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I. Proton charge radius puzzle
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Proton charge radius puzzle 
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1S-3S 1S-3S2S-4P

2S-2P

Same transition!

2S-2P

2S-2P

2S-8D
Colorado (2022)



Proton charge radius puzzle
❑ The proton charge radius is one of the most primary characteristics of the nucleon. 

❑ The proton charge radius is greatly related to the Rydberg constant ( ), one of the 
constant determined with the highest accuracy: 

❑ The cause of the discrepancy is not yet fully understood. 
➡Lack of precision or errors during some previous measurements?

R∞

5

Interaction between the S-
orbitals and the nucleus.

En,l = αR∞ + β < r2
p > δl,0
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II. Determination of the proton charge 
radius using electron scattering
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Electric form factor and proton charge radius

Cross section:

( dσ
dΩ ) ≈ ( dσ

dΩ )
Mott

E′ 

E

G2
E(Q2) + τ

ϵ G2
M(Q2)

1 + τ

GE(Q2) = 1 −
Q2

3! ⟨r2
E⟩ +

Q4

5! ⟨r4
E⟩ + …

RE = ⟨r2
E⟩ ≡ −6 lim

Q2→0

dGE

dQ2

7

Feynman diagram of the leading-order 
of the electron-proton scattering.

Momentum transfer: 
 Q2 = | ⃗q |2 − ω2

Q2 ∼ 4EE′ sin θ/22

 as small as possible! Q2
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, τ =
Q2

4M2
p

ϵ−1 = 1 + 2(1 + τ)tan2 θ
2

G. Miller, Phys. Rev. C 99 (2019), 035202

Ultra-relativistic 
approximation



Electric form factor and proton charge radius
Rosenbluth separation: 

❖ Determine separately  and  
❖ Measurement of the cross-section with a 

constant  and different angles.

GE(Q2) GM(Q2)

Q2
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Feynman diagram of the leading-order 
of the electron-proton scattering.

Momentum transfer: 
 Q2 = | ⃗q |2 − ω2

Q2 ∼ 4EE′ sin θ/22
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0

τ
ϵ

σred =
σ(1 + τ)

σMott
E′ 
E

GE(Q2)

GM(Q2)



Specifications of the UL  experimentQ2

Mainz data (2014) 
 = 180 - 855 MeVe1

G
E(

Q
2 )

ULQ2 
exp.

Momentum transfer range reached 
during the UL  experiment.Q2

Ultra Low  Q2

9

 (GeV/c)Q2 2

Characteristics of the experiment:   
▪ Measurement of  for extremely small values of : 

 0.0003 (GeV/c)² 0.008 (GeV/c)²  
▪ Lowest beam energy for electron scattering in the 

world:  
                          10 MeV 60 MeV  
▪ Rosenbluth separation with 30° 150°. 
▪ Polyethylene ( ) target. 
➡ Absolute cross-section measurement with  accuracy.

GE(Q2) Q2

≤ Q2 ≤

≤ E ≤
≤ θ ≤

CH2
10−3
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P′ 

Simultaneous detection of e+p and e+ C scatterings: 
▪ Use of a  target. 
▪ Momentum of a scattered electron on a X nucleus: 

 

▪  = 50 MeV,  = 90°  
➡ 49.8 MeV/c, 47.5 MeV/c

12

CH2

P′ X ∼
E

1 + 2E sin θ/22

MX

E θ
P′ 12C ∼ P′ H ∼

Absolute cross-section measurement

10

Simultaneous detection of e+p and e+ C 
scattering with a  target (Experimental data).

12

CH2
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URL



P′ 

Absolute cross-section measurement
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Absolute cross-section of e+p scattering: 

 

 

(
dσ
dΩ

)e+p =
Ne+p

Ne Np ΔΩ

(
dσ
dΩ

)e+p =
Ne+p /Ne+12C

Np /N12C
(

dσ
dΩ

)e+12C

Event number

Beam dose Target number

Detector  
solid angle

Well 
known

Ratio of H and  
C nuclei

Simultaneous detection of e+p and e+ C 
scattering with a  target (Experimental data).

