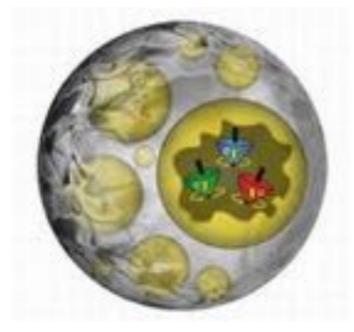


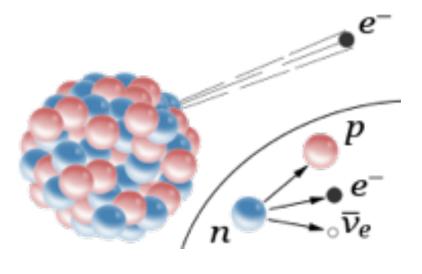
Box Diagrams for Elastic PVES and Relevance for DIS

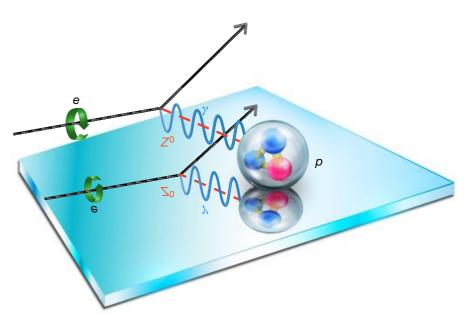
Misha Gorshteyn

Johannes Gutenberg-Universität Mainz

Collaborators: *Chien-Yeah Seng Michael Ramsey-Musolf Chuck Horowitz Hubert Spiesberger Jens Erler Oleksandr Koshchii Xu Feng Lu-Chang Jin Peng Ma*





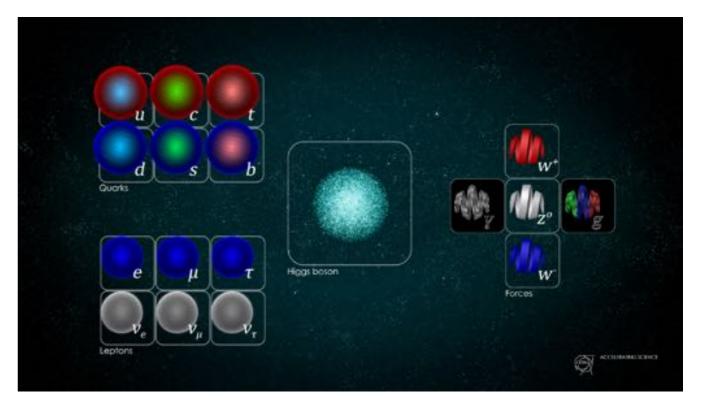


ECT* Workshop "Radiative corrections from medium to high energy experiments" - July 19, 2022

Standard Model: success story with open questions

Standard Model:

- Renormalizable non-Abelian gauge field theory
- Incorporates observed symmetries
- Symmetry breaking
- "small" number of parameters



Together with gravity describes how things work on Earth, in the solar system, in stars

Yet it is also notoriously insufficient (Dark Matter & Dark Energy, Matter-Antimatter asymmetry in the Universe, Hierarchy problem, Fine tuning of SM parameters, ...)

Searches for beyond Standard Model (BSM) particles and interaction along three frontiers: High-Energy frontier; Astrophysics frontier; Precision frontier

Low-Energy precision tests: compare accurate experimental measurements with equally accurate theory calculations and deduce information about BSM from this comparison

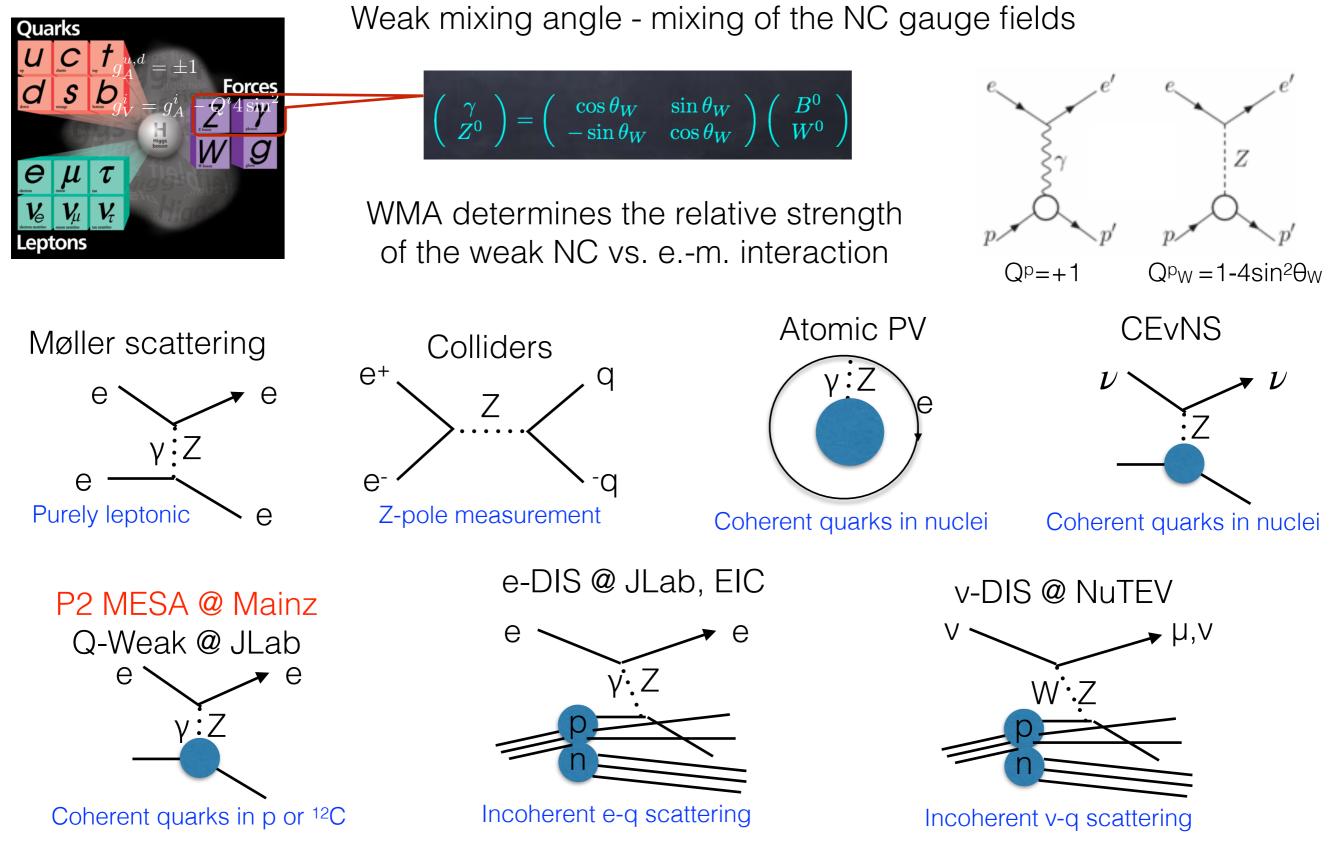
Precision tests of SM at low energies - basics

- SM parameters: charges, masses, mixing
- At low energy quarks are bound in hadrons how can we access their fundamental properties through hadronic mess?
- A charge associated with a conserved current is not renormalized by strong interaction the charge of a composite = \sum charges of constituents
- Strong interaction may modify observables at NLO in $\alpha_{em}/\pi \approx 2 \cdot 10^{-3}$
- Experiment + pure EW RC accuracy at 10⁻⁴ level or better
- This accuracy corresponds to ~50 TeV scale of heavy BSM particles
- In many low-energy tests hadron structure effects is the main limitation!

