

Ab-initio description of monopole resonances in light- and mediummass nuclei

Methods, uses and new preliminary results

Andrea Porro, PhD Student IRFU, CEA, Université Paris-Saclay

Supervisors
Thomas Duguet
Vittorio Somà
July 15, 2022
Advances on giant nuclear monopole excitations and applications to multi-messenger Astrophysics ECT* Trento

Outline

Introduction
Formalism

Preliminary results

Conclusions

Outline

Introduction

Ab-initio methods for ground- and excited states
Formalism

Preliminary results

Conclusions

Ab-initio nuclear structure

$$
H\left|\Psi_{v}\right\rangle=E_{v}\left|\Psi_{v}\right\rangle
$$

Ab-initio nuclear structure

Input Hamiltonian

Ab-initio nuclear structure

Input Hamiltonian

Many-body solution

Ab-initio nuclear structure

Global philosophy

The approximate solution must be systematically improvable and approach the exact solution in a well-defined limit.

Input Hamiltonian

Many-body solution

Ab-initio nuclear structure

Global philosophy

The approximate solution must be systematically improvable and approach the exact solution in a well-defined limit.

Input Hamiltonian

Many-body solution QCD

Ab-initio nuclear structure

Global philosophy

The approximate solution must be systematically improvable and approach the exact solution in a well-defined limit.

Input Hamiltonian
QCD

nuclear forces

Ab-initio nuclear structure

Global philosophy

The approximate solution must be systematically improvable and approach the exact solution in a well-defined limit.

Input Hamiltonian

Many-body solution

Ab-initio nuclear structure

Global philosophy

The approximate solution must be systematically improvable and approach the exact solution in a well-defined limit.

Input Hamiltonian

Many-body solution

Ab-initio nuclear structure

Global philosophy

The approximate solution must be systematically improvable and approach the exact solution in a well-defined limit.

Input Hamiltonian

Many-body solution

The tower of EFTs

Degrees of Freedom

Energy (MeV)

The tower of EFTs

Reductionism

- More elementary description
- Complexity in terms of elementary DOF
- Lattice QCD

The tower of EFTs

Reductionism

- More elementary description
- Complexity in terms of elementary DOF
- Lattice QCD

Emergentism

- Collective picture
- Phenomena from effective description
- Energy Density Functional
- Collective models

The tower of EFTs

Reductionism

- More elementary description
- Complexity in terms of elementary DOF
- Lattice QCD

Emergentism

- Collective picture
- Phenomena from effective description
- Energy Density Functional
- Collective models

$$
X-E F T
$$

- Structure-less Protons and Neutrons
- All nucleons are active
- Systematically improvable
- LEC from data (or simulations)
- Up to A-body forces

The ab-initio timeline

The ab-initio timeline

Virtually exact methods

Early 2000's

- Factorial scaling
- Monte-Carlo methods and NCSM
- Explicit few-body solution

The ab-initio timeline

Virtually exact methods
 Early 2000's

- Factorial scaling
- Monte-Carlo methods and NCSM
- Explicit few-body solution

The ab-initio timeline

Virtually exact methods
 Early 2000's

- Factorial scaling
- Monte-Carlo methods and NCSM
- Explicit few-body solution

Expansion methods

- Polynomial scaling
- Ground-state expanded in series
- Perturbative and non-perturbative methods

Doubly-closed shell

From 2005

Symmetry-conserving ref state MBPT, CC, SCGF, IMSRG

The ab-initio timeline

Virtually exact methods

Early 2000's

- Factorial scaling
- Monte-Carlo methods and NCSM
- Explicit few-body solution

From 2005

Symmetry-conserving ref state MBPT, CC, SCGF, IMSRG

Breakdown for open-shell systems!
$\square 2012$
$\square 2014$
$\square 2016$
$\square 2018$

- Ground-state expanded in series
- Perturbative and non-perturbative methods

Doubly-closed shell

The ab-initio timeline

Virtually exact methods

Early 2000's

- Factorial scaling
- Monte-Carlo methods and NCSM
- Explicit few-body solution

Doubly-closed shell From 2005
Symmetry-conserving ref state MBPT, CC, SCGF, IMSRG Singly-open shell From 2011
U(1) symmetry breaking Bogoliubov extensions

The ab-initio timeline

Virtually exact methods

Early 2000's

- Factorial scaling
- Monte-Carlo methods and NCSM
- Explicit few-body solution

Doubly-closed shell

From 2005

Symmetry-conserving ref state MBPT, CC, SCGF, IMSRG Singly-open shell From 2011
U(1) symmetry breaking
Bogoliubov extensions
Doubly-open shell From 2016

SU(2) symmetry breaking Deformed calculations

The ab-initio timeline

Virtually exact methods

Early 2000's

- Factorial scaling
- Monte-Carlo methods and NCSM
- Explicit few-body solution

Doubly-closed shell From 2005
Symmetry-conserving ref state MBPT, CC, SCGF, IMSRG

From 2011

The ab-initio timeline

Virtually exact methods

Early 2000's

- Factorial scaling
- Monte-Carlo methods and NCSM
- Explicit few-body solution

Expansion methods

- Polynomial scaling
- Ground-state expanded in series
- Perturbative and non-perturbative methods

Low-lying spectroscopy

EOM-Like techniques

- Ground-state relies on previous calculations
- Excited states from the action of linear operators
- Similar to the Equation of Motion
- Linear system

Low-lying spectroscopy

EOM-Like techniques

- Ground-state relies on previous calculations
- Excited states from the action of linear operators
- Similar to the Equation of Motion
- Linear system

Coupled Cluster
(EOM-CC)

Low-lying spectroscopy

EOM-Like techniques

- Ground-state relies on previous calculations
- Excited states from the action of linear operators
- Similar to the Equation of Motion
- Linear system

Coupled Cluster
(EOM-CC)

Low-lying spectroscopy

EOM-Like techniques

- Ground-state relies on previous calculations
- Excited states from the action of linear operators
- Similar to the Equation of Motion
- Linear system

Coupled Cluster
(EOM-CC)
[From H. Hergert, Frontiers in Physics, 2020]

Low-lying spectroscopy

EOM-Like techniques

- Ground-state relies on previous calculations
- Excited states from the action of linear operators
- Similar to the Equation of Motion
- Linear system

Coupled Cluster
(EOM-CC)
[From H. Hergert, Frontiers in Physics, 2020]

State-specific expansion

Wave operator acting separately on excited states

```
    PGCM
(PGCM-PT)
```


Low-lying spectroscopy

EOM-Like techniques

- Ground-state relies on previous calculations
- Excited states from the action of linear operators
- Similar to the Equation of Motion
- Linear system

Coupled Cluster (EOM-CC)
[From H. Hergert, Frontiers in Physics, 2020]

State-specific expansion

Wave operator acting separately on excited states

```
    PGCM
(PGCM-PT)
```


Collective excitations

Lorentz integral transform

- Reduction to bound-state problem
- Numerical inversion issues
- The response should consist of $1 / 2$ broad peaks

Coupled Cluster
(CC-LIT)

Collective excitations

Lorentz integral transform

- Reduction to bound-state problem
- Numerical inversion issues
- The response should consist of $1 / 2$ broad peaks

Coupled Cluster
(CC-LIT)

[Bacca et al., PRL 2013]

Collective excitations

Lorentz integral transform

- Reduction to bound-state problem
- Numerical inversion issues
- The response should consist of $1 / 2$ broad peaks

Coupled Cluster (CC-LIT)

Recent development:
Chebyshev expansion
Application to ${ }^{4} \mathrm{He}$

Collective excitations

Lorentz integral transform

- Reduction to bound-state problem
- Numerical inversion issues
- The response should consist of $1 / 2$ broad peaks

Coupled Cluster (CC-LIT)

Recent development:
Chebyshev expansion
Application to ${ }^{4} \mathrm{He}$

RPA-inspired techniques

- RPA, 2nd-RPA and QRPA (Darmstadt group) (CC-RPA, IMSRG-RPA, IMSRG-2nd-RPA) Limited to spherical systems
- SCGF, RPA with dressed propagators For closed-shell systems

