

QED Radiative Corrections for the Chiral Anomaly Reaction $\pi^-\gamma \to \pi^-\pi^0$

Jan Friedrich Institute for Hadronic Structure and Fundamental Symmetries TU München

Radiative Corrections from medium to high energy experiments

Slides of the COMPASS analysis part: Courtesy Dominik Steffen

- 1. Short physics intro
- 2. Process of interest
- 3. One-loop (virtual) photon corrections
- 4. Experiment and data analysis, backgrounds, normalization
- 5. Bremsstrahlung correction

 $\pi^-\gamma \to \pi^-\pi^0(\gamma)$

A comparatively simple case of QED radiative corrections:

- Only one "charged arm"
- Spinless pions

Chiral symmetry of QCD

• Lagrange density of QCD:

$$\mathcal{L}_{QCD} = \sum_{\substack{f = \{u,d, \\ c,s,t,b\}}} \sum_{i,j=1}^{N_c} \overline{\psi}_{f,j} (i\gamma^{\mu} D_{i,\mu}^{j} - m_f \delta_i^{j}) \psi^{f,i} - \frac{1}{4} \sum_{a=1}^{N_c^2 - 1} G_{\mu\nu}^a G_a^{\mu\nu}$$

• Approximate flavor symmetries in chiral limit $(m_u = m_d = m_s = 0)$:

$SU(3)_R \times SU(3)_L$

- Left- and right-handed fields decouple for massless particles
- Chirality can directly be translated to parity of particle
 -> mass-degenerate doublets of states with opposite parity
- Why is chiral symmetry not manifested in the spectrum (in contrast to isospin and the eightfold way)?
 - -> Nambu-Goldstone mechanism for spontaneous/dynamic breakdown of chiral symmetry

Spontaneous symmetry breaking \Rightarrow Eight massless, spinless Goldstone bosons

 $(\pi^{\pm},\pi^0,K^{\pm},K^0,\bar{K}^0,\eta)$

- ⇒ Explicit breaking of chiral symmetry due to the small quark masses -> Goldstone bosons acquire mass
- $\Rightarrow SU(3)_R \times SU(3)_L \rightarrow SU(3)_V$
- ⇒ Chiral Perturbation Theory: effective Lagrangian with power-counting scheme as low-energy theory for QCD making use of chiral symmetry

The chiral anomaly

• Lagrange density of QCD:

$$\mathcal{L}_{QCD} = \sum_{\substack{f = \{u,d, \\ c,s,t,b\}}} \sum_{i,j=1}^{N_c} \overline{\psi}_{f,j} (i\gamma^{\mu} D_{i,\mu}^j - m_f \delta_i^j) \psi^{f,i} - \frac{1}{4} \sum_{a=1}^{N_c^2 - 1} G_{\mu\nu}^a G_a^{\mu\nu}$$

- Features axial U(1)-symmetry in chiral limit: $\psi(x) \rightarrow e^{i\theta\gamma_5}\psi(x)$
- No ninth "unnaturally light" meson
- Anomalous symmetry breaking: symmetry of the Lagrangian does not lead to conserved Noether currents
- Anomaly: Symmetry of classical Lagrangian violated at quantum level

Wess-Zumino-Witten term

- Chiral anomaly in ChPT taken into account by Wess-Zumino-Witten (WZW) term
- Describes the coupling of an odd number of Goldstone bosons:

SU(2) flavor	SU(3) flavor
$\pi^0 \rightarrow \gamma \gamma$	$K^+K^- \rightarrow \pi^+\pi^-\pi^0$
$\gamma\pi^- \rightarrow \pi^-\pi^0$	$\eta \rightarrow \pi^+ \pi^- \gamma$
$\pi^+ \rightarrow e^+ \nu_e \gamma$	$K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$
etc.	etc.

• Effective theory: pion decay constant measured from leptonic decays of the charged pion $(\pi^{\pm} \rightarrow \mu^{\pm} + \nu)$

Testing the chiral anomaly - $F_{3\pi}$

• Processes described by WZW term:

SU(2) flavor	SU(3) flavor
$\pi^0 \rightarrow \gamma \gamma$	$K^+K^- \! \rightarrow \pi^+\pi^-\pi^0$
$\gamma \pi^- \rightarrow \pi^- \pi^0$	$\eta ightarrow \pi^+ \pi^- \gamma$
$\pi^+ \rightarrow e^+ \nu_e \gamma$	$K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$
etc.	etc.