Precise determination of SM mixing parameters:

Weak mixing angle $\sin^2 \theta_W$ Cabibbo angle V_{ud}

stand Precision measurements of weak mixing angle

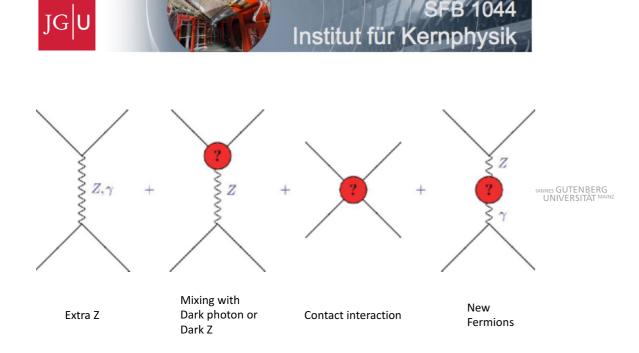


SM running of the work with the low-energy frontier of the transfer work of the standard model with th

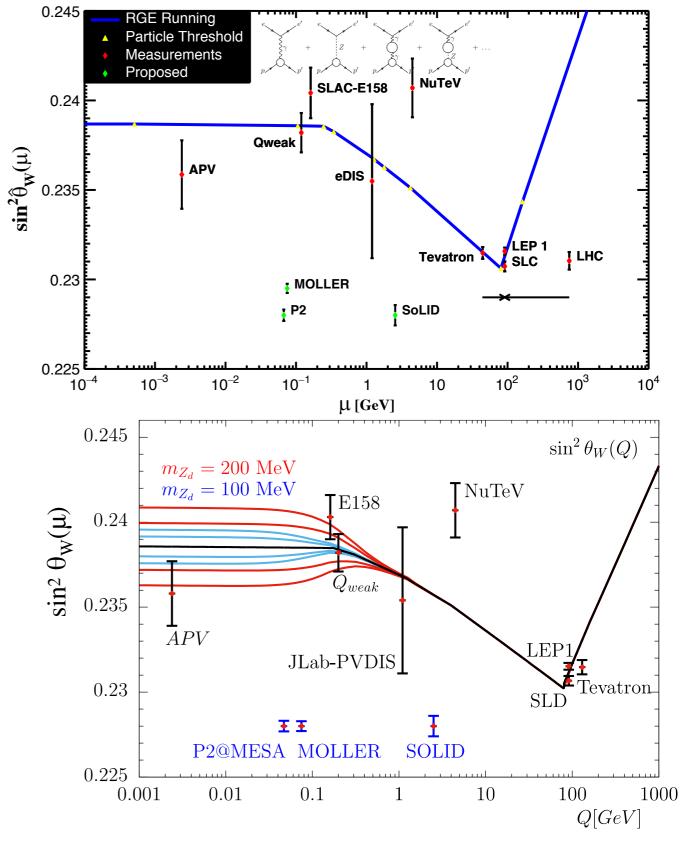
Universal quantum corrections can be absorbed into running, scale-dependent $\sin^2\theta_W(\mu)$

SM uncertainty: few x 10⁻⁵

Universal running - clean prediction of SM Deviation anywhere - RSM signal



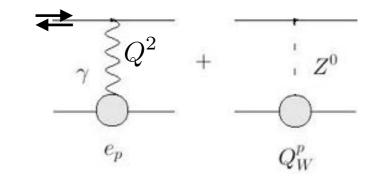
Heavy BSM reach: up to 50 TeV Light dark gauge sector: down to 70 MeV **Complementary to colliders**



Weinberg angle at low energy Hadronic weak charges from PVES

Elastic scattering of longitudinally polarized electrons off unpolarized nuclei at low momentum transfer

$$A^{\rm PV} = \frac{\sigma_{\rightarrow} - \sigma_{\leftarrow}}{\sigma_{\rightarrow} + \sigma_{\leftarrow}} = -\frac{G_F Q^2}{4\sqrt{2\pi\alpha}} \frac{Q_W}{Z} (1+\Delta)$$



Nuclear weak charge $Q_W(Z,N) \in \mathbb{F}_E^{\gamma} N \neq Z(1-G_M^4 \sin^2 \theta_W) = g_V^e \sqrt{1-\epsilon^2} \sqrt{\tau(1+\tau)} G_M^{\gamma} G_A^Z$ $A^{PV}(\epsilon,Q^2) = -Q_W^p \sqrt{2}\pi + 4 \sin^2 \theta_W \approx 0.07$ in SM $(G_E^{\gamma})^2 + \tau(G_M^{\gamma})^2$

Qweak@dl2ab: $Q^2 \sim 0.03 \text{ GeV}^2$ $A^{PV} = -(226.5 \pm 9.3) \text{ ppb}_{F} Q_{W}^{p} = 0.0718 \pm 0.0044 \text{ (rel. 6\%)}$ $A^{PV}(\epsilon, Q^2) = D. \text{ Androic et al [Qweak Coll.], Nature 557 (2018), 207}$

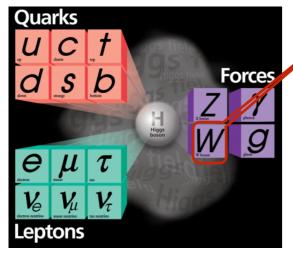
P2 @ MESA/Mainz: go down to $Q^2 \sim 0.005 \text{ GeV}^2 - \text{tiny asymmetry to } 1.5-2\%$

$$Q_W^{\text{p,1-loop}} = (1 + \Delta_\rho + \Delta_e)(1 - 4\sin^2\hat{\theta}_W + \Delta'_e) + \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z}$$
$$Q_W^{p, \text{tree}} = 1 - \text{Marciano, Sirlin PRD 19845}$$

 Δ : hadronic structure (size, spin, strangeness; suppressed at low Q^2 ; trivial E-dependence)

Non-universal RC: boxes ($\alpha_{em}/\pi \sim 10^{-3}$; unsuppressed by Q^2 ; nontrivial E-dependence)

Standard Model Precise beta decays: universality of weak interaction



Charged current interaction - β -decay (μ , π^{\pm} , n) μ^{\pm} μ

Rates close but not the same: CKM mixing matrix + Radiative Corrections Crucial ingredients for establishing the Standard Model

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix} = V_{CKM} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

CKM - Determines the relative strength of the weak CC interaction of quarks vs. that of leptons

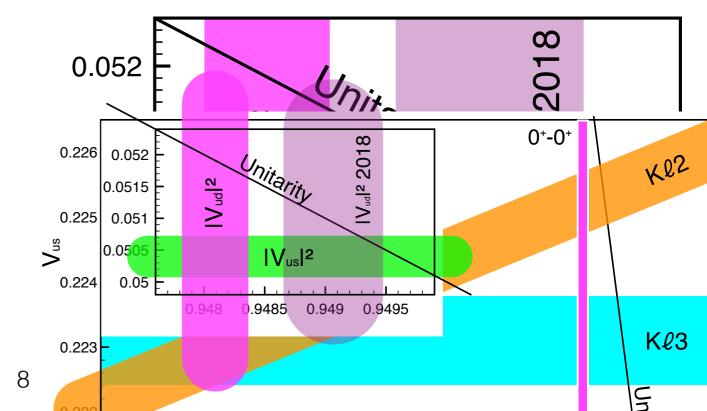
CKM unitarity - measure of completeness of the SM: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