Collective excitations

Lorentz integral transform

- Reduction to bound-state problem
- Numerical inversion issues
- The response should consist of $1 / 2$ broad peaks

Coupled Cluster (CC-LIT)

Recent development:
Chebyshev expansion
Application to ${ }^{4} \mathrm{He}$

RPA-inspired techniques

- Early works in EDF essentially forgotten
- Large amplitude vibrations (possibly anharmonic)
- Present goal to revive it within ab-initio
- RPA, 2nd-RPA and QRPA (Darmstadt group) (CC-RPA, IMSRG-RPA, IMSRG-2nd-RPA) Limited to spherical systems
- SCGF, RPA with dressed propagators For closed-shell systems

Collective excitations

Lorentz integral transform

- Reduction to bound-state problem
- Numerical inversion issues
- The response should consist of $1 / 2$ broad peaks

Coupled Cluster (CC-LIT)

Recent development:
Chebyshev expansion
Application to ${ }^{4} \mathrm{He}$

[Bacca et al., PRL 2013]

- Karty in EDF essentially forgotten
- Large amplitude vibrations (possibly anharmonic)
- Present goal to revive it within ab-initio
 (CC-RPA, IMSRG-RPA, IMSRG-2nd-RPA) Limited to spherical systems
- SCGF, RPA with dressed propagators

[^0]Known facts about ab-initio RPA

Known facts about ab-initio RPA

Role of three-body forces

- Systematic effect on the peaks' position
- Crucial aspect in ab-initio
- Different possible treatments

[From R. Trippel, PhD Thesis, Technischen Universität Darmstadt, 2016]

Known facts about ab-initio RPA

Role of three-body forces

- Systematic effect on the peaks' position
- Crucial aspect in ab-initio
- Different possible treatments

NN-only (-----)
$\mathrm{NN}+3 \mathrm{~N}-$ ind. $(----)$
$\mathrm{NN}+3 \mathrm{~N}(-)$

[From R. Trippel, PhD Thesis, Technischen Universität Darmstadt, 2016]

Chiral order dependence

- Convergence wrt the chiral order within given family
- Non-negligible dependence on the used fit
- Good agreement with exp for presently used family
[Y. Beaujeault-Taudière, M. Frosini, J.-P. Ebran, T. Duguet, R. Roth, V. Somà, arXiv:2203.13513]

Ab-initio RPA and beyond

RPA suffers from a congenital disorder

Ab-initio RPA and beyond

RPA suffers from a congenital disorder
Quasi-Boson Approximation : \%

Pauli principle violation

Ab-initio RPA and beyond

RPA suffers from a congenital disorder

Quasi-Boson Approximation

Pauli principle violation

(But this is often asymptomatic)

Ab-initio RPA and beyond

RPA suffers from a congenital disorder

Quasi-Boson Approximation

Pauli principle violation
(But this is often asymptomatic)

- Intrinsic approximation to the method itself
- RPA as a many-body method is far from convergence

1. First step towards more sophisticated Boson Expansions
2. The HF reference state is NOT the real RPA ground-state

Ab-initio RPA and beyond

RPA suffers from a congenital disorder

Quasi-Boson Approximation

Pauli principle violation

(But this is often asymptomatic)

- Intrinsic approximation to the method itself
- RPA as a many-body method is far from convergence

1. First step towards more sophisticated Boson Expansions
2. The HF reference state is NOT the real RPA ground-state

I. Enriching the GS

- Going towards the RPA GS via self-consistent RPA (iterative)
- Adding GS correlation lowers the GS (strength shifted up)

Ab-initio RPA and beyond

RPA suffers from a congenital disorder

Quasi-Boson Approximation

Pauli principle violation
(But this is often asymptomatic)

- Intrinsic approximation to the method itself
- RPA as a many-body method is far from convergence

1. First step towards more sophisticated Boson Expansions
2. The HF reference state is NOT the real RPA ground-state

I. Enriching the GS

- Going towards the RPA GS via self-consistent RPA (iterative)
- Adding GS correlation lowers the GS (strength shifted up)

Ab-initio RPA and beyond

RPA suffers from a congenital disorder

Quasi-Boson Approximation

Pauli principle violation
(But this is often asymptomatic)

- Intrinsic approximation to the method itself
- RPA as a many-body method is far from convergence

1. First step towards more sophisticated Boson Expansions
2. The HF reference state is NOT the real RPA ground-state

I. Enriching the GS

- Going towards the RPA GS via self-consistent RPA (iterative)
- Adding GS correlation lowers the GS (strength shifted up)

Ab-initio RPA and beyond

RPA suffers from a congenital disorder

Quasi-Boson Approximation

GDR in ${ }^{16} \mathrm{O}$
Pauli principle violation
(But this is often asymptomatic)

- Intrinsic approximation to the method itself
- RPA as a many-body method is far from convergence

1. First step towards more sophisticated Boson Expansions
2. The HF reference state is NOT the real RPA ground-state

I. Enriching the GS

- Going towards the RPA GS via self-consistent RPA (iterative)
- Adding GS correlation lowers the GS (strength shifted up)

GS correlation

Ab-initio RPA and beyond

RPA suffers from a congenital disorder

Quasi-Boson Approximation

Pauli principle violation
(But this is often asymptomatic)

- Intrinsic approximation to the method itself
- RPA as a many-body method is far from convergence

1. First step towards more sophisticated Boson Expansions
2. The HF reference state is NOT the real RPA ground-state

I. Enriching the GS

- Going towards the RPA GS via self-consistent RPA (iterative)
- Adding GS correlation lowers the GS (strength shifted up)

GS correlation

2. Enriching the ExcS

- Going higher in the Boson Expansion
- Adding no-nh excitations (e.9.: 2nd-RPA)

Ab-initio RPA and beyond

RPA suffers from a congenital disorder

Quasi-Boson Approximation

Pauli principle violation

(But this is often asymptomatic)

- Intrinsic approximation to the method itself
- RPA as a many-body method is far from convergence

1. First step towards more sophisticated Boson Expansions
2. The HF reference state is NOT the real RPA ground-state

I. Enriching the GS

- Going towards the RPA GS via self-consistent RPA (iterative)
- Adding GS correlation lowers the GS (strength shifted up)

GDR in ${ }^{16} \mathrm{O}, \mathrm{NNLO}_{\text {sat }}$
2. Enriching the ExCS [Y. Beaujeault-Taudière, M. Frosini, J.-P. Ebran, T. Duguet, R. Roth, V. Somà, arXiv:2203.13513]

- Going higher in the Boson Expansion
- Adding no-nh excitations (e.9.: 2nd-RPA)

Ab-initio RPA and beyond

RPA suffers from a congenital disorder

Quasi-Boson Approximation

Pauli principle violation

(But this is often asymptomatic)

- Intrinsic approximation to the method itself
- RPA as a many-body method is far from convergence

1. First step towards more sophisticated Boson Expansions
2. The HF reference state is NOT the real RPA ground-state

I. Enriching the GS

- Going towards the RPA GS via self-consistent RPA (iterative)
- Adding GS correlation lowers the GS (strength shifted up)
 2. Enriching the ExCS [Y. Beaujeault-Taudière, M. Frosini, J.-P. Ebran, T. Duguet, R. Roth, V. Somà,
- Going higher in the Boson Expansion
- Adding no-nh excitations (e.9.: 2nd-RPA)

Ab-initio RPA and beyond

RPA suffers from a congenital disorder

Quasi-Boson Approximation

Pauli principle violation

(But this is often asymptomatic)

- Intrinsic approximation to the method itself
- RPA as a many-body method is far from convergence

1. First step towards more sophisticated Boson Expansions
2. The HF reference state is NOT the real RPA ground-state

I. Enriching the GS

- Going towards the RPA GS via self-consistent RPA (iterative)
- Adding GS correlation lowers the GS (strength shifted up)
 2. Enriching the ExCS [Y. Beaujeault-Taudière, M. Frosini, J.-P. Ebran, T. Duguet, R. Roth, V. Somà,
- Going higher in the Boson Expansion
- Adding no-nh excitations (e.9.: 2nd-RPA)