- $F_{3\pi}$: Direct coupling of γ to 3π process proceeds primarily via the chiral anomaly => one of the most definitive tests of low-energy QCD
- Accessible in Primakoff reactions via: $\pi^-\gamma^* \rightarrow \pi^-\pi^0$
- Problem of explicit chiral symmetry breaking:

$$F_{3\pi} = \frac{eN_C}{12\pi^2 F_{\pi}^3} = (9.78 \pm 0.05) \text{GeV}^{-3} = F(s = t = u = 0)$$

Reference cross section

$$\pi^{-}(p_1) + \gamma(k,\epsilon) \to \pi^{-}(p_2) + \pi^{0}(q)$$

- Embedded in a Primakoff reaction with quasi-real γ^*
- Reference tree-graph cross section
- Main correction at higher s: contribution of the ρ -resonance

Testing the chiral anomaly - $F_{3\pi}$

• Processes described by WZW term:

SU(2) flavor	SU(3) flavor
$\pi^0 \to \gamma \gamma$	$K^+K^- \! \rightarrow \pi^+\pi^-\pi^0$
$\gamma \pi^- \rightarrow \pi^- \pi^0$	$\eta ightarrow \pi^+ \pi^- \gamma$
$\pi^+ \rightarrow e^+ \nu_e \gamma$	$K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$
etc.	etc.

- $F_{3\pi}$: Direct coupling of γ to 3π process proceeds primarily via the chiral anomaly => one of the most definitive tests of low-energy QCD
- Accessible in Primakoff reactions via: $\pi^-\gamma^* \rightarrow \pi^-\pi^0$
- Problem of explicit chiral symmetry breaking:

$$F_{3\pi} = \frac{eN_C}{12\pi^2 F_{\pi}^3} = (9.78 \pm 0.05) \text{GeV}^{-3} = F(s = t = u = 0)$$

Previous measurement of $F_{3\pi}$:

Antipov, Y. et al. Phys.Rev. D36 (1987) 101103 from Serpukhov experiments

As previously noted, the value $F^{3\pi}$ is supposed to vary slowly with $s, t, q^2 \ll m_{\rho}^2$ so that $F^{3\pi} \simeq F^{3\pi}(0)$. $\frac{d\sigma_{\gamma\pi\to\pi\pi}}{dt} = \frac{(F^{3\pi})^2}{128\pi} \frac{1}{4} (s - 4m_{\pi}^2) \sin^2\theta$ 30 number of events 20 10 8 10 12 6 S/m^2_{π}

 $\Rightarrow F_{3\pi} = (12.9 \pm 0.9 \pm 0.5) \text{ GeV}^{-3}$

Calculation of Radiative Corrections

Ametller, L. et al. Phys.Rev. D64 (2001) 094009

PHYSICAL REVIEW D, VOLUME 64, 094009

Electromagnetic corrections to $\gamma \pi^{\pm} \rightarrow \pi^0 \pi^{\pm}$

Ll. Ametller Dept. de Física i Enginyeria Nuclear, UPC, E-08034 Barcelona, Spain

M. Knecht and P. Talavera Centre de Physique Théorique, CNRS-Luminy, Case 907, F-13288 Marseille Cedex 9, France (Received 11 July 2001; published 3 October 2001)

The amplitude for the anomalous transitions $\gamma \pi^{\pm} \rightarrow \pi^0 \pi^{\pm}$ is analyzed within chiral perturbation theory including electromagnetic interactions. The presence of a *t*-channel one-photon exchange contribution induces sizable $\mathcal{O}(e^2)$ corrections which enhance the cross section in the threshold region and bring the theoretical prediction into agreement with available data. In the case of the crossed reaction $\gamma \pi^0 \rightarrow \pi^+ \pi^-$, the same contribution appears in the *s* channel and its effects are small.

DOI: 10.1103/PhysRevD.64.094009

PACS number(s): 12.39.Fe, 11.30.Rd, 13.60.Le, 13.75.-n

Calculation of Radiative Corrections

- Recap of the paper by N. Kaiser
- Compactification, simplifications, corrections
- Application to COMPASS data: work in progress

$$\frac{1}{2}\sum_{\text{pol}}|T|^2 = \frac{\alpha m_{\pi}^6}{32\pi^3 f_{\pi}^6}(stu-1)\left\{1 - \frac{4e^2 f_{\pi}^2}{m_{\pi}^2 t} + 2\text{Re}\,G_{\gamma}(s,t,u)\right\}$$