12

CH2



Measurement time
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❑ Goal: Determine  with 1 % accuracy  

Need to have   

At least 9  data points 

❑ 1  data point = 3-16 Rosenbluth data 
points 

❑ 1 measurement ~ 12 h 

             Total beam time ~ 1 month

RE
ΔGE

GE
≤ 5 × 10−4

Q2

Q2



III. Current status of the 
UL  experimentQ2
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Research Center for Electron-Photon Science (ELPH)
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UL  accelerator: 
• Energy:  E = 10 - 60 MeV 
• Energy spread:  = 0.06% 
• Position spread:  = 0.6 mm 
• Intensity: I  1 A 
• Pulse duration: s 
• Pulse frequency: f = 1-300 Hz

Q2

σE /E
σx, σy

≤ μ
Δt ∼ 3 μ

Beam line



Beam line

16

New UL  
beam line

Q2

 targetCH2

Scattered 
electrons

Beam 
dump
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UL  accelerator: 
• Energy:  E = 10 - 60 MeV 
• Energy spread:  = 0.06% 
• Position spread:  = 0.6 mm 
• Intensity: I  1 A 
• Pulse duration: s 
• Pulse frequency: f = 1-300 Hz

Q2

σE /E
σx, σy

≤ μ
Δt ∼ 3 μ
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New UL
 beam 
line

𝐐𝟐

CH2 
target

Scattere
d 

electron
s

Beam 
dump
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Beam line



Variable-angle target chamber
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Electron 
beam

CH2-target
Slide

Spectrometer

Slide

Rotation (30°-150°)

Rotation (30°-150°)

Electron 
beam

Scattered 
electrons

Scattered 
electrons



Spectrometers
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Target

950 mm

11
45

 m
m

Characteristics: 
Height 1145 mm
Length 950 mm
Mass 3.7 t
Curvature radius 0.5 m

Maximum B (I) 0.5 T (300 A)
Angular acceptance ~ 10 mSr
Momentum acceptance ~ 10 %
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Spectrometer 1 Data taking

Spectrometer 2 Luminosity monitor



Focal plane
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Spectrometers

Target

950 mm

11
45

 m
m

Measurement in the focal plane: 

❑ UL  experiment uses very low energy electrons.  

➡ Strong multiple scattering:  

➡ Impossible to determine the path of the electrons. 

❑ Single measurement of the electron position in the 
focal plane. 

❑ Connected to the target chamber and under vacuum       
(< 1 mPa).

Q2

⟨θMS⟩ ∝
1
P′ 
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Very precise design 
of the polar pieces



Spectrometers
xd → P′ 

yd → θ

Initial conditions: (P′ , θ)

(xd, yd)
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Focal plane

Target

950 mm

11
45

 m
m

Measurement in the focal plane: 

❑ Electrons focused in the focal plane depending on 
their momentum p and horizontal scattering angle . 

❑  determined from the  position of the 
electrons on the detectors placed in the focal plane. 

❑ To resolve e+p and e+C scattering peaks with               
= 0.0003 (GeV/c) ,  

Momentum resolution: 

θ

(P′ , θ) (xd, yd)

Q2 2

σp =
ΔP
P

< 10−3
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Single Sided Silicon Strip Detectors (SSDs): 
▪ Developed with the J-PARC muon g-2/EDM collaboration. 
▪ 2 detectors each made of 2 x 512 channels on each spectrometer. 
▪ Located in the focal plane of the spectrometers. 
▪ Channel width: 0.19 mm, thickness: 0.32 mm.

Detection system

xd → P′ 

yd → θ
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yd → θ
xd → P′ 

Vacuum  
window

e-



Detection system
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yd → θ
xd → P′ 

Vacuum  
window

e-

 [mm]xd → P′ 

 [m
m

]
y d

→
θ

 (e,e’)CH2
E = 50 MeV

 = 90°θ

e+p

e+C
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Detection system

y d
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Δθ

Relation between  and :

 

with 

(xd, yd) (P′ , θ)
xd = (xd |δ)δ + (xd |δ2)δ2

yd = [(yd |Δθ) + (yd |δΔθ)δ] Δθ

δ =
P′ − Pc

Pc

Momentum dispersion Angular dispersion

Spectrometer central  
momentum∝ BC
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Detection system

y d
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Spectrometer  
central angle

0

-20

-40

20

40

 [m
m

] 
y d

→
Δ

θ
=

θ
−

θ s

xd [mm] → δ
-40 -20 0 20 40

0.1

1

10

Large small Bc → δ

Relation between  and :