Ab-initio RPA and beyond

RPA suffers from a congenital disorder

Quasi-Boson Approximation

Pauli principle violation

(But this is often asymptomatic)

- Intrinsic approximation to the method itself
- RPA as a many-body method is far from convergence

1. First step towards more sophisticated Boson Expansions
2. The HF reference state is NOT the real RPA ground-state
I. Enriching the GS

- Going towards the RPA GS via self-consistent RPA (iterative)
- Adding GS correlation lowers the GS (strength shifted up)

2. Enriching the ExCS [Y. Beaujeault-Taudière, M. Frosini, J.-P. Ebran, T. Duguet, R. Roth, V. Somà,

- Going higher in the Boson Expansion
- Adding no-nh excitations (e.9.: 2nd-RPA)

Ab-initio RPA and beyond

RPA suffers from a congenital disorder

Quasi-Boson Approximation

Pauli principle violation

(But this is often asymptomatic)

- Intrinsic approximation to the method itself
- RPA as a many-body method is far from convergence

1. First step towards more sophisticated Boson Expansions
2. The HF reference state is NOT the real RPA ground-state
I. Enriching the GS

- Going towards the RPA GS via self-consistent RPA (iterative)
- Adding GS correlation lowers the GS (strength shifted up)
 2. Enriching the ExCS [Y. Beaujeault-Taudière, M. Frosini, J.-P. Ebran, T. Duguet, R. Roth, V. Somà, $\begin{array}{r}\text { arXiv:2203.13513] }\end{array}$
- Going higher in the Boson Expansion
- Adding no-nh excitations (e.9.: 2nd-RPA)

Valid motivation for ab-initio RPA!

Ab-initio RPA and beyond

RPA suffers from a congenital disorder

Quasi-Boson Approximation

Pauli principle violation

(But this is often asymptomatic)

- Intrinsic approximation to the method itself
- RPA as a many-body method is far from convergence

1. First step towards more sophisticated Boson Expansions
2. The HF reference state is NOT the real RPA ground-state
I. Enriching the GS

- Going towards the RPA GS via self-consistent RPA (iterative)

- Adding GS correlation lowers the GS (strength shifted up)

2. Enriching the ExcS

- Going higher in the Boson Expansion
- Adding no-nh excitations (e.g.: 2nd-RPA)

Correlation in PGCM

I. Enriching the GS

- Dynamical correlations + PGCM for converged properties
- Perturbation theory + PGCM (PGCM-PT) recently formulated
- Mixing of horizontal and vertical expansions

Correlation in PGCM

I. Enriching the GS

- Dynamical correlations + PGCM for converged properties
- Perturbation theory + PGCM (PGCM-PT) recently formulated
- Mixing of horizontal and vertical expansions

Correlation in PGCM

I. Enriching the GS

- Dynamical correlations + PGCM for converged properties
- Perturbation theory + PGCM (PGCM-PT) recently formulated
- Mixing of horizontal and vertical expansions

2. Enriching the ExcS

- Same treatment of GS
- Consistent correction

Correlation in PGCM

I. Enriching the GS

- Dynamical correlations + PGCM for converged properties
- Perturbation theory + PGCM (PGCM-PT) recently formulated
- Mixing of horizontal and vertical expansions

2. Enriching the ExcS

Error cancellation for spectroscopy !

Correlation in PGCM

I. Enriching the GS

- Dynamical correlations + PGCM for converged properties
- Perturbation theory + PGCM (PGCM-PT) recently formulated
- Mixing of horizontal and vertical expansions

2. Enriching the ExcS

- Same treatment of GS
- Consistent correction

Error cancellation for spectroscopy !

PGCM promising ab-initio candidate for collective ecxs

What to (and not to) expect?

(From the present talk/study)

What to (and not to) expect?

(From the present talk/study)

First ab-initio calculations of GMR for

- Closed- and open-shell nuclei
- Two complementary methods (PGCM and QRPA(QFAM))

What to (and not to) expect?

(From the present talk/study)

First ab-initio calculations of GMR for

- Closed- and open-shell nuclei
- Two complementary methods (PGCM and QRPA(QFAM))

Selected light- and medium-mass nuclei

- Deformation mechanisms on GMR
- Pairing fluctuations on GMR

What to (and not to) expect?

(From the present talk/study)

First ab-initio calculations of GMR for

- Closed- and open-shell nuclei

Nuclear structure study

- Two complementary methods (PGCM and QRPA(QFAM))

Selected light- and medium-mass nuclei

- Deformation mechanisms on GMR
- Pairing fluctuations on GMR

What to (and not to) expect?

(From the present talk/study)

First ab-initio calculations of GMR for

- Closed- and open-shell nuclei

Nuclear structure study

- Two complementary methods (PGCM and QRPA(QFAM))

Selected light- and medium-mass nuclei

- Deformation mechanisms on GMR
- Pairing fluctuations on GMR

Superfluidity

What to (and not to) expect?

(From the present talk/study)

First ab-initio calculations of GMR for

- Closed- and open-shell nuclei

Nuclear structure study

- Two complementary methods (PGCM and QRPA(QFAM)) Shape coexistence

Selected light- and medium-mass nuclei

- Deformation mechanisms on GMR
- Pairing fluctuations on GMR

What to (and not to) expect?

(From the present talk/study)

First ab-initio calculations of GMR for

- Closed- and open-shell nuclei

Nuclear structure study

- Two complementary methods (PGCM and QRPA(QFAM)) Shape coexistence

Selected light- and medium-mass nuclei

- Deformation mechanisms on GMR
- Pairing fluctuations on GMR

What to (and not to) expect?

(From the present talk/study)

First ab-initio calculations of GMR for

- Closed- and open-shell nuclei

Nuclear structure study

- Two complementary methods (PGCM and QRPA(QFAM)) Shape coexistence

Selected light- and medium-mass nuclei

- Deformation mechanisms on GMR
- Pairing fluctuations on GMR

What to (and not to) expect?

(From the present talk/study)

First ab-initio calculations of GMR for

- Closed- and open-shell nuclei

Nuclear structure study

- Two complementary methods (PGCM and QRPA(QFAM)) Shape coexistence

Selected light- and medium-mass nuclei

- Deformation mechanisms on GMR
- Pairing fluctuations on GMR

What to (and not to) expect?

(From the present talk/study)

First ab-initio calculations of GMR for

- Closed- and open-shell nuclei

Nuclear structure study

- Two complementary methods (PGCM and QRPA(QFAM)) Shape coexistence

Selected light- and medium-mass nuclei

- Deformation mechanisms on GMR
- Pairing fluctuations on GMR

Merits and limits of QRPA

- Treatment of anharmonicities
- Shape coexistence and mixing

What to (and not to) expect?

(From the present talk/study)

First ab-initio calculations of GMR for

- Closed- and open-shell nuclei

Nuclear structure study

- Two complementary methods (PGCM and QRPA(QFAM)) Shape coexistence

Selected light- and medium-mass nuclei

- Deformation mechanisms on GMR
- Pairing fluctuations on GMR

Merits and limits of QRPA

- Treatment of anharmonicities
- Shape coexistence and mixing

Theoretical aspects of moments and sum rules

What to (and not to) expect?

(From the present talk/study)

First ab-initio calculations of GMR for

- Closed- and open-shell nuclei

Nuclear structure study

- Two complementary methods (PGCM and QRPA(QFAM)) Shape coexistence

Selected light- and medium-mass nuclei

- Deformation mechanisms on GMR
- Pairing fluctuations on GMR

Merits and limits of QRPA

- Treatment of anharmonicities
- Shape coexistence and mixing

Theoretical aspects of moments and sum rules
Not right there yet

- Discussion about K_{∞}

- Pairing/isospin effects «fluffiness»

What to (and not to) expect?