Neglecting $V_{ub} \sim 10^{-3}$: Cabibbo angle θ_C

$$|V_{ud}| = \cos \theta_C, |V_{us}| = \sin \theta_C$$

PDG 2022: $\cos^2 \theta_C + \sin^2 \theta_C = 0.9985(3)_{V_{ud}}(4)_{V_{us}}$

Reason: re-evaluation of SM RC to V_{ud} (γW -box)



BSM searches at low energies vs. colliders

LEP
SLC
Teval
LHC

SM

Tevatron

world average

0 229

0 228

Iow energy

WMA measurements on the Z-pole most straightforward:

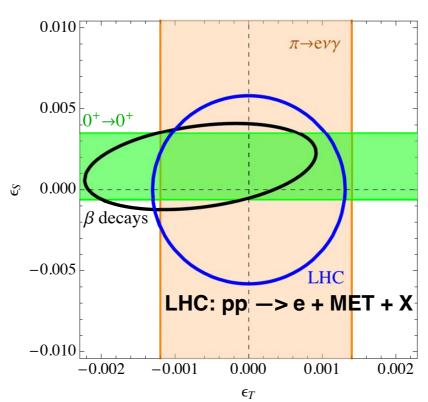
Z on-shell, corrections non-resonant

Downside: BSM enters quadratically SM amplitude imaginary, BSM amplitude real

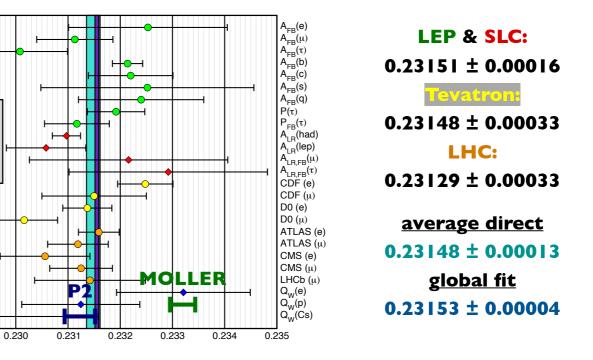
Low energies: BSM in linear interference with SM Sensitivity to heavy and light BSM

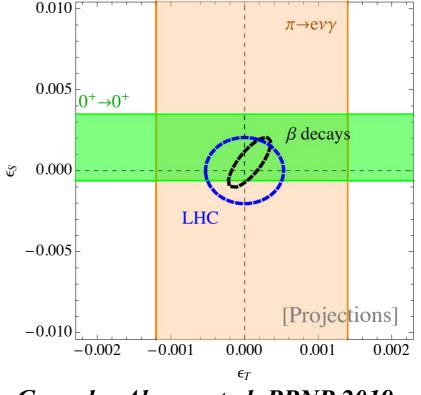
BSM searches: LHC vs β -decays

Constraints on non-standard Scalar/Tensor CC interactions Complementarity to LHC Now and in the future



Weak mixing angle measurements





Gonzalez Alonso et al, PPNP 2019

 γZ and γW boxes from dispersion relations Unified approach in PVES and β decays

Dispersion theory of electroweak boxes

Evaluate the box at zero momentum transfer

E.g., for γW -box (γZ -box analogous)

$$T_{\gamma W} = -\sqrt{2}e^2 G_F V_{ud} \int \frac{d^4 q}{(2\pi)^2} \frac{\bar{u}_e \gamma^{\mu} (k - q + m_e) \gamma^{\nu} (1 - \gamma_5) v_{\nu} T_{\mu\nu}^{\gamma W}}{q^2 [(k - q)^2 - m_e^2] [1 - q^2 / M_W^2]}$$

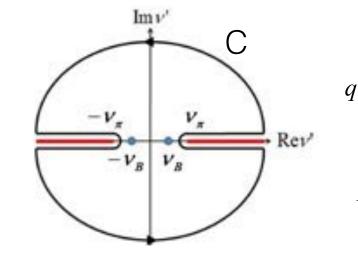
Generalized Compton tensor (lower blob):

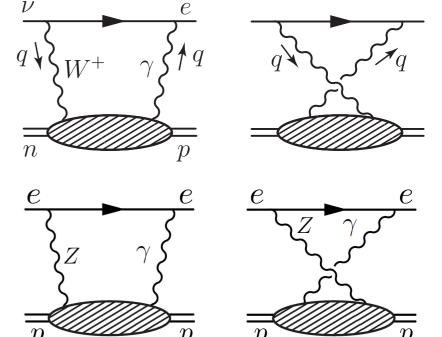
incorporate all symmetries; consider spin-independent part only (vector charges)

$$T^{\mu\nu}_{\gamma W} = \left[-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right] T_1 + \frac{\hat{p}^{\mu}\hat{p}^{\nu}}{(p \cdot q)} T_2 + \frac{i\epsilon^{\mu\nu\alpha\beta}p_{\alpha}q_{\beta}}{2(p \cdot q)} T_3$$

To evaluate the loop — need to know forward Compton amplitudes $T_{1,2,3}$ - analytic functions inside C in the complex v-plane determined by singularities on the real axis: poles + cuts

Forward box: only ν -analyticity needed; if finite *t* also *t*-analyticity generally required - complicated

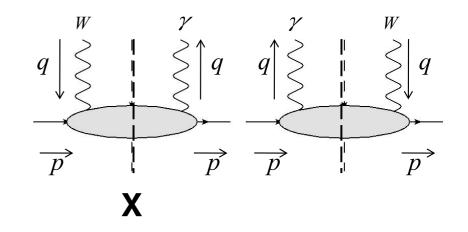




Dispersion theory of electroweak boxes

Forward amplitudes T_i - unknown; Their absorptive parts can be related to production of on-shell intermediate states —> a $\gamma W (\gamma Z)$ structure functions $F_{1,2,3}$

 $\operatorname{Im} T_i^{\gamma W}(\nu, Q^2) = 2\pi F_i^{\gamma W}(\nu, Q^2)$ $\operatorname{Im} T_i^{\gamma Z}(\nu, Q^2) = 2\pi F_i^{\gamma Z}(\nu, Q^2)$



X = inclusive strongly-interacting on-shell physical states

Structure functions $F_i^{\gamma Z}$ are data $\sum_{i}^{1} \sum_{j \in \mathcal{I} = 1}^{2\pi j^4} \delta^4(p+q-p_X) p J_{EM_0}^{\mu} X X (J_W^{\nu})_A n = \frac{i\varepsilon^{\mu\nu\alpha\beta}p_{\alpha}q_{\beta}}{2m_N \nu} F_3^{(0)}(\nu,Q^2)$ Structure functions $F_i^{\gamma W}$ are NOT data be related to data

Define box corrections according to

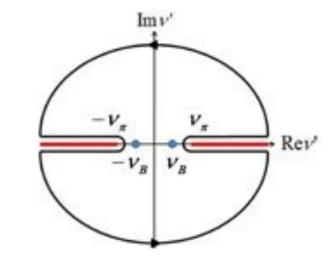
$$T_{W} + T_{\gamma W} = -\sqrt{2}G_{F}V_{ud}\bar{u}_{e} \ p(1 - \gamma_{5})v_{\nu}(1 + \Box_{\gamma W})$$

$$T_{Z} + T_{\gamma Z} = -\frac{G_{F}}{2\sqrt{2}}\bar{u}_{e} \ p(1 - \gamma_{5})u_{e}F_{\text{weak}}(Q^{2})[Q_{W} + \Box_{\gamma Z}(E, Q^{2})]$$

