit the data for the different nuclei, in order to
extract dMD , dGD , and dGN* for each nucleus. The results
obtained are plotted in Figs. 13~a! and 13~b! versus the
nuclear density: as it is seen a nice linear behavior is found in
agreement with the prediction of the model @see Eqs. ~11!
and ~12!#.
Therefore it is reasonable to conclude that, due to the

resonance propagation and interaction, in the photoabsorp-
tion on nuclei the D-resonance mass increases with the
nuclear density up to few tenths of MeV, the D-resonance
width up to several tenths of MeV, while the averaged
N*-resonance width up to few hundreds of MeV.

VI. CONCLUSION

We have measured the total photoabsorption cross section
for several nuclei in the energy range 300–1200 MeV, using
the photohadronic technique with a 4p NaI detector to detect
hadronic events and a lead-glass counter to tag the electro-
magnetic ones. From the comparison between the new re-

FIG. 10. ~a! Ratio between cross section on the average nucleus
and that on a free nucleon: our data are indicated by solid circles
while Daresbury data @37# by open circles. The solid line is the
result of the phenomenological model described in the text which
considers Fermi motion, Pauli blocking, and resonance propagation
and interaction; the dashed line is the result of the model with
dMD50 ~no D-resonance mass shift! while dotted line with dG50
~no resonance interaction!. ~b! The same as ~a!: the solid line is the
phenomenological model with the inclusion of shadowing effect
and a partial damping of resonances.

FIG. 11. Shadowing effect measured for C ~open symbols! and
Pb ~solid symbols!. Our data ~circles! are shown together with some
data available from literature: rhombs @37#, triangles @40# and
squares @39#. Lines are VMD different predictions: solid lines @38#,
dashed lines @20#, and dotted lines @19#; thin and thick lines are the
predictions for C and Pb, respectively.

FIG. 12. Linear coefficient b derived for each invariant mass W
from our data on Li, C, Al, Cu, Sn, and Pb ~solid circles! and from
Daresbury data on C, Al, Cu, Sn, and Pb ~open circles!.

54 1697TOTAL HADRONIC PHOTOABSORPTION CROSS . . .

12C
208Pb

Bianchi et al., PRC 54 (1996)
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ft(1 +RC) = Ft(1 + �0R)(1� �C + �NS)(1 +�V
R)

General structure of RC in 0+-0+ nuclear decays: |Vud |2 = 2984.43s
ℱt(1 + ΔV

R)

Universal (free-nucleon) RC

of the chiral perturbation theory [30, 31] were connected to correlators that can be calculated
on the lattice. A joint dispersion relations (DR) - lattice approach confirmed previous estimates
and reduced uncertainties by an order of magnitude. Further progress is likely to come from
more advanced lattice QCD calculations of the kaon form factor, and future experiments [32,33].

Status of Vud: As clearly seen in Fig. 2, the main source of CAA is in a significant shift of
the central value of Vud obtained from superallowed 0+ � 0+ nuclear decays, accompanied by a
reduction of its uncertainty. Importantly, both changes are of a purely theoretical origin. The
advantage of superallowed 0+ �0+ decays (using the spin-parity notation J

⇡ = 0+) is that their
rates only depend on the conserved vector weak coupling gV = GµVud. Then, all such decays
should occur with the same rate, upon correcting for the decay-specific phase space. Including
order O(↵) radiative corrections (RC), a precise extraction of Vud from a joint analysis of all
superallowed decays is warranted via the master formula

|Vud|2 =
2984.431(3) s

Ft(1 + �V
R)

, Ft = fV t1/2(1 + �
0
R)(1 � �C + �NS). (2)

The phase-space factor fV and the half-life t1/2 summarize experimental information on each
individual decay, and are corrected by absorbing all process-specific corrections into a nucleus-
independent corrected half-life Ft. RCs are split into the universal, nucleus-independent �V

R [34]
and process specific ones, quantum electrodynamics (QED) �

0
R [35–38], isospin symmetry break-

ing (ISB) �C and nuclear structure �NS corrections [39–41].

