Experimental Techniques for Investigation of Giant Resonances in Inverse Kinematics

Juan Carlos Zamora

Facility for Rare Isotope Beams

July 15, 2022

Experimental probes (strong interaction)

Measurements with spectrometers KVI, RCNP, TAMU...

Inelastic scattering at very forward angles $E_{\rm B} \sim 100~{\rm MeV/u}$

(p, p'): IS/IV (α, α') : IS

$$\left(\frac{d^2\sigma}{d\Omega dE}\right)^{\exp} = \sum_L a_L(E_x) \left(\frac{d^2\sigma}{d\Omega dE}\right)^{\operatorname{theo}}$$

Experiments in inverse kinematics

- Suitable for unstable beams
- Reaction channels separated by kinematics
- $\theta_{cm} \neq \theta_{lab}$
- Low energy recoils (~ 300 keV)

Two possible techniques:

- $\checkmark~$ Storage Ring
 - Windowless target
 - In-ring detection
- \checkmark Active Target
 - Windowless target
 - Tracking detection

▶ ∢ ∃ ▶

1 Storage Rings $(\uparrow N_B)$

2 Active Targets ($\uparrow \delta x$)

- 4 ∃ ▶

$$\mathcal{L} \propto N_B \cdot \delta x \cdot \rho$$

 N_B : # Beam part. δx : target size ho : taget density

• Storage Rings ($\uparrow N_B$)

2 Active Targets $(\uparrow \delta x)$

 $\mathcal{L} \propto N_B \cdot \delta x \cdot \rho$

 N_B : # Beam part. δx : target size ho : taget density It is a is a kind of circular lattice of electromagnets that keeps the beam particles in an orbit

- Colliders
- Electron/Muon
- Heavy ion

ESR/GSI 10⁶ rev/s gas-jet target electron cooler

< ロ > < 同 > < 回 > < 回 >

It is a is a kind of circular lattice of electromagnets that keeps the beam particles in an orbit

- Colliders
- Electron/Muon
- Heavy ion

ESR/GSI 10⁶ rev/s gas-jet target electron cooler

Gas-jet target

- Windowless
- Temperature ~ 12 K
- Speed ~ 350 m/s
- Density ~ 10^{12} part./cm²

Target Profile (no halo)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Stored beams

- Electron cooling
- $\bullet\,$ Stored ^{58}Ni beam: 100 and 150 MeV/u
- $\bullet~\sim 10^8~$ part. stored
- Revolution frequency \sim MHz
- $\mathcal{L} \propto (n_B)(f_{\rm rev})(n_T) \sim 10^{26} {\rm cm}^{-2} {\rm s}^{-1}$

Elastic scattering (matter radius) ${}^{58}\mathrm{Ni}(lpha,lpha)$

Optical limit of Glauber Theory

$$f_{NN}(\mathbf{q}=0) = rac{k_{NN}}{4\pi}\sigma_{NN}(\mathbf{i}+\alpha_{NN})$$

High production of δ rays!!

Strip number 10, $\theta_{\text{lab.}} \approx 30.7^{\circ}$

Strip number 20, $\theta_{\text{lab.}} \approx 33.9^{\circ}$

Strip number 30, $heta_{\text{lab.}} pprox 37.1^\circ$

- E

First giant resonances experiment with a stored beam ${}^{58}\mathrm{Ni}(lpha, lpha')$

- α particles at 200-600 keV
- \bullet Unexpected high $\delta\text{-rays}$ production
- Center of mass angles $[0.5^{\circ}, 1.5^{\circ}]$
- Simultaneous normalization using elastic scattering

First giant resonances experiment with a stored beam ${}^{58}\mathrm{Ni}(lpha, lpha')$

Extension of the technical concept

- ⁵⁶Ni: new detectors covering $\theta_{cm} > 2 \text{ deg}/ \text{ tracking}$
- Sn/Pb isotopes: Asymmetric nuclear matter (EoS)
- N = Z nuclei: α-clustering with astrophysical implications
- Light nuclei: *E*1 response

EXL: EXotic nuclei studied in Light ion induced reactions at storage rings

2 Active Targets ($\uparrow \delta x$)

$$\mathcal{L} \propto N_B \cdot \delta x \cdot \rho$$

 N_B : # Beam part. δx : target size ho : taget density

Active Target

- Target/detector same system
- Time Projection Chamber (TPC)
- 4π solid angle
- Particle tracking

Name	Location	Main physics theme
pAT-TPC	NSCL/FRIB	Cluster structure
AT-TPC	NSCL/FRIB	Shell evolution
SPECMAT	Leuven	Shell evolution
MAYA	GANIL	Giant resonances
ACTAR	GANIL	Shell evolution
TexAT	Texas A&M	Shell evolution
MAIKo	RCNP	Cluster structure
TPC	CENBG	Exotic decays
O-TPC	Warsaw	Exotic decays
MUSIC	GSI	Fusion-fission
fissionTPC	LLNL	Fusion-fission
MUSIC	ANL	Astrophysics
GADGET	NSCL/FRIB	Astrophysics
IKAR	GSI	Matter distributions
CAT	CNS	Giant resonances

D. Bazin, et al. Prog. Part. Nucl. Phys. 114 (2020) 103790

How it works

Point cloud reconstruction

Point cloud reconstruction

Particle tracking

Zamora and Fortino NIM A 988, 164899 (2021)

- Very good outlier rejection
- Reaction vertex reconstruction
- Improved routines
 - Probability distributions
 - Random sampling
- Coupled with clustering algorithms (CNN?)