 

with 

(xd, yd) (P′ , θ)
xd = (xd |δ)δ + (xd |δ2)δ2

yd = [(yd |Δθ) + (yd |δΔθ)δ] Δθ

δ =
P′ − Pc

Pc

Momentum dispersion Angular dispersion

Spectrometer central  
momentum∝ BC

 [mm] xd

δ ∼ 0.05δ ∼ − 0.05
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Detection system

y d
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Spectrometer  
central angle

0

-20

-40

20

40

 [m
m

] 
y d

→
Δ

θ
=

θ
−

θ s

-40 -20 0 20 40

Smaller larger Bc → δ

0.1

1

10

Relation between  and :

 

with 

(xd, yd) (P′ , θ)
xd = (xd |δ)δ + (xd |δ2)δ2

yd = [(yd |Δθ) + (yd |δΔθ)δ] Δθ

δ =
P′ − Pc

Pc

Momentum dispersion Angular dispersion

Spectrometer central  
momentum∝ BC

 [mm] xd

δ ∼ 0.05δ ∼ − 0.05 xd [mm] → δ
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Detection system

y d
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Relation between  and :

 

with 

(xd, yd) (P′ , θ)
xd = (xd |δ)δ + (xd |δ2)δ2

yd = [(yd |Δθ) + (yd |δΔθ)δ] Δθ

δ =
P′ − Pc

Pc

Momentum dispersion Angular dispersion

Spectrometer central  
momentum∝ BC

 [mm] xd

δ ∼ 0.05δ ∼ − 0.05 xd [mm] → δ
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Detection system

y d
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Spectrometer  
central angle
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Summary figure

Relation between  and :

 

with 

(xd, yd) (P′ , θ)
xd = (xd |δ)δ + (xd |δ2)δ2

yd = [(yd |Δθ) + (yd |δΔθ)δ] Δθ

δ =
P′ − Pc

Pc

Momentum dispersion Angular dispersion

Spectrometer central  
momentum∝ BC

 [mm] xd

δ ∼ 0.05δ ∼ − 0.05 xd [mm] → δ



Commissioning results: 

 = 866.1(7) mm,  

 = 1.000(4) mm/mrad, 

(xd |δ)
(xd |δ2)δ
(xd |δ)

≈ − 0.2 × δ

(yd |Δθ)
(yd |δΔθ)δ
(yd |Δθ)

≈ 2.0 × δ

σp =
Δp
p

= 5.6 × 10−4 ≤ 10−3

 accuracy∼ 10−3

! The spectrometers fulfill the requirement!
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Detection system

y d
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Spectrometer  
central angle
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Relation between  and :

 

with 

(xd, yd) (P′ , θ)
xd = (xd |δ)δ + (xd |δ2)δ2

yd = [(yd |Δθ) + (yd |δΔθ)δ] Δθ

δ =
P′ − Pc

Pc

Momentum dispersion Angular dispersion

Spectrometer central  
momentum∝ BC

Summary figure

 [mm] xd

δ ∼ 0.05δ ∼ − 0.05 xd [mm] → δ

Up to 1% effect

Up to 10% effect!
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Detection system
❑ From , we get  but not directly  … 

❑ The beam energy derived from the current of 
upstream magnets is not precise enough …

xd δ P′ 
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Detection system

R ≡
P′ C

P′ H
∼

1 +
xC

(xd |δ)

1 + xH

(xd |δ)

xX ∼ (xd |δ)
P′ X − Pc

Pc

 order1st

❑ To get E and  , use of  and H peaks:P′ C

❑ From , we get  but not directly  … 

❑ The beam energy derived from the current of 
upstream magnets is not precise enough …

xd δ P′ 
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Detection system P′ X ∼
E

1 + 2E sin θ/22

MX

R ≡
P′ C

P′ H
∼ 1 + 2E sin θ/22(

1
MH

−
1

MC
)

URL

Determination of the beam energy 
directly from the experimental data!

Precise determination of ! Q2
R ≡

P′ C

P′ H
∼

1 +
xC

(xd |δ)

1 + xH

(xd |δ)

xX ∼ (xd |δ)
P′ X − Pc

Pc

 order1st

❑ To get E and  , use of  and H peaks:P′ C

❑ From , we get  but not directly  … 

❑ The beam energy derived from the current of 
upstream magnets is not precise enough …

xd δ P′ 



Noise reduction
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Normalized  
count

Momentum [MeV/c]

e+C  
scattering

e+H  
scattering

November 2020

— Foreground
— Background

Pb-shields around detectors  
and BG noise sources

e+C  
scattering

e+H  
scattering

Count

Momentum [MeV/c]

November 2021

Remaining BG noise 
(Depends on the position)

New noise reduction measures ongoing!