Figure 3: �W -box graphs
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while the last term represents the �W -box diagram,
Fig. 3, that is sensitive to momenta at all scales and
bears model dependence.
In my earlier works [i], [ii] and [42–45] I for the first time applied DR to the �Z-box correction
to parity-violating electron scattering (PVES), a formalism that became the state-of-the-art for
the electroweak box diagrams. I extended this approach to � decays in Refs. [iii], [iv], [v]. A
DR representation of ⇤V

�W reads,
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where the structure function F
(0)
3 is the parity-violating structure function resulting from an

interference between the axial weak current with the isoscalar electromagnetic current, repre-
sented by the hatched blob in Fig. 3. At the second step in Eq. (4) the ⌫-integral was absorbed

into the definition of M
(0)
3 (1, Q

2), the first Nachtmann moment of F3 [46, 47]. In Refs. [iii],

[iv] we exploited isospin symmetry that relates F
�W (0)
3 to the di↵erence of the inclusive cross

sections for neutrino and antineutrino scattering proportional to F
⌫p+⌫̄p
3 . The structure function

F
⌫p+⌫̄p
3 and its first Nachtmann moment has been extensively studied experimentally in the con-

text of the Gross-Llewellyn-Smith sum rule [52] which relates the first moment of F
⌫p+⌫̄p
3 to the

number of valence quarks in the nucleon, modulo perturbative QCD (pQCD) corrections known
to 4 loops [53,54]. We used those data to constrain the input to the dispersion integrals, Eq. (4).

3

Decay-specific ft (phase-space, rate, BR) —> absorb decay-specific RC —> universal Ft

NS correction reflects the extraction of the free-n box    δNS = 2□Nucl
γW − 2 □free n

γW

This representation of  is new: can be computed in the same formalism as  
Previously:  by loop methods,  in shell model — matching?

δNS ΔV
R

ΔV
R δNS

Exp QED beyond Coulomb Isospin breaking
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δNS = 2α
πM ∫

∞

0
dQ2 ∫

∞

νthr

dν
ν [ ν + 2q

(ν + q)2 (F(0) Nucl.
3 − F(0), B

3 ) + 2⟨E⟩
3

ν + 3q
(ν + q)3 F(−) Nucl.

3 ]
 from DR with energy dependence averaged over the spectrumδNS

Hardy & Towner 1994 on: ad hoc description by nuclear quenching of spin operators 
Compare the effect on the average Ft value:

ℱt = 3072.1(7)s δℱt = − (3.5±1.0)s + (1.6±0.5)s
δℱt = − (1.8 ± 0.4)s + (0 ± 0)sHT value 2018:

New estimate:

Old estimate:

Two 2  corrections that cancel each other; 
The cancellation is delicate: the two terms are highly correlated  

Larger E-dep. term will correspond to a smaller negative E-indep. term and vv. 

Conservative uncertainty estimate: 100%

σ

ℱt = (3072 ± 2)s

C-Y Seng, MG, M J Ramsey-Musolf, arXiv: 1812.03352
MG, arXiv: 1812.04229

As of now only exploratory QE calculation in free Fermi model exists! 
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Low-energy nuclear effects need to be checked in modern nuclear theory 

Collaborations started for  in  decay: 
Navratil & Gennari (No-Core Shell Model) 
Pastore & King (Green’s Function Monte Carlo) 

Expect results soon

δNS
10C → 10B

High-energy nuclear effects (shadowing etc) — no calculations exist 

How to match shadowing of real photons with the restoration of OPE at high  ? 

How important is the effect on , given the  precision? 

How important for nuclear weak charges & radii — less so, only  precision feasible 

Work in progress

Q2

Vud 10−4

10−3
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• Sensitive tests of SM and beyond with PVES and beta decays 

• Need for a reliable calculation of box diagrams for a 10-4 precision goal 

• Consistent dispersive treatment of the γW-box correction to neutron and nuclear 
-decay, and the γZ-box correction to PVES and weak charges 

• pQCD, hadronic and nuclear contributions treated in a unified framework 

• γW-box calculation confirmed by a first-ever direct lattice calculation 

• New more precise data on EW structure functions  (JLab, EIC) 

• New more precise data on EW structure functions  (DUNE) 

• A new program on  from ab-initio methods started — keep tuned! 

• Application to PVES on nuclei

β

FγZ
1,2,3

FWW
1,2,3

δNS