Dispersion representation of $\Box_{\gamma W/\gamma Z}$

Dispersion representation of Compton amplitudes: Combine left-hand and right-hand singularities

$$\operatorname{Re} T_{i}(\nu, Q^{2}) = \frac{1}{\pi} \int_{0}^{\infty} d\nu' \left[\frac{1}{\nu' - \nu} \pm \frac{1}{\nu' + \nu} \right] \operatorname{Im} T_{i}(\nu', Q^{2})$$



Crossing behavior

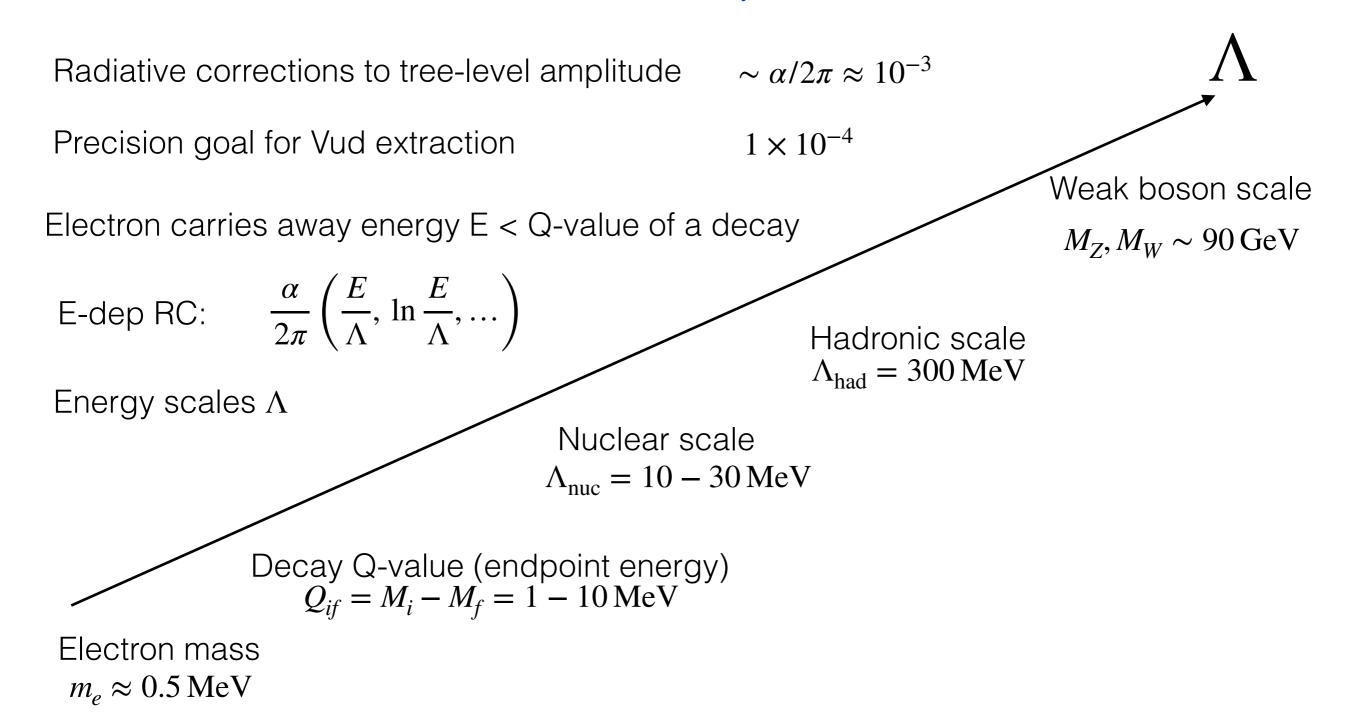
 $DisT_{3}^{(0)}(v,$

 γZ : same initial and final state —> definite crossing: T_1 even, $T_{2,3}$ odd function $T_{4\pi} = 0$

 γW : initial and final state different —> mixed crossing, depends on the isospin of γ

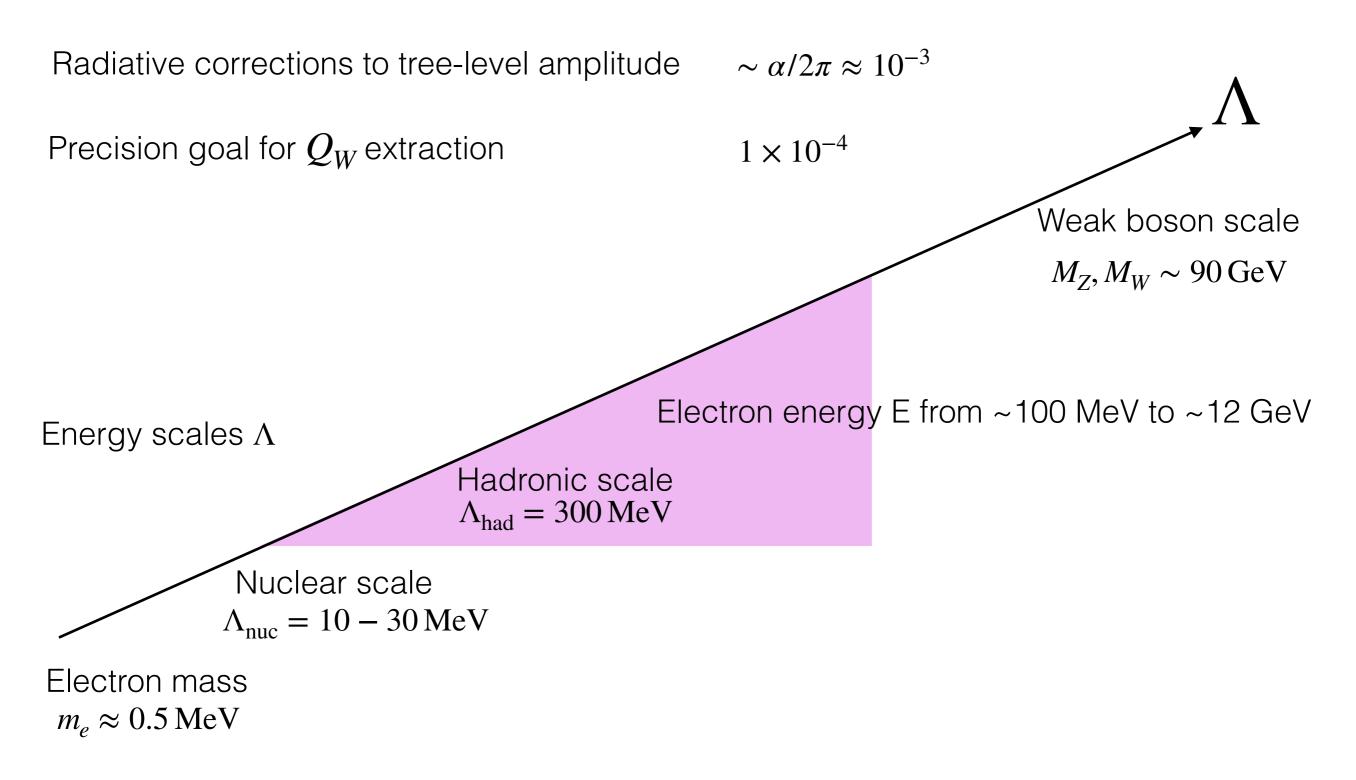
$$\begin{split} T_i^{\gamma W} &= T_i^{(I_{\gamma}=0)} + T_i^{(I_{\gamma}=1)} \\ \text{with } T_1^{(0)}, \ T_{2,3}^{(1)} \text{ even,} \\ T_1^{(1)}, \ T_{2,3}^{(0)} \text{ odd function of } \nu \end{split}$$

Dispersion theory of $\prod_{\nu W}$: relevant scales



Leading energy behavior (E^0, E^1) sufficient

Dispersion theory of $\prod_{\gamma Z}$: relevant scales



Full energy dependence necessary!