Following experimental tasks
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❑ New more precise measurement of increase  and  precision 

❑ BG noise study: reduction of the remaining noise 

❑ Detector efficiency study: position dependence with  accuracy 

Physics runs should start at the end of this year!

(xd |δ) → E Q2

10−3



IV. Different corrections for the 
ULQ2 experiment
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Radiative corrections
❑ Measure of the cross-section of the leading-order of e+p 

and e+C with an accuracy of  

❑ Actually, many other diagrams (eX      eX , vertex 
corrections, …)

10−3

γ
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Radiative corrections
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|Mfi | ∝ α

|Mfi | ∝ α3/2
Bremsstrahlung Vertex corrections

|Mfi | ∝ α2
Two-photon exchange

|Mfi | ∝ α2
Vacuum polarization

|Mfi | ∝ α2

+ Higher-order terms

Leading order

e−e+



Radiative corrections
❑ Measure of the cross-section of the leading-order of e+p 

and e+C with an accuracy of  

❑ Actually, many other diagrams (eX      eX , vertex 
corrections, …) 

❑ Need to fit the radiative tail of H and especially the 
radiative tail of C 

❑ The yield of the H peak strongly depends on the 
parametrization of the C radiative tail …

10−3

γ
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e+C  
scattering

e+H  
scattering

Count

Momentum [MeV/c]

Remaining BG noise



Radiative corrections
❑ Current parametrization: convolution of three functions: 

❑
 with  

❑ : internal radiative corrections (Schwinger corrections, …)  

❑ : external radiative corrections (Bremsstrahlung, …) 

❑ : energy loss in the target (Landau)

d2σ
dΩdEf

=
dσ
dΩ

g(Ef ) g(Ef ) = gS * grad * gcol(Ef )

gS(Ef )

grad(Ef )

gcol(Ef )
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J.Friedrich, Nucl. Inst. Meth. 129 (1975), 505-514

We welcome your contribution!

Insufficient parametrization of the radiative tail …



Coulomb distortion
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Plane-wave distortion 
near the nucleus

First order Born 
approximation not enough

Second order

⃗J0

⃗J

Elastic scattering: ⃗J0 + ⃗J = ⃗J0 Coulomb ( ) scatteringC0
Magnetic ( ) scatteringM1Proton nucleus: J0 =

1
2

+

(F
G) (F

G)
(F

G) (G
F)

 solution of the Dirac  
equation with a Coulomb potential 

ψ = (F
G) The magnetic scattering changes  

the electron wave spin orientation!



❑ Classical treatment of the Coulomb distortion: Feshbach correction  

, 

with ,  and 

( dσ
dΩ )

Fesh
= ( dσ

dΩ )
Mott

E′ 

E
(1 + ZαδFesh)ϵG2

E(Q2) + (1 + ZαδFesh)τG2
M(Q2)

ϵ(1 + τ)

δFesh =
π sin θ

2 (1 − sin θ
2 )

cos2 θ
2

τ =
Q2

4M2
p

ϵ−1 = 1 + 2(1 + τ)tan2 θ
2
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Coulomb distortion

Assumption: Same correction for Coulomb and magnetic scattering.
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❑ Tamae’s treatment: Different corrections for  and  

, 

with  and  

GE GM

( dσ
dΩ )

Fesh+Tamae
= ( dσ

dΩ )
Mott

E′ 

E
(1 + ZαδFesh)ϵG2

E(Q2) + (1 + ZαδTamae)τG2
M(Q2)

ϵ(1 + τ)

δFesh =
π sin θ

2 (1 − sin θ
2 )

cos2 θ
2

δTamae =
π sin θ

2 (2 + sin θ
2 )

1 + sin2 θ
2

T. Tamae, Phys. Rev. C 102 (2020), 022502

Coulomb distortion
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GFesh+Tamae /GFesh

Ratio of form factors where Feshbach and Tamae are  
applied and only Feshbach correction is applied.

