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The tower of EFTs

● More elementary description

● Complexity in terms of elementary DOF

● Lattice QCD

● Collective picture

● Phenomena from effective description

● Energy Density Functional

● Collective models

● Structure-less Protons and Neutrons

● All nucleons are active

● Systematically improvable

● LEC from data (or simulations)

● Up to A-body forces
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Known facts about ab-initio RPA

[Y. Beaujeault-Taudière, M. Frosini, J.-P. Ebran, T. Duguet, R. Roth, V. Somà, 

arXiv:2203.13513]

● Convergence wrt the chiral order within given family

● Non-negligible dependence on the used fit

● Good agreement with exp for presently used family

[From R. Trippel, PhD Thesis, Technischen

Universität Darmstadt, 2016 ]

● Systematic effect on the peaks’ position

● Crucial aspect in ab-initio

● Different possible treatments
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Ab-initio RPA and beyond

RPA suffers from a congenital disorder

Pauli principle violation

(But this is often asymptomatic)

● Intrinsic approximation to the method itself

● RPA as a many-body method is far from convergence

1. First step towards more sophisticated Boson Expansions

2. The HF reference state is NOT the real RPA ground-state

● Going towards the RPA GS via self-consistent RPA (iterative)

● Adding GS correlation lowers the GS (strength shifted up)

● Going higher in the Boson Expansion

● Adding np-nh excitations (e.g.: 2nd-RPA)

The two aspects should not be addressed separately !

Well known issue in Quantum Chemistry

G0W vs GW approximation
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Correlation in PGCM

11[Frosini et al. , EPJA, 2022]

● Dynamical correlations + PGCM for converged properties

● Perturbation theory + PGCM (PGCM-PT) recently formulated

● Mixing of horizontal and vertical expansions

● Same treatment of GS

● Consistent correction

Error cancellation for spectroscopy !

PGCM promising ab-initio candidate for collective ecxs
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• Discussion about K∞

• Pairing/isospin effects «fluffiness»

Selected light- and medium-mass nuclei
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• Pairing fluctuations on GMR

Merits and limits of QRPA
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• Shape coexistence and mixing

Theoretical aspects of moments and sum rules

Nuclear structure study

[Blaizot 1995]

Ni isotopes and more systematics coming soon !
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PGCM 

Generator coordinates «q»

Linear coefficients

Variational method

Schrödinger-like equation

Diagonalization in a reduced Hilbert space

Kernels evaluation

Schrödinger equation

[Ring, Schuck, The nuclear many-body problem (1980)]

[Porro, Duguet, arXiv:2206.03781]



15

(Q)RPA from GCM 



15

(Q)RPA from GCM 

(q can be whatever coordinate )



15

(Q)RPA from GCM 

Non-unitary transformation

(q can be whatever coordinate )



15

(Q)RPA from GCM 

Non-unitary transformation

(q can be whatever coordinate )



15

(Q)RPA from GCM 

Non-unitary transformation

(q can be whatever coordinate )



15

(Q)RPA from GCM 

Non-unitary transformation

(q can be whatever coordinate )



15

(Q)RPA from GCM 

Non-unitary transformation

Solve with two approximations:

• QBA

• Expand to the quadratic level in

o → Harmonic approximation

(q can be whatever coordinate )



15

(Q)RPA from GCM 

Non-unitary transformation

Solve with two approximations:

• QBA

• Expand to the quadratic level in

o → Harmonic approximation

No coordinates dependency !

(q can be whatever coordinate )



15

(Q)RPA from GCM 

Non-unitary transformation

Solve with two approximations:

• QBA

• Expand to the quadratic level in

o → Harmonic approximation

No coordinates dependency !

Eventually rewrites as QRPA [Jancovici, Schiff, 1964]

(q can be whatever coordinate )
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PGCM

r2 to study GMR

q to couple to other modes

Symmetry breaking and restoration

Variational method

QRPA

Boson-like excitation operators

QRPA matrix diagonalization
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Schrödinger equation

PGCM

r2 to study GMR

q to couple to other modes

Symmetry breaking and restoration

Variational method

First ab-initio realization very recently developed

Handle anharmonicities and shape coexistance

Select on few collective coordinates 

Symmetries are restored

Computationally expensive

Harmonic limit of GCM

All coordinates are explored

Symmetries are not restored

Low computational cost

QRPA

Boson-like excitation operators

QRPA matrix diagonalization

QFAM formulation frequencies ℂ

Pros and Cons

1) PGCM (M. Frosini, CEA Saclay) 