Dispersion representation of $\Box_{\gamma W/\gamma Z}$

 γZ -box:

Even:
$$\Box_{\gamma Z}^{A}(E) = \frac{1}{2\pi ME} \int_{0}^{\infty} dQ^{2} \frac{v_{e}(Q^{2})\alpha(Q^{2})}{1+Q^{2}/M_{Z}^{2}} \int_{0}^{\infty} \frac{d\nu}{\nu} \left[\ln \left| \frac{E+E_{m}}{E-E_{m}} \right| + \frac{\nu}{2E} \ln \frac{|E^{2}-E_{m}^{2}|}{E_{m}^{2}} \right] F_{3}^{\gamma Z}$$

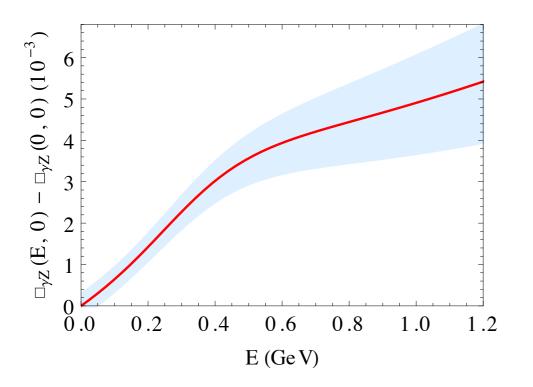
Odd:
$$\Box_{\gamma Z}^{V}(E) = \frac{\alpha}{\pi} \int_{0}^{\infty} \frac{dQ^{2}}{1+\frac{Q^{2}}{M_{Z}^{2}}} \int_{0}^{\infty} d\nu \left\{ \left[\frac{1}{2E} \ln \left| \frac{E+E_{m}}{E-E_{m}} \right| - \frac{1}{E_{m}} \right] \frac{F_{1}^{\gamma Z}}{ME} + \frac{F_{2}^{\gamma Z}}{2E\nu E_{m}} + \left[\left(1 - \frac{Q^{2}}{4E^{2}} \right) \ln \left| \frac{E+E_{m}}{E-E_{m}} \right| + \frac{\nu}{E} \ln \frac{|E^{2}-E_{m}^{2}|}{E_{m}^{2}} \right] \frac{F_{2}^{\gamma Z}}{\nu Q^{2}} \right\}$$

$$\gamma W\text{-box:} \qquad \Box_{\gamma W}^{\text{even}} = \frac{\alpha}{\pi M} \int_0^\infty dQ^2 \int_{\nu_{thr}}^\infty d\nu \frac{\nu + 2q}{\nu(\nu + q)^2} F_3^{(0)}(\nu, Q^2) + O(E^2)$$
$$\Box_{\gamma W}^{\text{odd}} = \frac{2\alpha E}{3\pi M} \int_0^\infty dQ^2 \int_{\nu_{thr}}^\infty d\nu \frac{\nu + 3q}{\nu(\nu + q)^3} F_3^{(1)}(\nu, Q^2) + O(E^3)$$

Only E = 0 (EVEN) results were included in the original RC analysis of Marciano & Sirlin

Energy dependence of the γZ -box

Reference value: 1-loop SM $Q_W^{p, SM} = 0.0713(7)$ Erler, Ferro-Hernandez, arXiv:1712.09146



MG, Horowitz, PRL 102 (2009) 091806;

Nagata, Yang, Kao, PRC 79 (2009) 062501; Tjon, Blunden, Melnitchouk, PRC 79 (2009) 055201; Zhou, Nagata, Yang, Kao, PRC 81 (2010) 035208; Sibirtsev, Blunden, Melnitchouk, PRD 82 (2010) 013011; Rislow, Carlson, PRD 83 (2011) 113007; MG, Horowitz, Ramsey-Musolf, PRC 84 (2011) 015502; Blunden, Melnitchouk, Thomas, PRL 107 (2011) 081801; Rislow, Carlson PRD 85 (2012) 073002; Blunden, Melnitchouk, Thomas, PRL 109 (2012) 262301; Hall et al., PRD 88 (2013) 013011; Rislow, Carlson, PRD 88 (2013) 013018; Hall et al., PLB 731 (2014) 287; MG, Zhang, PLB 747 (2015) 305; Hall et al., PLB 753 (2016) 221; MG, Spiesberger, Zhang, PLB 752 (2016) 135; Erler, MG, Koshchii, Seng, Spiesberger, PRD100 (2019), 053007

Steep energy dependence observed - added strong motivation for P2 @ MESA

See also talk by P. Blunden

 $\Box_{\gamma Z}$ by different groups (parametrizations & uncertainty treatments) closely agree (Theory is) looking forward to new measurements of WMA at low energies!

γW box from dispersion relations:

Taming the uncertainties

$P_{\gamma W}^{even} = \frac{\alpha}{\pi M} \int_{0}^{\infty} \frac{dQ^2 M_W^2}{M_W^2 + Q^2} \int_{0}^{\infty} \frac{d\nu}{\nu} \frac{\nu + 2q}{(\nu + q)^2} F_3^{(0)}(\nu, Q^2)$

$$\prod_{\gamma W}^{odd} (E = 0) = 0$$

Rewrite in terms of the first Nachtmann moment of F₃

$$M_{3}^{(0)}(1,Q^{2}) = \frac{4}{3} \int_{0}^{1} dx \frac{1 + 2\sqrt{1 + 4M^{2}x^{2}/Q^{2}}}{(1 + \sqrt{1 + 4M^{2}x^{2}/Q^{2}})^{2}} F_{3}^{(0)}(x,Q^{2}) \qquad \qquad x = \frac{Q^{2}}{2M\nu}$$

$$\Box_{\gamma W}^{even} = \frac{3\alpha}{2\pi} \int_0^\infty \frac{dQ^2 M_W^2}{Q^2 (M_W^2 + Q^2)} M_3^{(0)}(1, Q^2)$$

First Nachtmann moment of F_3 was studied extensively in 1980-1990's in $\nu/\bar{\nu}$ scattering in the context of the Gross-Llewellyn-Smith (GLS) sum rule.