(From the present talk/study)

First ab-initio calculations of GMR for

- Closed- and open-shell nuclei

Nuclear structure study

- Two complementary methods (PGCM and QRPA(QFAM)) Shape coexistence

Selected light- and medium-mass nuclei

- Deformation mechanisms on GMR
- Pairing fluctuations on GMR

Merits and limits of QRPA

- Treatment of anharmonicities
- Shape coexistence and mixing

Theoretical aspects of moments and sum rules
Not right there yet

- Discussion about K_{∞}

- Pairing/isospin effects «fluffiness»

Outline

Introduction

Formalism

Ab-initio PGCM and QFAM for GMR
Preliminary results

Conclusions

Schrödinger equation $\quad H\left|\Psi_{v}\right\rangle=E_{v}\left|\Psi_{v}\right\rangle$

PGCM

Schrödinger equation $\quad H\left|\Psi_{v}\right\rangle=E_{v}\left|\Psi_{v}\right\rangle$
$E_{\text {нгв }}[\mathrm{MeV}]$

1 Constrained HFB solutions

$\left|\Phi\left(r^{2}, \beta_{2}\right)\right\rangle$

PGCM

Schrödinger equation $\quad H\left|\Psi_{v}\right\rangle=E_{v}\left|\Psi_{v}\right\rangle$
$E_{\text {нгв }}[\mathrm{MeV}]$

1 Constrained HFB solutions

$\left|\Phi\left(r^{2}, \beta_{2}\right)\right\rangle$
" Generator coordinates «q»

PGCM

Schrödinger equation $\quad H\left|\Psi_{v}\right\rangle=E_{v}\left|\Psi_{v}\right\rangle$
$E_{\text {нгв }}[\mathrm{MeV}]$
1 Constrained HFB solutions
$\left|\Phi\left(r^{2}, \beta_{2}\right)\right\rangle$
Fenerator coordinates «q»
2 PGCM ansatz

$$
\left|\Psi_{v}\right\rangle=\sum_{r^{2}, \beta_{2}} f_{v}\left(r^{2}, \beta_{2}\right)\left|\Phi\left(r^{2}, \beta_{2}\right)\right\rangle
$$

PGCM

Schrödinger equation $\quad H\left|\Psi_{v}\right\rangle=E_{v}\left|\Psi_{v}\right\rangle$
$E_{\text {нгв }}[\mathrm{MeV}]$
1 Constrained HFB solutions
$\left|\Phi\left(r^{2}, \beta_{2}\right)\right\rangle$
Generator coordinates «q"
2 PGCM ansatz

$$
\left|\Psi_{v}\right\rangle=\sum_{r^{2}, \beta_{2}} f_{v}\left(r^{2}, \beta_{2}\left(\Phi\left(r^{2}, \beta_{2}\right)\right\rangle\right.
$$

PGCM

Schrödinger equation $\quad H\left|\Psi_{v}\right\rangle=E_{v}\left|\Psi_{v}\right\rangle$
$E_{\text {нгв }}[\mathrm{MeV}]$
1 Constrained HFB solutions
$\left|\Phi\left(r^{2}, \beta_{2}\right)\right\rangle$

Generator coordinates «q»
2 PGCM ansatz

$$
\left|\Psi_{v}\right\rangle=\sum_{r^{2}, \beta_{2}} f_{v}\left(r^{2}, \beta_{2}\left|\Phi\left(r^{2}, \beta_{2}\right)\right\rangle\right.
$$

PGCM

Schrödinger equation $\quad H\left|\Psi_{v}\right\rangle=E_{v}\left|\Psi_{v}\right\rangle$
$E_{\text {нгв }}[\mathrm{MeV}]$
1 Constrained HFB solutions
$\left|\Phi\left(r^{2}, \beta_{2}\right)\right\rangle$
F Generator coordinates "q»"
2 PGCM ansatz

$$
\left|\Psi_{v}\right\rangle=\sum_{r^{2}, \beta_{2}} f_{v}\left(r^{2}, \beta_{2}\left|\Phi\left(r^{2}, \beta_{2}\right)\right\rangle\right.
$$

3 HWG Equation

$\delta \frac{\left\langle\Psi_{v}\right| H\left|\Psi_{v}\right\rangle}{\left\langle\Psi_{v} \mid \Psi_{v}\right\rangle}=0 \quad$ Variational method

PGCM

Schrödinger equation $\quad H\left|\Psi_{v}\right\rangle=E_{v}\left|\Psi_{v}\right\rangle$

$E_{\text {Нनв }}$ [MeV]

1 Constrained HFB solutions

$$
\left|\Phi\left(r^{2}, \beta_{2}\right)\right\rangle
$$

2 PGCM ansatz

$$
\left|\Psi_{v}\right\rangle=\sum_{r^{2}, \beta_{2}} f_{v}\left(r^{2}, \beta_{2}\left|\Phi\left(r^{2}, \beta_{2}\right)\right\rangle\right.
$$

Linear coefficients

3 HWG Equation

$\delta \frac{\left\langle\Psi_{v}\right| H\left|\Psi_{v}\right\rangle}{\left\langle\Psi_{v} \mid \Psi_{v}\right\rangle}=0 \quad$ Variational method

[Ring, Schuck, The nuclear many-body problem (1980)]
[Porro, Duguet, arXiv:2206.03781]
$\sum_{q}\left[\mathcal{H}(p, q)-E_{v} \mathcal{N}(p, q)\right] f_{v}(q)=0$
Schrödinger-like equation

PGCM

Schrödinger equation $\quad H\left|\Psi_{v}\right\rangle=E_{v}\left|\Psi_{v}\right\rangle$

1 Constrained HFB solutions

$$
\left|\Phi\left(r^{2}, \beta_{2}\right)\right\rangle
$$

2 PGCM ansatz

$$
\left|\Psi_{v}\right\rangle=\sum_{r^{2}, \beta_{2}} f_{v}\left(r^{2}, \beta_{2}\left|\Phi\left(r^{2}, \beta_{2}\right)\right\rangle\right.
$$

3 HWG Equation

$\delta \frac{\left\langle\Psi_{v}\right| H\left|\Psi_{v}\right\rangle}{\left\langle\Psi_{v} \mid \Psi_{v}\right\rangle}=0 \quad$ Variational method

[Ring, Schuck, The nuclear many-body problem (1980)]
$\sum_{q}\left[\mathcal{H}(p, q)-E_{v} \mathcal{N}(p, q)\right] f_{v}(q)=0$
Diagonalization in a reduced Hilbert space

(Q)RPA from GCM

Thouless theorem

(Q)RPA from GCM

Thouless theorem

$|\Phi(q)\rangle=\left\langle\Phi\left(q_{\text {min }}\right) \mid \Phi(q)\right\rangle e^{\mathbf{Z}\left(q, q_{\text {min }}\right)}\left|\Phi\left(q_{\text {min }}\right)\right\rangle$

(Q)RPA from GCM

Thouless theorem

HWG Equation

$$
\delta \frac{\left\langle\Psi_{v}\right| H\left|\Psi_{v}\right\rangle}{\left\langle\Psi_{v} \mid \Psi_{v}\right\rangle}=0
$$

(Q)RPA from GCM

Thouless theorem

Non-unitary transformation
HWG Equation

$$
\delta \frac{\left\langle\Psi_{v}\right| H\left|\Psi_{v}\right\rangle}{\left\langle\Psi_{v} \mid \Psi_{v}\right\rangle}=0
$$

Solve with two approximations:

- QBA
- Expand to the quadratic level in $\mathbf{Z}\left(q, q_{\text {min }}\right)$ \rightarrow Harmonic approximation

(Q)RPA from GCM

Thouless theorem

Non-unitary transformation
HWG Equation

$$
\delta \frac{\left\langle\Psi_{v}\right| H\left|\Psi_{v}\right\rangle}{\left\langle\Psi_{v} \mid \Psi_{v}\right\rangle}=0
$$

Solve with two approximations:

- QBA
- Expand to the quadratic level in $\mathbf{Z}\left(q, q_{\text {min }}\right)$
\rightarrow Harmonic approximation

No coordinates dependency!

