Why we are here and things that bother me

Jan C. Bernauer

ECT* RadCorr workshop 2022, Trento

Center for Frontiers In Nuclear Science RBRC RIKEN BNL Research Center

Stony Brook University

Dr. Bernauer is supported by NSF grant PHY 2012114

Welcome

Good news: I will not talk for 30 min.

Welcome

Good news: I will not talk for 30 min. I will talk for 45.

Welcome

Good news: I will not talk for 30 min. I will talk for 45.

JK.

This has happened before...

- CFNS Ad-Hoc Meeting: Radiative Corrections, July 2020!
- https://indico.bnl.gov/event/8844/
- Whitepaper/proceedings: arXiv: 2012.09970
- Should we write another one?

What I worry about

....from a theoretical perspective....

Reminder: The Proton Radius puzzle

Reminder: The Proton Radius puzzle

Elastic lepton-proton scattering

Method of choice: Lepton-proton scattering

- Point-like probe
- No strong force
- Lepton interaction "straight-forward" (Haha)

Measure cross sections and reconstruct form factors.

Cross section for elastic scattering

$$\frac{\left(\frac{\partial\sigma}{\partial\Omega}\right)}{\left(\frac{d\sigma}{\partial\Omega}\right)_{\text{Mott}}} = \frac{1}{\varepsilon(1+\tau)} \left[\varepsilon G_E^2\left(Q^2\right) + \tau G_M^2\left(Q^2\right)\right]$$

with:

$$\tau = \frac{Q^2}{4m_p^2}, \quad \varepsilon = \left(1 + 2\left(1 + \tau\right)\tan^2\frac{\theta_e}{2}\right)^{-1}$$

- Rosenbluth formula
- Electric and magnetic form factor encode the shape of the proton
- Fourier transform (almost) gives the spatial distribution, in the Breit frame

How to measure the proton radius

$$\left\langle r_{E}^{2} \right\rangle = -6\hbar^{2} \left. \frac{\mathrm{d}G_{E}}{\mathrm{d}Q^{2}} \right|_{Q^{2}=0} \quad \left\langle r_{M}^{2} \right\rangle = -6\hbar^{2} \left. \frac{\mathrm{d}\left(G_{M}/\mu_{P}\right)}{\mathrm{d}Q^{2}} \right|_{Q^{2}=0}$$

11

Complications

We are actually measuring $ep
ightarrow ep \gamma^N$

Does low Q² help?

(Q in units of GeV/c)

We want to measure the radius ($\propto \sqrt{A/2}$) to within 0.5%, without knowing B. So:

 $B/A \cdot Q^2 \ll 0.02 \longrightarrow Q^2 \ll 0.004 (\Theta eV/C)^2$

Does low Q² help?

(Q in units of GeV/c)

We want to measure the radius ($\propto \sqrt{A/2}$) to within 0.5%, without knowing B. So:

 $B/A \cdot Q^2 \ll 0.02 \longrightarrow Q^2 \ll 0.004 (GeW/C)^2$

But: Need to measure A to 2%, so measure $\frac{d\sigma}{d\Omega}$ to $6 \cdot 0.004 \cdot 0.02 = 0.048\%$. I'd call that challenging....

PRad

► @JLAB,

- 1 and 2 GeV beam, very forward angles
- "open" cell, so less background
- Calorimeter
 - worse energy resolution
 - but only 1 setting per energy
 - calibration with Møller scattering
- Fit using function determined before data was available!
- See more in Ashot Gasparian's talk later today

No agreement on form factor level

Takeaways

- Getting the same radius in fits to Mainz and PRad does not mean the data is in agreement.
- Hard to see how both results can be right
 - At least one of the experiments wrong.
 - But is it a problem in the experimental part or in theory?
- If PRad is fully right, what do we know about FFs after all?

What could have gone wrong

- Will not speculate on the experimental part
- What is different?
 - Momentum resolution (tail shape!)
 - ► Kinematics: PRad is very forward, all other are not. ⇒ Radiative corrections?
 - See talk by Miha on Wednesday

Why I believe Mainz high Q^2 is right

OLYMPUS yields

- TPE measurement via ratio of e^+p to e^-p
- But can use charge average to cancel TPE.
- New Mainz high energy proton ff. measurement
 - Same machine but partially double coincidence
 - Not analyzed by me

OLYMPUS yields

Mainz large Q^2 ff (PhD. thesis Julian Mueller)

Speaking of large Q^{2}

VEPP-3 results (I. A. Rachek et al., Phys. Rev. Lett 114, 062005)

	R	<u>x</u> ²	$R_{2\gamma}^{ m LNP}$		χ^2
	π2γ	n _{d.f.}	Run-I	Run-II	n _{d.f.}
Borisyuk and Kobushkin	1	2.14	0.998	0.997	3.80
Blunden, et al.	1	2.94	0.998	0.997	4.75
Bernauer, et al.	1	4.19	0.997	0.995	1.00
Tomasi-Gustafsson, et al.	1114	5.09	1.001	1.001	5.97
Arrington and Sick	1	7.72	1.000	1.000	8.18
Qattan, et al.	1	25.0	1.000	1.002	22.0
No hard TPE ($R_{2\gamma} \equiv 1$)	1	7.97	1	1	7.97

CLAS (D. Rimal et al., arXiv:1603.00315, D. Adikaram et al., Phys. Rev. Lett 114, 062003) (color adjusted)

 12 non-overlapping points from CLAS
 4 Vepp-3 points ²/_{nd.f.}

 2 & Y (N) 1.09

 2 & Y (N+∆) 1.03

 Dianden (N) 1.06

 No TPE 2.10

 Point-proton 6.96

CLAS data + Mainz fit

OLYMPUS results (B. Henderson et al., Phys. Rev. Lett. 118, 092501

OLYMPUS results re-binned

Difference of data to prediction: Blunden's hadronic calculation

Difference of data to prediction: Bernauer et al. phenomenological prediction

Takeaways

- Calculations don't fit data particularly well
- Phenomenological fit fits data, but what happens at larger Q²?
- Is something else going on?

Future experiments at JLAB and EIC

- We are changing from being statistics limited to being systematics limited
- More energy, more problems?
- We need efficient, accurate generators.

Proton CS/FF database

- World fits have to normalize data to same level of radiative corrections
- Needs meta data beyond published CS, FF etc.
- Better fit CS then FF (correlations!)
- Ethan Cline, Axel Schmidt, Craig McRae and I are working on open database with this meta information.
 - Few clicks to download selected datasets
 - Check for independence of selected sets
 - Auto-normalized to selected radiative corrections
 - Auto-fill of kinematic variables
- Who else wants to help?

This workshop

- Be ready for a group picture, likely Wednesday.
- Lunch will be organized by ECT*
- There is an organized dinner today and on Thursday.
- The other days, you are left to your own devices. But feel free to self-organize.