In a nutshell: the use of those data allowed to improve the $\prod_{\gamma W}$ calculation

Input into dispersion integral

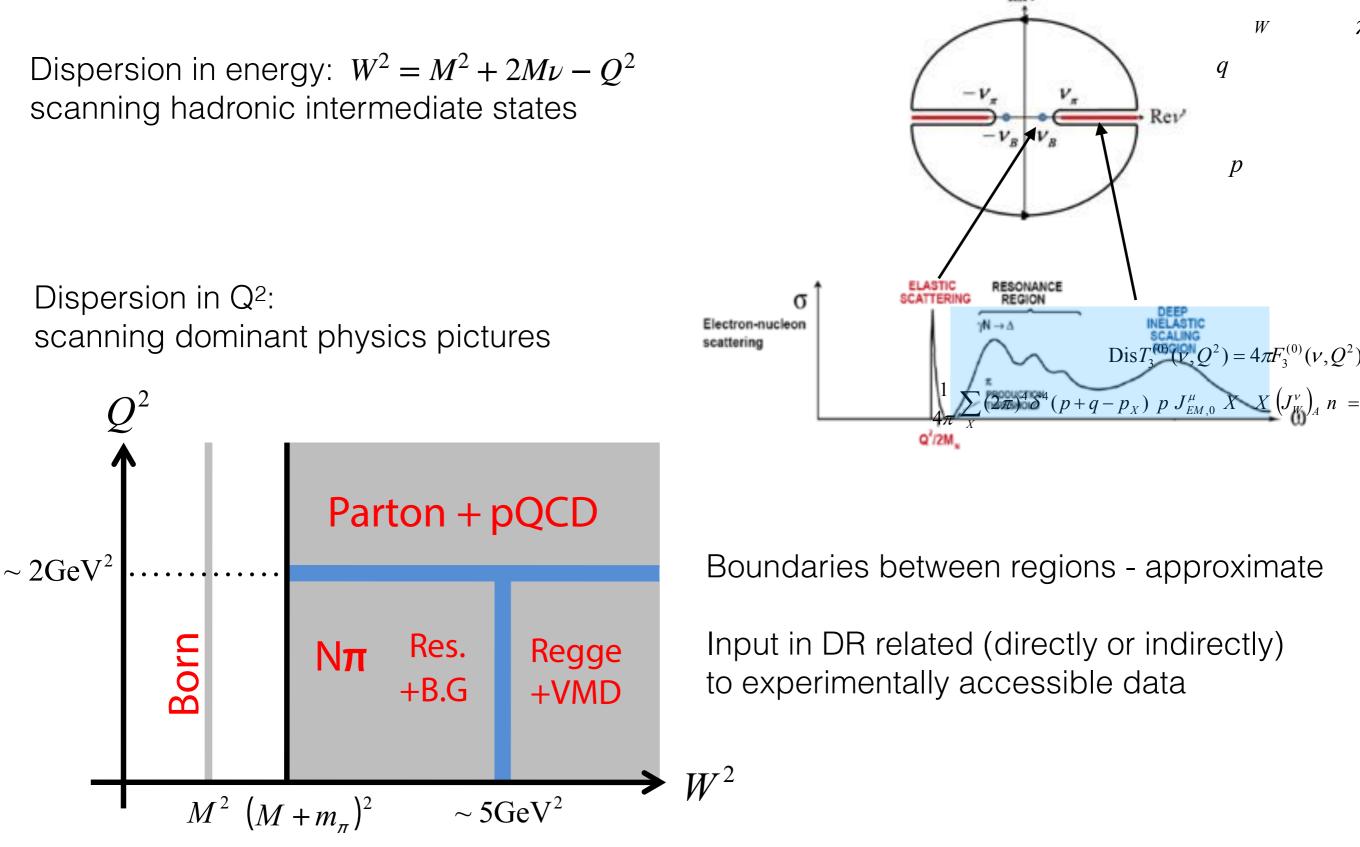
W

q

р

Dis $T_3^{(0)}(\nu, Q^2) = 4\pi F_3^{(0)}(\nu, Q^2)$

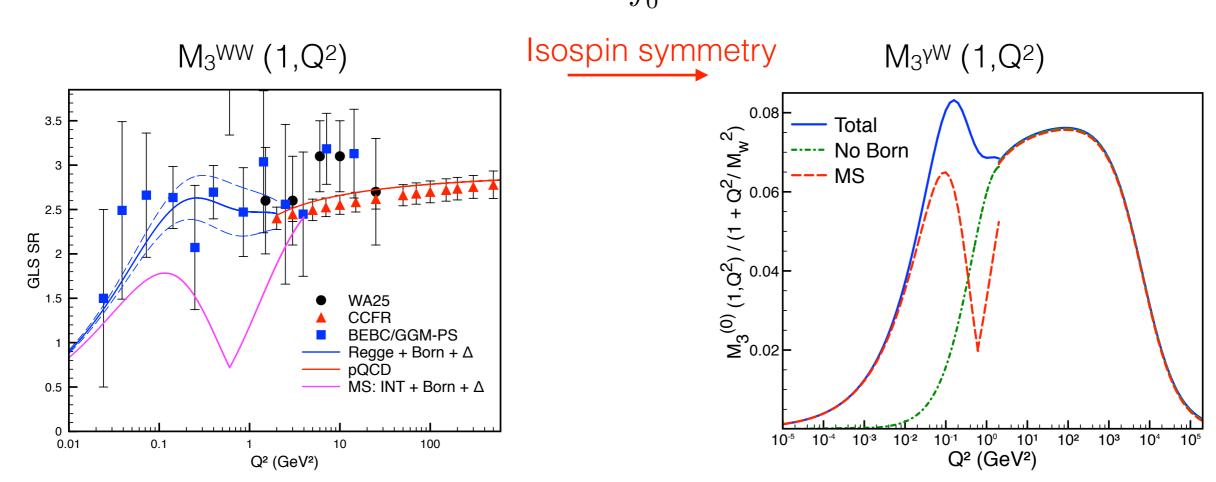
Rev'



Input into dispersion integral

Unfortunately, no data can be obtained for $F_3^{\gamma W(0)}$

Data exist for the pure CC processes $\sigma^{\nu p} - \sigma^{\overline{\nu}p} \sim F_3^{\nu p} + F_3^{\overline{\nu}p} = u_v^p(x) + d_v^p(x)$ Gross-Llewellyn-Smith sum rule $\int_0^1 dx (u_v^p(x) + d_v^p(x)) = 3$



Previous calculation by Marciano&Sirlin '06: No use of neutrino data, ad-hoc connection of low and high scales

21

M & S : $\Box_{\nu W}^{(0)} = 0.00324 \pm 0.00018$

New DR : $\square_{\nu W}^{(0)} = 0.00379 \pm 0.00010$

First lattice QCD calculation of γW -box

For low $Q^2 \leq 2 \text{ GeV}^2$: direct lattice calculation of the generalized Compton tensor *Feng, MG, Jin, Ma, Seng 2003.09798*

Main executors: Xu Feng (Peking U.), Lu-Chang Jin (UConn/RIKEN BNL) Supercomputers: Blue Gene/Q Mira computer (Argonne, USA), Tianhe 3 prototype (Tianjin, China)

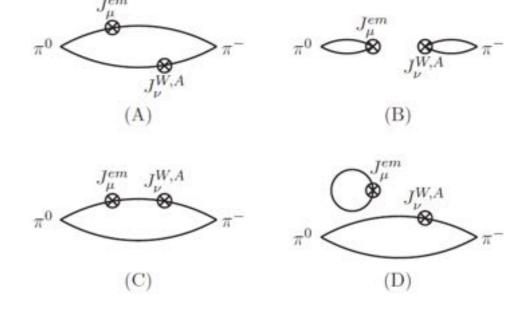
$$\mathcal{H}_{\mu\nu}^{VA}(t,\vec{x}) \equiv \langle H_f(P) | T \left[J_{\mu}^{em}(t,\vec{x}) J_{\nu}^{W,A}(0) \right] | H_i(P) \rangle$$
$$M_{3\pi}^{\gamma W(0)}(Q^2) = -\frac{1}{6\sqrt{2}} \frac{Q}{m_{\pi}} \int d^4 x \omega(Q,x) \varepsilon_{\mu\nu\alpha0} x_{\alpha} \mathcal{H}_{\mu\nu}^{VA}(x)$$