RANSAC, LMedS, MLESAC, J-Linkage

CV algorithms

PointNet (Deep learning)

AT-TPC + S800 Spectrometer

- Trigger: Beam-like particle
- Beam/ejectile windows
- No trivial coupling FP detectors with 10K GET channels
- Corrections for non-uniform electric field
- Pure gases
- Dedicated gas-handling system: use of some explosive gases

TPC + Spectrometer: reactions in inverse kinematics

- ${}^{14}\mathsf{O}(d, {}^{2}\mathsf{He})$
- ${}^{14}\mathsf{O}(d, d')$
- ${}^{70}\mathrm{Ni}(\alpha,\alpha')$ (T. Ahn talk)

Juan Zamora

Isoscalar strength of ¹⁴O via (d, d') reactions

$${}^{14}O^* \longrightarrow {}^{13}N + p$$

$$S_p = 4.6 \text{ MeV}$$

$${}^{14}O^* \longrightarrow {}^{12}C + 2p$$

$$S_{2p} = 6.6 \text{ MeV}$$

$${}^{14}O^* \longrightarrow {}^{10}C + \alpha$$

$$S_{\alpha} = 10.1 \text{ MeV}$$

800

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

$${}^$$

Juan Zamora

20 / 32

Isoscalar strength of ¹⁴O via (d, d') reactions

$${}^{14}O^* \longrightarrow {}^{13}N + p$$

$$S_p = 4.6 \text{ MeV}$$

$${}^{14}O^* \longrightarrow {}^{12}C + 2p$$

$$S_{2p} = 6.6 \text{ MeV}$$

$${}^{14}O^* \longrightarrow {}^{10}C + \alpha$$

$$S_{\alpha} = 10.1 \text{ MeV}$$

Turk marked and the second sec

TPC

Juan Zamora

800

700È

600Ē

Background subtraction

TPC PID

deuteron/proton

Missing mass [MeV]

ECT* Workshop 2022

21/32

문 논 문

Isoscalar strength of ¹⁴O

 3° to 6° in $\theta_{\rm c.m.}$

preliminary

¹³N gate
¹²C gate
Total

Missing mass [MeV]

臣

(4 回 ト 4 ヨ ト 4 ヨ ト

Summary

Storage Rings

- First time GRs are being studied via an experiment with stored beam. The ISGMR in ⁵⁸Ni was extracted. Proof of principle.
- Technical improvements are needed: beam injection, δ -rays, etc...

Active Targets

- First successful experiments with the AT-TPC + S800 using fast beams.
- Few things need to be studied in detail: space charge effects, drift velocity, beam tracking, etc...

Thank you for your attention!

EXL Collaboration

S. Bagchi¹, S. Bönig², M. Csatlós³, I. Dillmann⁴, C. Dimopoulou⁴, P. Egelhof⁴, V. Eremin⁵, T. Furuno⁶, H. Geissel⁴, R. Gernhäuser⁷, M. N. Harakeh¹, A.-L. Hartig², S. Ilieva², N. Kalantar-Nayestanaki¹, O. Kiselev⁴, H. Kollmus⁴, C. Kozhuharov⁴, A. Krasznahorkay³, T. Kröll², M. Kuilman¹, S. Litvinov⁴, Yu. A. Litvinov⁴, M. Mahjour-Shafiei^{1,8}, M. Mutterer⁴, D. Nagae⁹, M.A. Najafi¹, C. Nociforo⁴, F. Nolden⁴, U. Popp⁴, C. Rigollet¹, S. Roy¹, C. Scheidenberger⁴, M. von Schmid², M. Steck⁴, B. Streicher^{2,4}, L. Stuhl³, M. Takechi⁴, M. Thürauf², T. Uesaka¹⁰, H. Weick⁴, J. S. Winfield⁴, D. Winters⁴, P. J. Woods¹¹, T. Yamaguchi¹², K. Yue^{2,4,13}, J.C. Zamora², J. Zenihiro¹⁰ ¹ KVI-CART, Groningen ⁹ University of Tsukuba

- ³ ATOMKI, Debrecen
- ⁴ GSI, Darmstadt
- ⁵ Ioffe Physico-Technical Institute, St.Petersburg
- ⁶ Kyoto University
- 7 Technische Universität München

⁸ University of Tehran
 ⁹ University of Tsukuba
 ¹⁰ RIKEN Nishina Center
 ¹¹ The University of Edinburgh
 ¹² Saitama University
 ¹³ Institute of Modern Physics, Lanzhou

AT-TPC Collaboration

D.Bazin¹, W.Mittig¹, R.Zegers¹, S.Giraud¹, J.Pereira¹, S.Noji¹, Y.Ayyad², J.Chen¹, J.Schmitt¹, M.Cortesi¹, N.Watwood¹, S.Beceiro-Novo¹, U.Garg³, J.Randhawa³, T.Ahn³, J.C.Zamora¹ 1 NSCL/FRIB, National Superconducting Cyclotron Laboratory 2 Universidad de Santiago de Compostela

3 University of Notre Dame

• • = • • = •