- s, t, u here: unit-free Mandelstam variables $s = (p_1 + k)^2 / m_{\pi}^2$ etc.
- Photon exchange graph is the dominant correction

Photon exchange graph

The other virtual corrections on one-photon level

- Color shading: Different cos θ bins, from light (forward, less relevant) to dark (backward, covered by experiment)
- the other virtual corrections also feature cos θ-dependence, but amount to effects ≤ 0.5%
- Up to here: Correction could be included as a factor on event-by-event real data, or as a weight in the Monte-Carlo simulation of the experiment, since the kinematics is not distorted

The other virtual corrections on one-photon level

courtesy: Norbert Kaiser

Effect of virtual corrections to the Serpukhov result

• Original Serpukhov result: $F_{3\pi} = (12.9 \pm 0.9 \pm 0.5) \text{ GeV}^{-3}$

Ametller, L. et al. Phys.Rev. D64 (2001) 094009

• Applying the correction:

 $F_{3\pi} = (10.7 \pm 1.2) \,\mathrm{GeV^{-3}}$

Compare to prediction from ChPT:

 $F_{3\pi} = (9.78 \pm 0.05) \,\mathrm{GeV^{-3}}$

Precision of previous measurements: O(10%)

 \Rightarrow More precise experimental determination desirable

Radiative width of ρ -meson

- Coherent background of $\rho(770)$ -production (strong and electro-magnetic)

 π^{-} ρ^{-} π^{0} Ni

⇒ possibility of extraction of radiative width of ρ meson: $\Gamma_{(\rho \to \pi \gamma)} / \Gamma_{\text{tot}} \approx 4.5 \cdot 10^{-4}$

Radiative width of ho-meson

- Coherent background of $\rho(770)$ -production (strong and electro-magnetic)

⇒ possibility of extraction of radiative width of ρ meson: $\Gamma_{(\rho \to \pi \gamma)} / \Gamma_{\text{tot}} \approx 4.5 \cdot 10^{-4}$ Radiative width of ρ -meson:

<u>Capraro, L. *et al.* Nucl. Phys. B288 (1987) 659-680</u> at CERN (SPS):

• From fit of $d\sigma/dt$ for ρ production: $\Gamma(\rho \rightarrow \pi \gamma) = (81 \pm 4 \pm 4) \text{ keV}$

Radiative width of ho-meson

- Coherent background of $\rho(770)$ -production (strong and electro-magnetic)

 π^{-} ρ^{-} π^{0} Ni

- ⇒ possibility of extraction of radiative width of ρ meson: $\Gamma_{(\rho \to \pi \gamma)} / \Gamma_{\text{tot}} \approx 4.5 \cdot 10^{-4}$
- At kinematic threshold: non-resonant behaviour but chiral anomaly (Serpukhov measurement)
- Interference between Chiral Anomaly and ρ gives additional information

Principle of the COMPASS Measurement

- 190 GeV negative hadron beam: 96.8% π^- , 2.4% K^- , 0.8% \bar{p}
- Beam particle identification by Cherenkov detectors
- 4mm Ni target disk ($\approx 25\% X/X_0$)
- Measure scattered π^- and produced photons (number of photons depends on final state)
- Select exclusive events at very low Q^2
- For absolute cross-section measurements: Luminosity

Luminosity determination via free Kaon decays

 $(K^- \rightarrow \pi^- \pi^0 \text{ or } K^- \rightarrow \pi^- \pi^0 \pi^0)$

Primakoff reactions

- Idea dates back to Henry Primakoff ("photon target")
- Photon is provided by the strong Coulomb field of a nucleus (typical field strength at $d = 5R_{Ni}$: $E \approx 300 \text{ kV/fm}$
- Coulomb field of nucleus as a source of quasi-real ($P_{\gamma}^2 \ll m_{\pi}^2$) photons
- Large impact parameters (ultra-peripheral scattering)

Weizsäcker-Williams approximation

 \cap

 $\mathbf{0} \mathbf{Q} = \sqrt{\mathbf{3}} \cdot \mathbf{Q}$

50

100

Q (MeV)

Background

	Primakoff	$\frac{Strong}{(\omega/\pi)}$	Strong (Pomeron)
$\sigma(E_{\text{beam}})$ $\sigma(A_{\text{target}})$ $\sigma(Z_{\text{target}})$ $\sigma(q^2)$	$\propto \ln(E)$ $\propto \text{const}$ $\propto Z^2$ $\propto 1/(q^2 - q_{\min}^2)$	$\propto 1/E$ $\propto A^{2/3}$ $\propto { m const}$ depends on qtm nmb	$\propto \text{const}$ $\propto A^{2/3}$ $\propto \text{const}$ $\propto \exp(-bt')$