(Q)RPA from GCM

Thouless theorem

 Non-unitary transformation HWG Equation

$$
\delta \frac{\left\langle\Psi_{v}\right| H\left|\Psi_{v}\right\rangle}{\left\langle\Psi_{v} \mid \Psi_{v}\right\rangle}=0
$$

Solve with two approximations:

- QBA
- Expand to the quadratic level in $\mathbf{Z}\left(q, q_{\text {min }}\right)$ \rightarrow Harmonic approximation

$\left|\Phi\left(q_{\text {min }}\right)\right\rangle$
(9 can be whatever coordinate) $E_{\text {нгв }}[\mathrm{MeV}]$

No coordinates dependency!

$$
\left(\begin{array}{cc}
A & B \\
-B^{*} & -A^{*}
\end{array}\right)\binom{X^{v}}{Y^{v}}=E_{v}\binom{X^{v}}{Y^{v}}
$$

PGCM vs QRPA

Schrödinger equation $\quad H\left|\Psi_{v}\right\rangle=E_{v}\left|\Psi_{v}\right\rangle$

PGCM vs QRPA

Schrödinger equation $\quad H\left|\Psi_{v}\right\rangle=E_{v}\left|\Psi_{v}\right\rangle$

PGCM

$$
\begin{array}{r}
\left|\Psi_{v}\right\rangle \equiv \sum_{r^{2}, q} f_{v}\left(r^{2}, q\right)\left|\Phi\left(r^{2}, q\right)\right\rangle \\
r^{2} \text { to study GMR }
\end{array}
$$

q to couple to other modes Symmetry breaking and restoration

Variational method

PGCM vs QRPA

$$
\begin{aligned}
& \text { Schrödinger equation } \quad H\left|\Psi_{v}\right\rangle=E_{v}\left|\Psi_{v}\right\rangle \\
& \text { PGCM } \\
& \left|\Psi_{\nu}\right\rangle \equiv \sum_{r^{2}, q} f_{v}\left(r^{2}, q\right)\left|\Phi\left(r^{2}, q\right)\right\rangle \\
& r^{2} \text { to study GMR } \\
& q \text { to couple to other modes } \\
& \text { Symmetry breaking and restoration } \\
& \text { Variational method } \\
& \text { QRPA } \\
& \left|\Psi_{\nu}\right\rangle \equiv Q_{\nu}^{\dagger}\left|\Psi_{0}\right\rangle \\
& \text { Boson-like excitation operators } Q_{v}^{\dagger} \\
& \text { QRPA matrix diagonalization } \\
& \text { QFAM formulation frequencies } \mathbb{C} \\
& \text { points }
\end{aligned}
$$

PGCM vs QRPA

$$
\begin{aligned}
& \text { Schrödinger equation } \quad H\left|\Psi_{v}\right\rangle=E_{v}\left|\Psi_{v}\right\rangle \\
& \left|\Psi_{v}\right\rangle \equiv \sum_{r^{2}, q} f_{v}\left(r^{2}, q\right)\left|\Phi\left(r^{2}, q\right)\right\rangle \\
& r^{2} \text { to study GMR } \\
& q \text { to couple to other modes } \\
& \text { Symmetry breaking and restoration } \\
& \text { Variational method } \\
& \text { QRPA } \\
& \left|\Psi_{\nu}\right\rangle \equiv Q_{\nu}^{\dagger}\left|\Psi_{0}\right\rangle \\
& \text { Boson-like excitation operators } Q_{v}^{\dagger} \\
& \text { QRPA matrix diagonalization } \\
& \text { QFAM formulation frequencies } \mathbb{C}
\end{aligned}
$$

Handle anharmonicities and shape coexistance
Select on few collective coordinates
Symmetries are restored
Computationally expensive

Harmonic limit of GCM
All coordinates are explored
Symmetries are not restored
Low computational cost

PGCM vs QRPA

$$
\begin{aligned}
& \text { Schrödinger equation } \quad H\left|\Psi_{v}\right\rangle=E_{v}\left|\Psi_{v}\right\rangle \\
& \left|\Psi_{v}\right\rangle \equiv \sum_{r^{2}, q} f_{v}\left(r^{2}, q\right)\left|\Phi\left(r^{2}, q\right)\right\rangle \\
& r^{2} \text { to study GMR } \\
& q \text { to couple to other modes } \\
& \text { Symmetry breaking and restoration } \\
& \text { Variational method } \\
& \text { QRPA } \\
& \left|\Psi_{v}\right\rangle \equiv Q_{\nu}^{\dagger}\left|\Psi_{0}\right\rangle \\
& \text { Boson-like excitation operators } Q_{v}^{\dagger} \\
& \text { QRPA matrix diagonalization } \\
& \text { QFAM formulation frequencies } \mathbb{C} \\
& \text { Handle anharmonicities and shape coexistance } \\
& \text { Select on few collective coordinates } \\
& \text { Symmetries are restored } \\
& \text { Computationally expensive } \\
& \text { Harmonic limit of GCM } \\
& \text { All coordinates are explored } \\
& \text { Symmetries are not restored } \\
& \text { Low computational cost }
\end{aligned}
$$

PGCM vs QRPA

PGCM vs QRPA

PGCM vs QRPA

$$
\begin{aligned}
& H\left|\Psi_{v}\right\rangle=E_{v}\left|\Psi_{v}\right\rangle \\
& \text { QRPA } \\
& \left|\Psi_{v}\right\rangle \equiv Q_{\nu}^{\dagger}\left|\Psi_{0}\right\rangle \\
& r^{2} \text { to study GMR } \\
& q \text { to couple to other modes } \\
& \text { Symmetry breaking and restoration } \\
& \text { Variational method } \\
& \text { QFAM formulation frequencies } \mathbb{C} \\
& \text { Pros and Cons }
\end{aligned}
$$

PGCM vs QRPA

$$
\begin{aligned}
& \text { Schrödinger equation } \quad H\left|\Psi_{v}\right\rangle=E_{v}\left|\Psi_{v}\right\rangle \\
& \text { PGCM } \\
& \left|\Psi_{v}\right\rangle \equiv \sum_{r^{2}, q} f_{v}\left(r^{2}, q\right)\left|\Phi\left(r^{2}, q\right)\right\rangle \\
& r^{2} \text { to study GMR } \\
& q \text { to couple to other modes } \\
& \text { QRPA } \\
& \left|\Psi_{v}\right\rangle \equiv Q_{\nu}^{\dagger}\left|\Psi_{0}\right\rangle \\
& \text { Boson-like excitation operators } Q_{v}^{\dagger} \\
& \text { QRPA matrix diagonalization }
\end{aligned}
$$

Handle anharmonicities and shape coexistance Harmonic limit of GCM
Select on few collective coordinates All coordinates are explored
Symmetries are restored
Computationally expensive

First ab-initio realization very recently developed

1) PGCM (M. Frosini, CEA Saclay)
2) QFAM (Y. Beaujeault-Taudière, CEA DAM)

PGCM vs QRPA

$$
\begin{aligned}
& \text { Schrödinger equation } \quad H\left|\Psi_{v}\right\rangle=E_{v}\left|\Psi_{v}\right\rangle \\
& \text { PGCM } \\
& \left|\Psi_{\nu}\right\rangle \equiv \sum_{r^{2}, q} f_{\nu}\left(r^{2}, q\right)\left|\Phi\left(r^{2}, q\right)\right\rangle \\
& r^{2} \text { to study GMR } \\
& q \text { to couple to other modes } \\
& \text { QRPA } \\
& \left|\Psi_{v}\right\rangle \equiv Q_{\nu}^{\dagger}\left|\Psi_{0}\right\rangle \\
& \text { Boson-like excitation operators } Q_{v}^{\dagger} \\
& \text { QRPA matrix diagonalization }
\end{aligned}
$$

Handle anharmonicities and shape coexistance
Select on few collective coordinates Symmetries are restored Computationally expensive (S) Low computational cost

First ab-initio realization very recently developed

1) PGCM (M. Frosini, CEA Saclay)
2) QFAM (Y. Beaujeault-Taudière, CEA DAM)

