Current status of the ULQ² experiment and required corrections

Legris Clement, D1 student Tohoku University, ELPH (Research Center for Electron Photon Science)

Contents

- I. Proton charge radius puzzle
- II. Determination of the proton charge radius using electron scattering
- III. Current status of the ULQ² experiment
- IV. Required corrections for the ULQ^2 experiment

I. Proton charge radius puzzle

Proton charge radius puzzle

- □ The proton charge radius is one of the most primary characteristics of the nucleon.
- □ The proton charge radius is greatly related to the Rydberg constant (R_{∞}), one of the constant determined with the highest accuracy:

$$E_{n,l} = \alpha R_{\infty} + \beta < r_p^2 > \delta_{l,0}$$
 Interaction between the S-orbitals and the nucleus.

- □ The cause of the discrepancy is not yet fully understood.
 - ➡ Lack of precision or errors during some previous measurements?

II. Determination of the proton charge radius using electron scattering

Electric form factor and proton charge radius

of the electron-proton scattering.

2022/07/18

Electric form factor and proton charge radius

2022/07/18

Specifications of the ULQ² experiment Ultra Low Q²

Absolute cross-section measurement

Absolute cross-section measurement

Measurement time

- □ 1 Q^2 data point = 3-16 Rosenbluth data points
- ☐ 1 measurement ~ 12 h

Total beam time ~ 1 month

III. Current status of the ULQ² experiment

Research Center for Electron-Photon Science (ELPH)

Beam line

- <u>ULQ² accelerator:</u>
- Energy: E = 10 60 MeV
- Energy spread: $\sigma_E/E = 0.06\%$
- Position spread: σ_x , σ_y = 0.6 mm
- Intensity: $I \leq 1 \mu A$
- Pulse duration: $\Delta t \sim 3 \ \mu s$
- Pulse frequency: f = 1-300 Hz

Beam line

- <u>ULQ² accelerator:</u>
- Energy: E = 10 60 MeV
- Energy spread: $\sigma_E/E = 0.06\%$
- Position spread: $\sigma_x, \sigma_y = 0.6 \text{ mm}$
- Intensity: $I \le 1 \mu A$
- Pulse duration: $\Delta t \sim 3 \ \mu s$
- Pulse frequency: f = 1-300 Hz

Beam line

Variable-angle target chamber

Characteristics:	
Height	1145 mm
Length	950 mm
Mass	3.7 t
Curvature radius	0.5 m
Maximum B (I)	0.5 T (300 A)
Angular acceptance	~ 10 mSr
Momentum acceptance	~ 10 %

<u>Measurement in the focal plane:</u>

- \Box ULQ² experiment uses very low energy electrons.
 - \implies Strong multiple scattering: $\langle \theta_{MS} \rangle \propto \frac{1}{P'}$
 - Impossible to determine the path of the electrons.
- Single measurement of the electron position in the focal plane.
- Connected to the target chamber and under vacuum (< 1 mPa).

Measurement in the focal plane:

- □ Electrons focused in the focal plane depending on their momentum p and horizontal scattering angle θ .
- $\square (P', \theta) \text{ determined from the } (x_d, y_d) \text{ position of the electrons on the detectors placed in the focal plane.}$
- □ To resolve e+p and e+C scattering peaks with Q^2 = 0.0003 (GeV/c)², Momentum resolution: $\sigma_p = \frac{\Delta P}{P} < 10^{-3}$

Single Sided Silicon Strip Detectors (SSDs):

- Developed with the J-PARC muon g-2/EDM collaboration.
- 2 detectors each made of 2 x 512 channels on each spectrometer.
- Located in the focal plane of the spectrometers.
- Channel width: 0.19 mm, thickness: 0.32 mm.

2022/07/18

Momentum dispersion Angular dispersion

Relation between
$$(x_d, y_d)$$
 and (P', θ) :
 $x_d = (x_d | \delta) \delta + (x_d | \delta^2) \delta^2$
 $y_d = (y_d | \Delta \theta) + (y_d | \delta \Delta \theta) \delta \Delta \theta$
with $\delta = \frac{P' - P_c}{P_c}$ Spectrometer central
 $\propto B_c P_c$ momentum

D From x_d , we get δ but not directly P'...

□ The beam energy derived from the current of upstream magnets is not precise enough ...

D From x_d , we get δ but not directly P'...

□ The beam energy derived from the current of upstream magnets is not precise enough ...

\Box To get E and *P'*, use of *C* and H peaks:

$$R \equiv \frac{P'_{C}}{P'_{H}} \sim \frac{P'_{X} - P_{c}}{1 + \frac{x_{C}}{(x_{d} \mid \delta)}}$$

$$R = \frac{P'_{C}}{P'_{H}} \sim \frac{1 + \frac{x_{C}}{(x_{d} \mid \delta)}}{1 + \frac{x_{H}}{(x_{d} \mid \delta)}}$$

2022/07/18

□ From x_d , we get δ but not directly P'...

□ The beam energy derived from the current of upstream magnets is not precise enough ...

\Box To get E and *P'*, use of *C* and H peaks:

$$R = \frac{P'_C}{P'_H} \sim \frac{1 + \frac{x_C}{P_C}}{1 + \frac{x_H}{(x_d \mid \delta)}}$$

Determination of the beam energy directly from the experimental data!

Precise determination of Q^2 !