Lattice setup:

5 LQCD gauge ensembles at physical pion mass Generated by RBC and UKQCD collaborations w. 2+1 flavor domain wall fermion

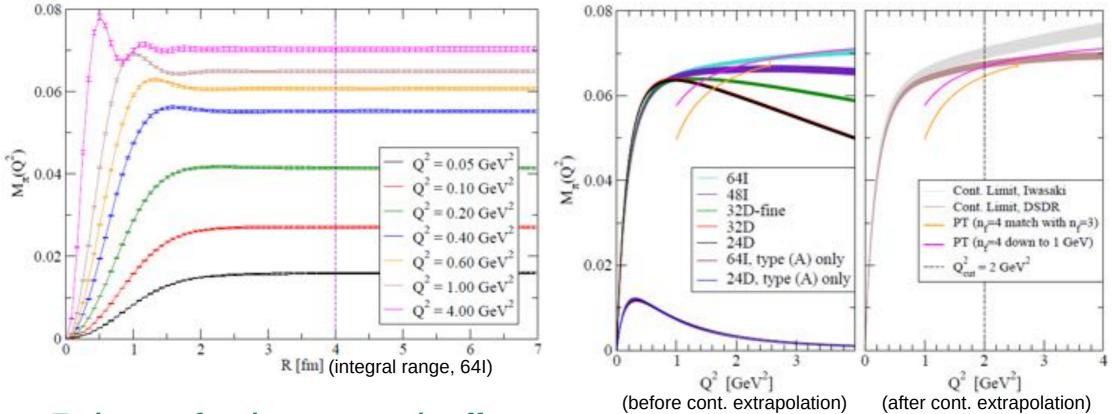
Ensemble	m_{π} [MeV]	L	Т	a^{-1} [GeV]	$N_{\rm conf}$	N_r	$\Delta t/a$
24D	141.2(4)	24	64	1.015	46	1024	8
32D	141.4(3)	32	64	1.015	32	2048	8
32D-fine	143.0(3)	32	64	1.378	71	1024	10
48I	135.5(4)	48	96	1.730	28	1024	12
64I	135.3(2)	64	128	2.359	62	1024	18

Blue: DSDR Red : Iwasaki



Quark contraction diagrams

First lattice QCD calculation of γW -box



Estimate of major systematic effects:

Lattice discretization effect: Estimated using the discrepancy between DSDR and Iwasaki

- pQCD calculation: Estimated from the difference between 3-loop and 4-loop results
- Higher-twist effects at large Q²: Estimated from lattice calculation of type (A) diagrams

Final result:
$$\Box_{\gamma W}^{VA}\Big|_{\pi} = 2.830(11)_{\text{stat}}(26)_{\text{syst}} \times 10^{-3}$$

Uncertainty of RC to $\pi e3$: 1 o.o.m. reduction $\delta: 0.0$

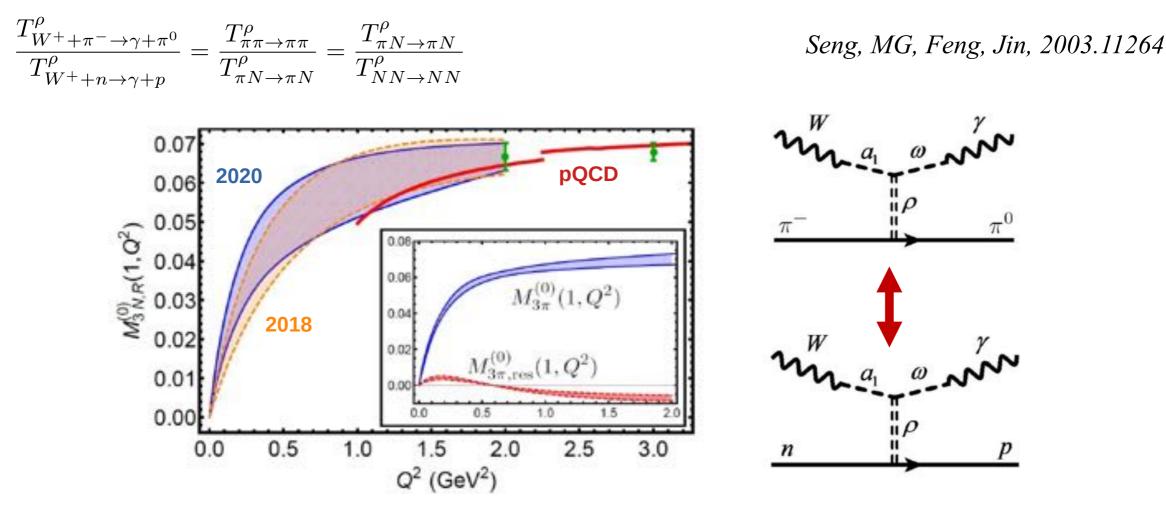
$$\delta: 0.0334(10)_{\text{LEC}}(3)_{\text{HO}} \rightarrow 0.0332(1)_{\gamma W}(3)_{\text{HO}}$$

Cleanest way to access V_{ud} theoretically: $|V_{ud}| = 0.9740(28)_{exp}(1)_{th}$ Next-gen experiments: aim at 1 o.o.m. exp. uncertainty improvement

Implications for the free nucleon γW -box

Main uncertainty of the DR calculation of the free neutron γW -box: Poorly constrained parameters of the Regge contribution which dominates the Nachtmann moment at $Q^2 \sim 1 - 2 \, {\rm GeV}^2$

Use the Regge universality and a body of $\pi\pi$, π N, NN scattering data.



Independent confirmation of the empirical DR result AND uncertainty

 $\Box_{\gamma W}^{(0)} = 0.00379(10)_{\text{DR}} \rightarrow 0.00384(11)_{\text{LQCD+DR}}$

Vud extraction and CKM unitarity

Combine γW -box with other universal RC

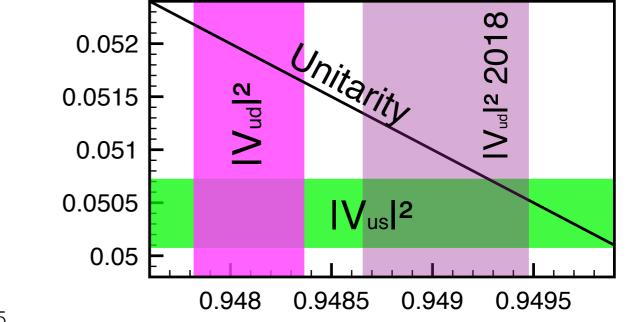
$$\Delta_R^V = \frac{\alpha}{2\pi} \left[3\ln\frac{M_Z}{M} + \ln\frac{M_Z}{M_W} \right] + 2\Box_{\gamma W}^V$$