Main background:

- $\pi^{-}\pi^{0}$ -final state forbidden by *G*-parity
- But: large cross-section for $\pi^{-}\pi^{0}\pi^{0}$ -final state => loss of one (soft) π^{0}
- Approach: determine leakage from 3pi MC data with 2pi event selection

Luminosity determination

• Needed for absolute cross section measurement: effective integrated luminosity (DAQ dead time taken into account)

Effective luminosity: $L_{eff} = L \cdot (1 - \epsilon_{DAQ})$

- Luminosity can be determined via free kaons in the beam:
 - Use CEDARs to tag kaons
 - Free decays where no material
 - Exclusive events with low (≈ 0) momentum transfer

Decay channel	Γ_i/Γ	Remark
$K^- \to \mu^- \bar{\nu}_\mu$	(63.56 ± 0.11) %	Does not deposit energy in ECAL2 (Primakoff-trigger)
$K^- ightarrow \pi^- \pi^0$	(20.67 ± 0.08) %	Similar systematics as Primakoff $\pi^- \rightarrow \pi^- \pi^0$ channel
$K^- \rightarrow \pi^- \pi^- \pi^+$	(5.583 ± 0.024) %	Does not deposit energy in ECAL2 (Primakoff-trigger)
$K^- ightarrow e^- \pi^0 ar u_e$ (K_{e3})	(5.07 ± 0.08) %	Not exclusive, missing energy
$K^- ightarrow \mu^- \pi^0 ar{ u}_\mu$ ($K_{\mu 3}$)	(3.352 ± 0.033) %	Not exclusive, missing energy
$K^- ightarrow \pi^- \pi^0 \pi^0$	(1.760 ± 0.023) %	Previous measurement by M. Kraemer, used to determine $\pi/_{K}$ -ratio in the beam)
others	$< 10^{-4}$	No significant contribution to background expected

π^{-}/e^{-} distinction

- Naive idea: E/p in calorimeter
- Possible discrimination line can be identified
- Still: many electrons deposit less energy than expected
- Reason: energy loss due to Bremsstrahlung in the spectrometer

External Bremsstrahlung

- Charged particle radiates photons while propagating through matter
- Deflection in dipole magnets dependent on momentum of charged track
- 3 distinct regions with increased probability for Bremsstrahlung
- Electrons have higher probability for Bremsstrahlung than pions

External Bremsstrahlung

Internal Bremsstrahlung

$$\pi^- \gamma \rightarrow \pi^- \pi^0 \gamma$$

- Full phase space for this final state to be simulated
- Take out divergent corner $\lambda = E_{\gamma} \rightarrow 0$
- Control the transition from "ultra-soft" to soft photons: hand-over point when soft-photon approximation is still sufficiently well describing cross section (here: on the level of 1 MeV)

$\sqrt{s} = 1 \text{ GeV}$

Internal Bremsstrahlung

$$\pi^- \gamma \rightarrow \pi^- \pi^0 \gamma$$

- In the Monte Carlo, those events enter at the same level as the non-radiative events
- This allows to investigate bin migration and other non-factorizable effects
- The $1/\lambda$ divergence problem has nothing to do with detector resolution (despite bad resolution may come as a problem on top) – it simply means that photon emission becomes increasingly probable

$\pi^- \gamma \to \pi^- \pi^0 \gamma \gamma$

 How to treat double-internal radiation and twophoton loops? $\sqrt{s} = 1 \text{ GeV}$

- Every precision experiment demands its own specific QED radiative corrections
- The most complete way of correction comprises
- Iteration of the procedure, demonstration of convergence Full documentation of the effects, e.g. comparison off corrections on/off $2^{-2+\sqrt{t^2-4t}}$ + $\frac{\pi^2}{12}$

$$+ \left[2 - 2\xi_{\rm ir} - \ln(4 - t)\right] \ln \frac{\sqrt{4 - t} + \sqrt{-t}}{2} \right\} + \frac{1}{s - 1} \left[\operatorname{Li}_2\left(\frac{1}{1 - s}\right) + \frac{\pi^2}{6} - \ln(s - 1) \ln \frac{s}{\sqrt{s - 1}}\right] + \frac{1}{(s - 1)^3} \left[6 \ln^2 \frac{\sqrt{s} + \sqrt{s - 4}}{2} - \frac{4\pi^2}{3}\right] + \kappa_{\rm eff} ,$$