General implementation, can access

1. Doubly-closed-shell nuclei
2. Singly-open-shell nuclei
3. Doubly-open-shell nuclei

Moments and Strength

- Studied quantity: monopole strength

$$
\left.S_{00}(\omega) \equiv \sum_{v}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{v}-E_{0}-\omega\right)
$$

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

Moments and Strength

- Studied quantity: monopole strength

$$
\underset{\mathrm{JM}=00}{\left.S_{\odot}(\omega)=\sum_{v}\left|\left\langle\Psi_{v} r^{2} \Psi_{0}\right\rangle\right|^{2} \delta\left(E_{v}-E_{0}-\omega\right),{ }^{2}\right)}
$$

- Transition ampriudes: height of peaks
- Energy difference: position of peaks

Moments and Strength

- Studied quantity: monopole strength

$$
\left.S_{00}(\omega) \equiv \sum_{v}\left\langle\Psi_{v}\right| r^{2}\left|\Psi_{0}\right\rangle\right|^{2} \delta\left(E_{v}-E_{0}-\omega\right)
$$

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

Moments and Strength

- Studied quantity: monopole strength

$$
\left.S_{00}(\omega) \equiv \sum_{v}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{v}-E_{0}-\omega\right)
$$

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

Moments and Strength

- Studied quantity: monopole strength

$$
\left.S_{00}(\omega) \equiv \sum_{v}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{v}-E_{0}-\omega\right)
$$

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

Moments and Strength

- Studied quantity: monopole strength

$$
\left.S_{00}(\omega) \equiv \sum_{v}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{v}-E_{0}-\omega\right)
$$

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

Moments and Strength

- Studied quantity: monopole strength

$$
\left.S_{00}(\omega) \equiv \sum_{v}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{v}-E_{0}-\omega\right)
$$

- Transition amplitudes: height of peaks
- Energy difference: position of peaks
- Related moments $m_{k} \equiv \int_{0}^{\infty} S_{00}(\omega) \omega^{k} d \omega$

$$
\begin{aligned}
& \left.=\sum_{v}\left(E_{v}-E_{0}\right)^{k}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \\
& \equiv\left\langle\Psi_{0}\right| \breve{M}_{k}(i, j)\left|\Psi_{0}\right\rangle
\end{aligned}
$$

[Bohigas et al., 1979]

Moments and Strength

- Studied quantity: monopole strength

$$
\left.S_{00}(\omega) \equiv \sum_{v}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{v}-E_{0}-\omega\right)
$$

- Transition amplitudes: height of peaks
- Energy difference: position of peaks
- Related moments $m_{k} \equiv \int_{0}^{\infty} S_{00}(\omega) \omega^{k} d \omega$

$$
\begin{aligned}
& \left.=\sum_{v}\left(E_{v}-E_{0}\right)^{k}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} . \\
& \equiv\left\langle\Psi_{0}\right| \breve{M}_{k}(i, j)\left|\Psi_{0}\right\rangle
\end{aligned}
$$

Moments and Strength

- Studied quantity: monopole strength

$$
\left.S_{00}(\omega) \equiv \sum_{v}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{v}-E_{0}-\omega\right)
$$

- Transition amplitudes: height of peaks
- Energy difference: position of peaks
- Related moments $m_{k} \equiv \int_{0}^{\infty} S_{00}(\omega) \omega^{k} d \omega$

$$
\begin{aligned}
& \left.=\sum_{v}\left(E_{v}-E_{0}\right)^{k}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \\
& \equiv\left\langle\Psi_{0}\right| \breve{M}_{k}(i, j)\left|\Psi_{0}\right\rangle
\end{aligned}
$$

Ground state only [Bohigas et al., 1979]

Moments and Strength

- Studied quantity: monopole strength

$$
\left.S_{00}(\omega) \equiv \sum_{v}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{v}-E_{0}-\omega\right)
$$

- Transition amplitudes: height of peaks
- Energy difference: position of peaks
- Related moments $m_{k} \equiv \int_{0}^{\infty} S_{00}(\omega) \omega^{k} d \omega$

$$
\begin{aligned}
& \left.=\sum_{v}\left(E_{v}-E_{0}\right)^{k}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2}- \\
& \equiv=\left\langle\Psi_{0}\right| \breve{M}_{k}(i, j)\left|\Psi_{0}\right\rangle
\end{aligned}
$$

\qquad Must know excited states

Ground state only [Bohigas et al., 1979]
Complexity is shifted to the operator structure

$$
\begin{array}{lll}
\breve{M}_{k}(i, j) \equiv(-1)^{i} C_{i} C_{j} & \forall k \geq 0 & C_{l} \equiv \underbrace{\left[H,\left[H, \ldots\left[H,\left[H, r^{2}\right]\right] \ldots\right]\right]}_{l \text { times }} \\
M_{k}(i, j) \equiv \frac{1}{2}(-1)^{i}\left[C_{i}, C_{j}\right] \text { if } k=2 n+1, n \in \mathbb{N} &
\end{array}
$$

Moments and Strength

- Studied quantity: monopole strength

$$
\left.S_{00}(\omega) \equiv \sum_{v}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{v}-E_{0}-\omega\right)
$$

- Transition amplitudes: height of peaks
- Energy difference: position of peaks
- Related moments $m_{k} \equiv \int_{0}^{\infty} S_{00}(\omega) \omega^{k} d \omega$

$$
\begin{aligned}
& \left.=\sum_{v}\left(E_{v}-E_{0}\right)^{k}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \\
& \equiv=\left\langle\Psi_{0}\right| \breve{M}_{k}(i, j)\left|\Psi_{0}\right\rangle
\end{aligned}
$$

$$
\longrightarrow \text { Must know excited states }
$$

Ground state only [Bohigas et al., 1979]
Complexity is shifted to the operator structure

$$
\begin{array}{lll}
\breve{M}_{k}(i, j) \equiv(-1)^{i} C_{i} C_{j} & \forall k \geq 0 & C_{l} \equiv \underset{l \text { times }}{\left[H,\left[H, \ldots\left[H,\left[H, r^{2}\right]\right] \ldots\right]\right]} \\
M_{k}(i, j) \equiv \frac{1}{2}(-1)^{i}\left[C_{i}, C_{j}\right] & \text { if } k=2 n+1, n \in \mathbb{N} & \\
\text { code the main physical features of the strength } & \bar{E}_{1}=\frac{m_{1}}{m_{0}} \quad \sigma^{2}=\frac{m_{2}}{m_{0}}-\left(\frac{m_{1}}{m_{0}}\right)^{2} \geq 0
\end{array}
$$

Moments and Strength

- Studied quantity: monopole strength

$$
\left.S_{00}(\omega) \equiv \sum_{v}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{v}-E_{0}-\omega\right)
$$

- Transition amplitudes: height of peaks
- Energy difference: position of peaks
- Related moments $m_{k} \equiv \int_{0}^{\infty} S_{00}(\omega) \omega^{k} d \omega$

$$
\begin{aligned}
& \left.=\sum_{v}\left(E_{v}-E_{0}\right)^{k}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \\
& \equiv\left\langle\Psi_{0}\right| \breve{M}_{k}(i, j)\left|\Psi_{0}\right\rangle
\end{aligned}
$$

$$
\left.\right|^{2} \longrightarrow \text { Must know excited states }
$$

Ground state only [Bohigas et al., 1979]
Complexity is shifted to the operator structure

$$
\begin{array}{lll}
\breve{M}_{k}(i, j) \equiv(-1)^{i} C_{i} C_{j} & \forall k \geq 0 & C_{l} \equiv \underset{l \text { times }}{\left[H,\left[H, \ldots\left[H,\left[H, r^{2}\right]\right] \ldots\right]\right]} \\
M_{k}(i, j) \equiv \frac{1}{2}(-1)^{i}\left[C_{i}, C_{j}\right] & \text { if } k=2 n+1, n \in \mathbb{N} & \\
\text { code the main physical features of the strength } & \bar{E}_{1}=\frac{m_{1}}{m_{0}} \quad \sigma^{2}=\frac{m_{2}}{m_{0}}-\left(\frac{m_{1}}{m_{0}}\right)^{2} \geq 0
\end{array}
$$