Marciano, Sirlin 2006: $\Delta_R^V = 0.02361(38) \longrightarrow |V_{ud}| = 0.97420(10)_{Ft}(18)_{RC}$ DR (Seng et al. 2018): $\Delta_R^V = 0.02467(22) \longrightarrow |V_{ud}| = 0.97370(10)_{Ft}(10)_{RC}$ In July 2019 Czarnecki, Marciano and Sirlin published an update **1907.06737** $\Delta_R^V = 0.02421(32) \longrightarrow |V_{ud}| = 0.97391(10)_{Ft}(15)_{RC}$

DR (Shiells, Blunden, Melnitchouk) 2012.01580 — closely agrees with Seng et al.

$$\Delta_R^V = 0.02472(18) \longrightarrow |V_{ud}| = 0.97368(14)$$

With new RC $\sim 3\sigma$ unitarity deficit (a.k.a. Cabibbo angle anomaly)



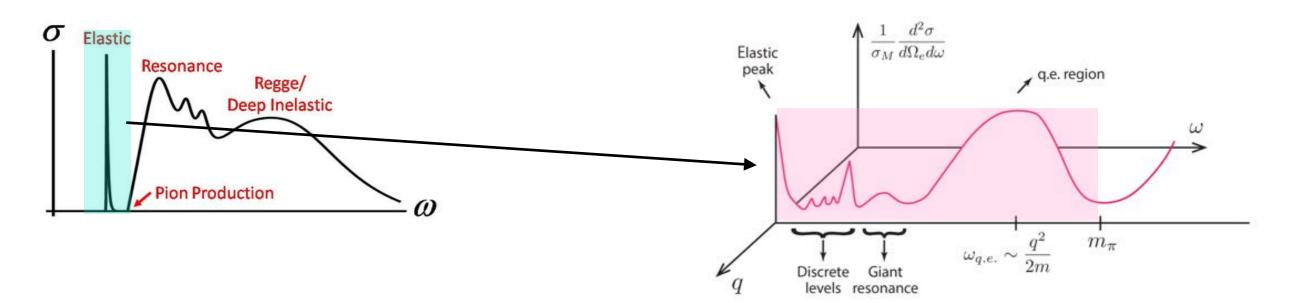
Vus

γW box on nuclei

Nuclear Corrections to V_{ud} and Weak Charges

Nuclear effects modify the free-nucleon structure functions: $F_{1,2,3}^A \neq \sum_{N \in A} F_{1,2,3}^N$

Low-energy part of the spectrum is qualitatively modified in nuclei

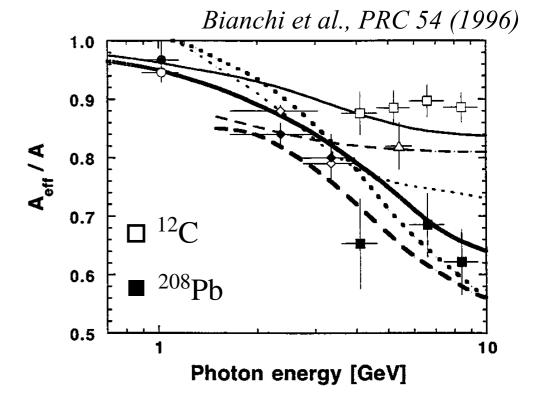


High-energy part of the spectrum: shadowing Extensively studied in HE real photoabsorption

$$A_{eff}/A = \frac{\sigma_{\gamma A}}{Z\langle \sigma_{\gamma p} \rangle + N\langle \sigma_{\gamma n} \rangle}$$

Medium Q^2 also modified (e.g. EMC effect)

At asymptotic Q^2 : expect to recover OPE



Nuclear Corrections to V_{ud} and Weak Charges

General structure of RC in 0+-0+ nuclear decays: $|V_{ud}|^2 = \frac{2984.43s}{\mathscr{F}t(1 + \Delta_R^V)}$

Universal (free-nucleon) RC
$$\Delta_R^V = \frac{\alpha}{2\pi} \left[3 \ln \frac{M_Z}{M} + \ln \frac{M_Z}{M_W} \right] + 2 \Box_{\gamma W}^V$$

Decay-specific ft (phase-space, rate, BR) —> absorb decay-specific RC —> universal Ft

$$ft(1 + RC) = Ft(1 + \delta'_R)(1 - \delta_C + \delta_{NS})(1 + \Delta_R^V)$$

Exp QED beyond Coulomb Isospin breaking

NS correction reflects the extraction of the free-n box $\delta_{NS} = 2 \Box_{\gamma W}^{Nucl} - 2 \Box_{\gamma W}^{free n}$

This representation of δ_{NS} is new: can be computed in the same formalism as Δ_R^V Previously: Δ_R^V by loop methods, δ_{NS} in shell model — matching?

Nuclear Structure Modification

 δ_{NS} from DR with energy dependence averaged over the spectrum

$$\delta_{NS} = \frac{2\alpha}{\pi M} \int_0^\infty dQ^2 \int_{\nu_{thr}}^\infty \frac{d\nu}{\nu} \left[\frac{\nu + 2q}{(\nu + q)^2} \left(F_3^{(0)\,Nucl.} - F_3^{(0),B} \right) + \frac{2\langle E \rangle}{3} \frac{\nu + 3q}{(\nu + q)^3} F_3^{(-)\,Nucl.} \right]$$

C-Y Seng, MG, M J Ramsey-Musolf, arXiv: 1812.03352 MG, arXiv: 1812.04229

Hardy & Towner 1994 on: ad hoc description by nuclear quenching of spin operators Compare the effect on the average Ft value:

HT value 2018:	Old estimate:	$\delta \mathcal{F}t = -(1.8 \pm 0.4)s + (0 \pm 0)s$
$\mathcal{F}t = 3072.1(7)s$	New estimate:	$\delta \mathcal{F}t = -(3.5 \pm 1.0)s + (1.6 \pm 0.5)s$

Two 2*o* corrections that cancel each other; The cancellation is delicate: the two terms are highly correlated Larger E-dep. term will correspond to a smaller negative E-indep. term and vv.

Conservative uncertainty estimate: 100% $\mathcal{F}t = (3072 \pm 2)s$

As of now only exploratory QE calculation in free Fermi model exists!

Nuclear Structure Corrections - Future plans

Low-energy nuclear effects need to be checked in modern nuclear theory

Collaborations started for $\delta_{\rm NS}$ in ${}^{10}{
m C} \rightarrow {}^{10}{
m B}$ decay: Navratil & Gennari (No-Core Shell Model) Pastore & King (Green's Function Monte Carlo)

Expect results soon

High-energy nuclear effects (shadowing etc) — no calculations exist

How to match shadowing of real photons with the restoration of OPE at high Q^2 ?

How important is the effect on V_{ud} , given the 10^{-4} precision?

How important for nuclear weak charges & radii — less so, only 10^{-3} precision feasible Work in progress

Conclusions & Outlook

- Sensitive tests of SM and beyond with PVES and beta decays
- Need for a reliable calculation of box diagrams for a 10-4 precision goal
- Consistent dispersive treatment of the γ W-box correction to neutron and nuclear β -decay, and the γ Z-box correction to PVES and weak charges
- pQCD, hadronic and nuclear contributions treated in a unified framework
- γW-box calculation confirmed by a first-ever direct lattice calculation
- New more precise data on EW structure functions $F_{1,2,3}^{\gamma Z}$ (JLab, EIC)
- New more precise data on EW structure functions $F_{1,2,3}^{WW}$ (DUNE)
- A new program on $\delta_{
 m NS}$ from ab-initio methods started keep tuned!
- Application to PVES on nuclei