Noise reduction

Following experimental tasks

- □ New more precise measurement of $(x_d | \delta) \rightarrow$ increase *E* and Q^2 precision
- **G** BG noise study: reduction of the remaining noise
- □ Detector efficiency study: position dependence with 10^{-3} accuracy

Physics runs should start at the end of this year!

Different corrections for the ULQ2 experiment

IV.

❑ Measure of the cross-section of the leading-order of e+p and e+C with an accuracy of 10⁻³

□ Actually, many other diagrams ($eX \rightarrow eX\gamma$, vertex corrections, ...)

Vacuum polarization $|M_{fi}| \propto \alpha^2$

❑ Measure of the cross-section of the leading-order of e+p and e+C with an accuracy of 10⁻³

- □ Actually, many other diagrams ($eX \rightarrow eX\gamma$, vertex corrections, ...)
- Need to fit the radiative tail of H and especially the radiative tail of C
- □ The yield of the H peak strongly depends on the parametrization of the C radiative tail ...

Current parametrization: convolution of three functions: J.Friedrich, Nucl. Inst. Meth. 129 (1975), 505-514

$$\Box \frac{d^2\sigma}{d\Omega dE_f} = \frac{d\sigma}{d\Omega} g(E_f) \text{ with } g(E_f) = g^S * g^{rad} * g^{col}(E_f)$$

- \Box $g^{S}(E_{f})$: internal radiative corrections (Schwinger corrections, ...)
- \Box $g^{rad}(E_f)$: external radiative corrections (Bremsstrahlung, ...)
- \Box $g^{col}(E_f)$: energy loss in the target (Landau)
 - Insufficient parametrization of the radiative tail ...

We welcome your contribution!

2022/07/18

Coulomb distortion

□ Classical treatment of the Coulomb distortion: Feshbach correction

$$\left(\frac{d\sigma}{d\Omega}\right)_{Fesh} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \frac{E'}{E} \frac{1 + Z\alpha\delta_{Fesh}}{\epsilon G_E^2(Q^2) + (1 + Z\alpha\delta_{Fesh})\tau G_M^2(Q^2)}{\epsilon(1 + \tau)},$$

with $\delta_{Fesh} = \frac{\pi \sin \frac{\theta}{2}(1 - \sin \frac{\theta}{2})}{\cos^2 \frac{\theta}{2}}, \tau = \frac{Q^2}{4M_p^2} \text{ and } \epsilon^{-1} = 1 + 2(1 + \tau)\tan^2 \frac{\theta}{2}$

Assumption: Same correction for Coulomb and magnetic scattering.

Coulomb distortion

Coulomb distortion ULQ^2 experiment 1.01 GE $G_{Fesh+Tamae}/G_{Fesh}$ GM Up to ~1% impact on G_F 1.005 1 Larger impact on G_M 0.995 Mainz experiment 0.99 ~1% impact on G_M 0.985 0.05 0.2 0.1 0.15 0.25 0.3 0 T. Tamae, Phys. Rev. C 102 (2020), 022502 Q^2 (fm⁻²) Ratio of form factors where Feshbach and Tamae are

Necessary for the determination of G_M (and G_E at ultra low Q^2)!!

Radiative corrections for medium to high energy experiments

applied and only Feshbach correction is applied.

□ Ultra-relativistic limit:
$$m_e \ll E(m_e \to 0)$$

 $\left(\frac{d\sigma}{d\Omega}\right)_{URL} = \left(\frac{\alpha^2 Z^2 \cos^2 \frac{\theta}{2}}{4E^2 \sin^4 \frac{\theta}{2}}\right) E' \frac{\epsilon G_E^2(Q^2) + \tau G_M^2(Q^2)}{\epsilon(1+\tau)}$
with $Q^2 = 4EE' \sin^2 \frac{\theta}{2}, \tau = \frac{Q^2}{4M_p^2}$ and $\epsilon^{-1} = 1 + 2(1+\tau)\tan^2 \frac{\theta}{2}$

□ At 10 MeV,
$$\frac{m_e}{E} \sim 0.05 \rightarrow \text{URL not justified}$$

Summary

- □ Radiative corrections: several % correction
- □ Electron mass: up to 4% correction
- □ Tamae correction: up to 1% correction on G_E and G_M , especially at low Q^2

First measurement of the proton form factors starting tomorrow! We aim at observing the effect of these corrections!

THANK YOU FOR YOUR ATTENTION

¹²C cross section

□ Several measurements of the electric form factor of ¹²C with electron scattering

¹²C vs natural C ^{nat} $C = 98.9\%^{12}C + 1.1\%^{13}C$

□ Very small effect of ${}^{13}C$ ~ order of 10^{-4} in the context of the ULQ2 experiment

Variable-angle target chamber

2022/07/18

Determination of the momentum dispersion

Position of the electrons on the detectors.

$$\begin{split} \underline{\text{Matrix elements:}} \\ x_d &= x_0 + (x_d \,|\, \delta)\delta + (x_d \,|\, \delta^2)\delta^2 + (x \,|\, \Delta\theta^2)(\Delta\theta - \theta_0)^2 + (x_d \,|\, x_b)x_b, \\ y_d &= [(y_d \,|\, \Delta\theta) + (y_d \,|\, \delta\Delta\theta)\delta]\Delta\theta + (y_d \,|\, y_b)y_b \end{split}$$

Detector efficiency

□ Use of a 2-mm-thick C target $\rightarrow \Delta E_{loss} = 2.2 \text{ MeV}$

□ With E=20 MeV, $\frac{\Delta E_{loss}}{E} \sim 10\% \rightarrow \text{completely covers the detector surface}$