UL  experimentQ2

~1% impact on GM

Larger impact on GM

Up to ~1% impact on GE

Necessary for the determination  
of  (and  at ultra low )!!GM GE Q2

Coulomb distortion

Mainz experiment

T. Tamae, Phys. Rev. C 102 (2020), 022502



Electron mass

❑ Ultra-relativistic limit:  ( ) 

 

with ,  and  

❑ At 10 MeV,         URL not justified

me ≪ E me → 0

( dσ
dΩ )

URL
=

α2Z2 cos2 θ
2

4E2 sin4 θ
2

E′ 

E
ϵG2

E(Q2) + τG2
M(Q2)

ϵ(1 + τ)

Q2 = 4EE′ sin2 θ
2

τ =
Q2

4M2
p

ϵ−1 = 1 + 2(1 + τ)tan2 θ
2

me

E
∼ 0.05
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( dσ
dΩ )

Mott

(1 + ZαδFesh) (1 + ZαδTamae)



Electron mass
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❑ Without the ultra-relativistic limit: 

  

 

with 

( dσ
dΩ )

real
=

α2Z2

Q4

P′ /P
1 + (E − (PE′ /P′ )cos θ)/Mp

[(G2
E(Q2)

4EE′ − Q2

1 + Q2/4M2
p

+G2
M(Q2)((4EE′ − Q2)(1 −

1
1 + Q2/4M2

p
) +

Q4

2M2
p

−
Q2m2

e

M2
p

)]

Q2 = ( ⃗P − ⃗P′ )2 − (E − E′ )2

E. Borie, arXiv:1207.6651v4
(1 + ZαδFesh)

(1 + ZαδTamae)



Electron mass
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|Q2
real − Q2

URL |
Q2

real
0.3 % at 10 MeV!

 [°]θ



Electron mass
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| ( dσ
dΩ )real − ( dσ

dΩ )URL |

( dσ
dΩ )real

Up to 4 % at 10 MeV!

(with PWBA and 
standard-dipole 

form factors)

 [°]θ



Summary
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❑ Radiative corrections: several % correction 

❑ Electron mass: up to 4% correction 

❑ Tamae correction: up to 1% correction on  and , especially at low GE GM Q2

First measurement of the proton form factors starting tomorrow! 
We aim at observing the effect of these corrections!



THANK YOU FOR YOUR ATTENTION



C cross section12
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❑ Several measurements of the electric form factor of C with electron scattering 

❑ Precise measurement of the carbon charge radius with  with C

12

δrC

rC
< 10−3 μ12

Determination of the electric form factor  
of C at low  with  accuracy12 Q2 10−3

Several re-analysis and compilations since 1995 
 fmr12C = 2.4702(22)

I. Angeli et al., Atom. Data and Nucl. Data Tab. 99 (2013) 69–95



C vs natural C12
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❑ Very small effect of C ~ order of  in the context of the ULQ2 experiment13 10−4

 = 98.9% +1.1%   natC 12C 13C

20 MeV
30 MeV
40 MeV
50 MeV
60 MeV

~1.0002

~ no differenceC0 →

larger effect of CM1 → 13

20 MeV
30 MeV
40 MeV
50 MeV
60 MeV



Variable-angle target chamber
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Momentum dispersion : 

, 

(xd |δ)

xd = x0 + (xd |δ)δ + (xd |δ2)δ2 δ =
Bs − Bc

Bc

Determination of the momentum dispersion
2021/11 

 target (130 um) 
 = 90° 

E = 50 MeV 
I ~ 10 nA, t = 30 min

CH2
𝜃

SSD position 
Fixed term
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Position of the electrons on the detectors.

δ

54

Δθ = θ − θs

Influence 
of Δθ

Spectrometer angle

Constant pyd
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Matrix elements: 
, xd = x0 + (xd |δ)δ + (xd |δ2)δ2 + (x |Δθ2)(Δθ − θ0)2 + (xd |xb)xb

yd = [(yd |Δθ) + (yd |δΔθ)δ]Δθ + (yd |yb)yb

xd



Detector efficiency
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❑ Use of a 2-mm-thick C target   = 2.2 MeV 

❑ With E=20 MeV, %  completely covers the detector surface

→ ΔEloss

ΔEloss

E
∼ 10 →

SP1 SP2
Eloss ∼ 0 MeV

Eloss ∼ 2.2 MeV



Detector efficiency
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Spectrometer  
central angle

0

-20

-40

20

40
 [m

m
] 

y d
→

Δ
θ

=
θ

−
θ s

-40 -20 0 20 40

 [mm] xd

δ ∼ 0.05δ ∼ − 0.05 xd [mm] → δ

0.1

1

10