First comparison ever of the two approaches!
Derived and implemented in an ab-initio PGCM code

Moments and Strength

- Studied quantity: monopole strength

$$
\left.S_{00}(\omega) \equiv \sum_{v}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{v}-E_{0}-\omega\right)
$$

- Transition amplitudes: height of peaks
- Energy difference: position of peaks
- Related moments $m_{k} \equiv \int_{0}^{\infty} S_{00}(\omega) \omega^{k} d \omega$

$$
\begin{aligned}
& \left.=\sum_{v}\left(E_{v}-E_{0}\right)^{k}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \\
& \equiv\left\langle\Psi_{0}\right| \breve{M}_{k}(i, j)\left|\Psi_{0}\right\rangle
\end{aligned}
$$

2 Must know excited states
Ground state only [Bohigas et al., 1979]
Complexity is shifted to the operator structure

$$
\begin{array}{llc}
\breve{M}_{k}(i, j) \equiv(-1)^{i} C_{i} C_{j} & \forall k \geq 0 & C_{l} \equiv\left[\frac{\left.H,\left[H, \ldots\left[H,\left[H, r^{2}\right]\right] \ldots\right]\right]}{l \text { times }}\right. \\
M_{k}(i, j) \equiv \frac{1}{2}(-1)^{i}\left[C_{i}, C_{j}\right] \text { if } k=2 n+1, n \in \mathbb{N} &
\end{array}
$$

${ }^{16} \mathrm{O}$

	$\mathbf{m 0}$	$\mathbf{m 1}$	$\mathbf{m 1 / m 0}$
QRPA	358,2	8532	23,82
QFAM	358,2	8532	23,82
BGCM sum	356,4	8105	22,74
PGCM gs	380,6	8543	22,45

Moments and Strength

- Studied quantity: monopole strength

$$
\left.S_{00}(\omega) \equiv \sum_{v}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{v}-E_{0}-\omega\right)
$$

- Transition amplitudes: height of peaks
- Energy difference: position of peaks
- Related moments $m_{k} \equiv \int_{0}^{\infty} S_{00}(\omega) \omega^{k} d \omega$

$$
\begin{aligned}
& \left.=\sum_{v}\left(E_{v}-E_{0}\right)^{k}\left|\left\langle\Psi_{v}\right| r^{2}\right| \Psi_{0}\right\rangle\left.\right|^{2} \\
& \vdots=\left\langle\Psi_{0}\right| \breve{M}_{k}(i, j)\left|\Psi_{0}\right\rangle
\end{aligned}
$$

$$
\longrightarrow \text { Must know excited states }
$$

Ground state only [Bohigas et al., 1979]
Complexity is shifted to the operator structure

$$
\begin{array}{llc}
\breve{M}_{k}(i, j) \equiv(-1)^{i} C_{i} C_{j} & \forall k \geq 0 & C_{l} \equiv \frac{\left[H,\left[H, \ldots\left[H,\left[H, r^{2}\right]\right] \ldots\right]\right]}{l \text { times }} \\
M_{k}(i, j) \equiv \frac{1}{2}(-1)^{i}\left[C_{i}, C_{j}\right] \text { if } k=2 n+1, n \in \mathbb{N} &
\end{array}
$$

${ }^{16} \mathrm{O}$

	m0	m1	m1/m0	Benchmark
QRPA	358,2	8532	23,82	
QFAM	358,2	8532	23,82	
PGCM sum	356,4	8105	22,74	
PGCM gs	380,6	8543	22,45	

Moments and Sum Rules

Sum rules are important for the extraction of experimental data (MDA)

Moments and Sum Rules

Sum rules are important for the extraction of experimental data (MDA)
Usually computed within EDF theory
Standard assumption: $\quad H(r) \equiv H[\rho(r)]=T+V[\rho(r)]$

Moments and Sum Rules

Sum rules are important for the extraction of experimental data (MDA)
Usually computed within EDF theory
Standard assumption:

$$
H(r) \equiv H[\rho(r)]=T+V[\rho(r)]
$$

Momentum-independent interactions

Moments and Sum Rules

Sum rules are important for the extraction of experimental data (MDA)
Usually computed within EDF theory
Standard assumption:

$$
H(r) \equiv H[\rho(r)]=T
$$

$$
+V[\rho(r)]
$$

Momentum-independent interactions

analytic expression

$$
m_{1}=\frac{1}{2}\langle\Psi|\left[r^{2},\left[H(r), r^{2}\right]\right]|\Psi\rangle
$$

Moments and Sum Rules

Sum rules are important for the extraction of experimental data (MDA)
Usually computed within EDF theory
Standard assumption:

$$
H(r) \equiv H[\rho(r)]=T
$$

Momentum-independent interactions

analytic expression

$$
\begin{aligned}
m_{1} & =\frac{1}{2}\langle\Psi|\left[r^{2},\left[H(r), r^{2}\right]\right]|\Psi\rangle \\
& =\frac{1}{2}\langle\Psi|\left[r^{2},\left[T, r^{2}\right]\right]|\Psi\rangle=\frac{2 \hbar^{2}}{m} A\langle\Psi| r^{2}|\Psi\rangle
\end{aligned}
$$

Moments and Sum Rules

Sum rules are important for the extraction of experimental data (MDA)
Usually computed within EDF theory
Standard assumption :

$$
H(r) \equiv H[\rho(r)]=T+V[\rho(r)]
$$

Momentum-independent interactions

analytic expression

$m_{1}=\frac{1}{2}\langle\Psi|\left[r^{2},\left[H(r), r^{2}\right]\right]|\Psi\rangle$

$$
=\frac{1}{2}\langle\Psi|\left[r^{2},\left[T, r^{2}\right]\right]|\Psi\rangle=\frac{2 \hbar^{2}}{m} A\langle\Psi| r^{2}|\Psi\rangle
$$

Has this relevant consequences?
Ab-initio evaluation of commutators

Moments and Sum Rules

Sum rules are important for the extraction of experimental data (MDA)
Usually computed within EDF theory
Standard assumption:

$$
H(r) \equiv H[\rho(r)]=T+V[\rho(r)]
$$

Momentum-independent interactions

analytic expression

$\left.m_{1}=\frac{1}{2}\langle\Psi|\left[r^{2},\left[H(x), r^{2}\right]\right]|\Psi\rangle>A B-3 N \right\rvert\,$
$=\frac{1}{2}\langle\Psi|\left[r^{2},\left[T, r^{2}\right]\right]|\Psi\rangle=\frac{2 \hbar^{2}}{m} A\langle\Psi| r^{2}|\Psi\rangle$

Has this relevant consequences?
Ab-initio evaluation of commutators

Moments and Sum Rules

Sum rules are important for the extraction of experimental data (MDA)
Usually computed within EDF theory
Standard assumption :

$$
H(r) \equiv H[\rho(r)]=T+V[\rho(r)]
$$

Momentum-independent interactions

analytic expression

$m_{1}=\frac{1}{2}\langle\Psi|\left[r^{2},\left[H(x), r^{2}\right]\right]|\Psi\rangle>A B-4 N T /$
$=\frac{1}{2}\langle\Psi|\left[r^{2},\left[T, r^{2}\right]\right]|\Psi\rangle=\frac{2 \hbar^{2}}{m} A\langle\Psi| r^{2}|\Psi\rangle$

Has this relevant consequences?
Ab-initio evaluation of commutators

Many-body operators

- Exact up to $m_{1} \quad H=H^{[1]}+H^{[2]}$
- Different approximations $H \approx H^{[1]}$