Thank you for your attention

Reconstruction of Q^2

- Reconstruction of momentum transfer: $q^{\mu} = P^{\mu}_{\pi'} + P^{\mu}_{\pi^0} P^{\mu}_{\pi}$
- Mainly limited by (calorimetric) measurement of π^0 -energy
- Imposing exclusivity: $\Delta E = 0$ by rescaling cluster energies accordingly $\Rightarrow q_{\parallel} \approx 0$

• Imposing correct
$$\pi^0$$
-mass:
 $m_{\gamma\gamma} = 2\sqrt{E_1 E_2} \sin \frac{\vartheta}{2} = m_{\pi^0_{PDG}}$

Dispersive framework

• Dispersive framework to deduce $F_{3\pi}$ from a fit to the full data set up to 1.2 GeV including the $\rho(770)$ -resonance:

$$\sigma(s) = \frac{(s - 4m_{\pi}^2)^{3/2}(s - m_{\pi}^2)}{1024\pi\sqrt{s}} \int_{-1}^{1} \mathrm{d}z(1 - z^2) |\mathcal{F}(s, t, u)|^2$$

With

$$\mathcal{F}(s,t,u) = C_2^{(1)} \mathcal{F}_2^{(1)}(s,t,u) + C_2^{(2)} \mathcal{F}_2^{(2)}(s,t,u) - \frac{2e^2 F_\pi^2 F_{3\pi}}{t}$$

 $C_2^{(1)}$, $C_2^{(2)}$: fit parameters

 $\mathcal{F}_2^{(1)}(s, t, u)$, $\mathcal{F}_2^{(2)}(s, t, u)$: provided by theory colleagues (Kubis, Hoferichter)

	Primakoff	Strong (ω/π)	Strong (Pomeron)
$\sigma(E_{\text{beam}})$ $\sigma(A_{\text{target}})$ $\sigma(Z_{\text{target}})$ $\sigma(q^2)$	$\propto \ln(E)$ $\propto \text{const}$ $\propto Z^2$ $\propto 1/(q^2 - q_{\min}^2)$	$ \begin{array}{l} \propto 1/E \\ \propto A^{2/3} \\ \propto {\rm const} \\ {\rm depends \ on} \\ {\rm qtm \ nmb} \end{array} $	$ \begin{array}{l} \propto {\rm const} \\ \propto A^{2/3} \\ \propto {\rm const} \\ \propto \exp(-bt') \end{array} $

- Different intermediate resonances possible, e.g. via ρ_3 or b_1
- Investigations for $\pi^- \omega \rightarrow \pi^- \pi^0 \gamma$ ongoing

First test of the chiral anomaly: π^0 lifetime

• First definitive measurement of π^0 -lifetime in 1963:

 $\tau_{\exp}(\pi^0) = (9.5 \pm 1.5) \cdot 10^{-17} s \neq \tau_{PCAC}(\pi^0) \approx 10^{-13} s$

• Adler, Bell, Jackiw, Bardeen 1969: calculation of triangle diagram

$$\Gamma^{\text{anom}}(\pi^{0} \to \gamma \gamma) = F_{\pi \gamma \gamma}^{2} \cdot \frac{m_{\pi^{0}}^{3}}{64\pi} = \left(\frac{e^{2}N_{c}}{12\pi^{2}F_{\pi}}\right)^{2} \frac{m_{\pi^{0}}^{3}}{64\pi} = 7.75 \text{ eV}$$
$$\tau(\pi^{0}) = \text{BR}(\pi^{0} \to \gamma \gamma) \cdot \frac{\hbar}{\Gamma^{\text{anom}}(\pi^{0} \to \gamma \gamma)}$$
$$= 8.38 \cdot 10^{-17} \text{ s}$$

• Moussalam and Kampf 2009: NLO-calculation in chiral perturbation theory

$$\tau_{\rm NLO}(\pi^0) = (8.04 \pm 0.11) \cdot 10^{-17} \,\mathrm{s}$$

Luminosity

- Values for luminosity from 2 and 3-pion decay channels in better agreement.
- Difference in up-/downstream values for semileptonic decays -> hint to problem
- Values for semi-leptonic decays (K_{e3} and $K_{\mu3}$) depend on cuts on phase space -> not entirely understood

Integrated luminosity nb⁻¹

Values need to be updated (event selection, ECAL corrections, etc.)