Outline

Introduction

Formalism

Preliminary results

Conclusions

Common features

PGCM and QFAM have consistent numerical settings

- One-body spherical harmonic oscillator basis
- $e_{\text {max }}=10$
- $\hbar \omega=20 \mathrm{MeV}$
- Chiral two-plus-three-nucleon in-medium interaction
- T. Hüther, K. Vobig, K. Hebeler, R. Machleidt and R. Roth, "Family of chiral twoplus three-nucleon interactions for accurate nuclear structure studies", Phys. Lett. B, 808, 2020
- M. Frosini, T. Duguet, B. Bally, Y. Beaujeault-Taudière, J.-P. Ebran and V. Somà, "In-medium k-body reduction of n-body operators", The European Physical Journal A, 574), 2021
- Only monopole strength is addressed
- The PGCM wavefunction explores the β_{2} and r^{2} collective coordinates (quadrupolar coupling)

Benchmarking ${ }^{16} \mathrm{O}$

Benchmarking ${ }^{16} \mathrm{O}$

Difficulty

\square Benchmark on existing spherical QRPA code

Benchmarking ${ }^{16} \mathrm{O}$

Difficulty

\square Benchmark on existing spherical QRPA code

Total Energy Surface $\mathrm{E}_{\text {нгв }}\left(\beta_{2}, \mathrm{r}\right)$

$$
E_{\text {HFB }}[\mathrm{MeV}]
$$

Benchmarking ${ }^{16} \mathrm{O}$

Difficulty

Benchmark on existing spherical QRPA code

Benchmarking ${ }^{16} \mathrm{O}$

Difficulty
\square Benchmark on existing spherical QRPA code

Total Energy Surface $\mathrm{E}_{\text {нгв }}\left(\beta_{2}, \mathrm{r}\right)$

- Single spherical harmonic energy minimum
- Exact QRPA/QFAM superposition
- Excellent QFAM/PGCM agreement
- Harmonic approximation clearly valid

Monopole Strength

Benchmarking ${ }^{16} \mathrm{O}$

Difficulty
\square Benchmark on existing spherical QRPA code

Total Energy Surface $\mathrm{E}_{\text {нгв }}\left(\mathrm{\beta}_{2}, \mathrm{r}\right)$

- Single spherical harmonic energy minimum
- Exact QRPA/QFAM superposition
- Excellent QFAM/PGCM agreement
- Harmonic approximation clearly valid
- No coupling with quadrupolar vibrations

Monopole Strength

Benchmarking ${ }^{16} \mathrm{O}$

Difficulty
[- Benchmark on existing spherical QRPA code

- No coupling with quadrupolar vibrations

Deformation effects in ${ }^{24} \mathrm{Mg}$

Deformation effects in ${ }^{24} \mathrm{Mg}$

Difficulty

Deformation effects in ${ }^{24} \mathrm{Mg}$

Difficulty

Deformation

Total Energy Surface $\mathrm{E}_{\text {HFB }}\left(\beta_{2}, \mathrm{r}\right)$
$E_{\text {HFB }}[\mathrm{MeV}]$

Deformation effects in ${ }^{24} \mathrm{Mg}$

Difficulty

Deformation
(1) [Dowie et al., 2020]

Shape coexistence? ${ }^{(1)}$
Total Energy Surface $\mathrm{E}_{\text {HFB }}\left(\beta_{2}, r\right)$
$E_{\text {HFB }}[\mathrm{MeV}]$

Deformation effects in ${ }^{24} \mathrm{Mg}$

Difficulty

Deformation
(1) [Dowie et al., 2020]

Shape coexistence? ${ }^{(1)}$
Total Energy Surface $\mathrm{E}_{\text {HFB }}\left(\beta_{2}, r\right)$
$E_{\text {HFB }}[\mathrm{MeV}]$

Deformation effects in ${ }^{24} \mathrm{Mg}$

Difficulty

Deformation
Shape coexistence? ${ }^{(1)}$
(1) [Dowie et al., 2020]
$E_{\text {HFB }}[\mathrm{MeV}]$

Deformation effects in ${ }^{24} \mathrm{Mg}$

Difficulty

Deformation
Shape coexistence? ${ }^{(1)}$
(1) [Dowie et al., 2020]
$E_{\text {HFB }}[\mathrm{MeV}]$
Monopole Strength

Deformation effects in ${ }^{24} \mathrm{Mg}$

Deformation effects in ${ }^{24} \mathrm{Mg}$

Monopole Strength

K=0 Quadrupole Strength

Deformation effects in ${ }^{24} \mathrm{Mg}$

Monopole Strength

[From K. Yoshida's talk]
Intrinsic QRPA transition densities
K=0 Quadrupole Strength

Deformation effects in ${ }^{24} \mathrm{Mg}$

Ground-state density

Monopole Strength

[From K. Yoshida's talk]
Intrinsic QRPA transition densities
K=0 Quadrupole Strength

Deformation effects in ${ }^{24} \mathrm{Mg}$

Ground-state density

Monopole Strength

[From K. Yoshida's talk]
Intrinsic QRPA transition densities
K=0 Quadrupole Strength

Densities in lab frame First peak

Deformation effects in ${ }^{24} \mathrm{Mg}$

Ground-state density

Monopole Strength

[From K. Yoshida's talk]
Intrinsic QRPA transition densities

Densities in lab frame First peak

Second peak
Static deformation

Deformation effects in ${ }^{24} \mathrm{Mg}$

Ground-state density

Monopole Strength

[From K. Yoshida's talk]
Intrinsic QRPA transition densities

Laboratory frame: any signature?
Second peak
Static deformation

Densities in lab frame First peak

Deformation effects in ${ }^{24} \mathrm{Mg}$

Ground-state density

Monopole Strength

[From K. Yoshida's talk]
Intrinsic QRPA transition densities

Densities in lab frame First peak

Laboratory frame: any signature? Second peak
Static deformation

To further investigate!

Deformation effects in ${ }^{24} \mathrm{Mg}$

Deformation effects in ${ }^{24} \mathrm{Mg}$

Difficulty

(1) [Dowie et al., 2020]

Shape coexistence? ${ }^{(1)}$

Monopole Strength

iThemba, Bahini 2021

1. PGCM superior to QRPA
2. Experiments useful and promising
3. Data are not unambiguous

Deformation effects in ${ }^{28} \mathrm{Si}$

Deformation effects in ${ }^{28} \mathrm{Si}$

Difficulty
(1) [Jenkins et al., 2012]

Deformation effects in ${ }^{28} \mathrm{Si}$

Difficulty

Deformation
(1) [Jenkins et al., 2012]

Deformation effects in ${ }^{28} \mathrm{Si}$

Difficulty

Deformation
(1) [Jenkins et al., 2012]

Shape coexistence? ${ }^{(1)}$

Deformation effects in ${ }^{28} \mathrm{Si}$

Comparison to experiment

iThemba, Bahini 2021

1. PGCM superior to QRPA, i.e. coupling to quadrupole deformation/fluctuations captured
2. Experimental data in doubly open-shell nuclei very useful and promising
3. Data are not unambiguous, i.e. better data would be beneficial

Outline

Introduction

Formalism

Preliminary results

Conclusions

Conclusions and Perspectives

First ab-initio systematic description of GMR

Choose physics according to selected coordinates

No limitation on the nucleus choice
Plan of the complete study
$\square \int$ Static quadrupolar deformation
$\square \int$ Coupling to quadrupolar vibrations
$\square \int$ Shape isomers
\square Theoretical comparison of moment computation
\square Hamiltonian uncertainty through different chiral EFT orders
\square Pairing: isospin dependence and coupling to pairing vibration
\square Bubble structure (${ }^{34} \mathrm{Si}^{\mathrm{S}}$ and ${ }^{36} \mathrm{~S}$)
\square Nuclei of current experimental interest (${ }^{68} \mathrm{Ni}$ and ${ }^{70} \mathrm{Ni}$)

Thanks for the attention

CEA DRF

Thomas Duguet
Vittorio Somà
Benjamin Bally
Alberto Scalesi
CEA DES
Mikael Frosini

CEA DAM
Jean-Paul Ebran
Yann Beaujeault-Taudière
Antoine Roux

INFN

Gianluca Colò
Danilo Gambacurta

Alexander Tichai

Pepijn Demol

Pairing effects in ${ }^{200}$

In QRPA another mode seems to be important!

Monopole Strength

[^0]: For closed-shell systems