2) QFAM (Y. Beaujeault-Taudière, CEA DAM)

General implementation, can access

1. Doubly-closed-shell nuclei

2. Singly-open-shell nuclei

3. Doubly-open-shell nuclei
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Derived and implemented in an ab-initio PGCM code
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● Studied quantity: monopole strength

● Transition amplitudes: height of peaks

● Energy difference: position of peaks

● Related moments

Must know excited states

Ground state only

Complexity is shifted to the operator structure

[Bohigas et al., 1979]

m0 m1 m1/m0

QRPA 358,2 8532 23,82

QFAM 358,2 8532 23,82

PGCM sum 356,4 8105 22,74

PGCM gs 380,6 8543 22,45

16O

m0 m1 m1/m0

QFAM 852,4 17.441 20,46

PGCM sum 880,0 17.049 19,37

PGCM gs 960,1 17.760 18,50

24Mg
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Moments and Sum Rules

Sum rules are important for the extraction of experimental data (MDA)

Usually computed within EDF theory

Standard assumption : 

Has this relevant consequences ?

Ab-initio evaluation of commutators 

Many-body operators

• Exact up to m1

• Different approximations
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PGCM and QFAM have consistent numerical settings

● One-body spherical harmonic oscillator basis

○ emax = 10

○ ħ⍵ = 20 MeV

● Chiral two-plus-three-nucleon in-medium interaction
○ T. Hüther, K. Vobig, K. Hebeler, R. Machleidt and R. Roth, "Family of chiral two-

plus three-nucleon interactions for accurate nuclear structure studies", Phys. 
Lett. B, 808, 2020

○ M. Frosini, T. Duguet, B. Bally, Y. Beaujeault-Taudière, J.-P. Ebran and V. Somà, 
“In-medium k-body reduction of n-body operators”, The European Physical 
Journal A, 57(4), 2021

● Only monopole strength is addressed

● The PGCM wavefunction explores the β2 and r2 collective coordinates

(quadrupolar coupling)



Benchmarking 16O 

Doubly-magic nucleus

(Doubly-closed shell)
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Difficulty Deformation

Shape coexistence ? (1)

Total Energy Surface EHFB(β2,r)

● Dominant prolate minimum

● Static deformation shift up single peak

● Coupling to GQR generates splitting

x High peak = shifted “spherical” breathing mode

x Low peak = induced by coupling to GQR (K=0)

(1)  [Dowie et al., 2020]

Monopole Strength

K=0 Quadrupole Strength
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Monopole Strength

K=0 Quadrupole Strength

Deformation effects in 24Mg 

Laboratory frame: any signature ? 

To further investigate !

[From K. Yoshida’s talk]

Intrinsic QRPA transition densities

Densities in lab frame
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Difficulty Deformation

Shape coexistence ? (1)

Total Energy Surface EHFB(β2,r)

(1)  [Dowie et al., 2020]

iThemba, Bahini 2021

Monopole Strength

1. PGCM superior to QRPA

2. Experiments useful and promising

3. Data are not unambiguous

Triaxiality to be studied next !
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x   Isomer strength shows coupling to GQR

● Shape coexistence but no shape mixing
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Comparison to experiment 

iThemba, Bahini 2021 RCNP, Kawabata 2013TAMU, Youngblood 2007

2009

17

1. PGCM superior to QRPA, i.e. coupling to quadrupole deformation/fluctuations captured 

2. Experimental data in doubly open-shell nuclei very useful and promising 

3. Data are not unambiguous, i.e. better data would be beneficial 
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Conclusions and Perspectives 

First ab-initio systematic description of GMR

Choose physics according to selected coordinates

No limitation on the nucleus choice

Plan of the complete study

Static quadrupolar deformation

Coupling to quadrupolar vibrations

Shape isomers

Theoretical comparison of moment computation

Hamiltonian uncertainty through different chiral EFT orders

Pairing: isospin dependence and coupling to pairing vibration

Bubble structure ( 34Si and 36S )

Nuclei of current experimental interest ( 68Ni and 70Ni ) [ACTAR TPC]
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Pairing effects in 20O

Difficulty Superfluidity

Total Energy Surface EHFB(β2,r)
Monopole Strength

33

In QRPA  another mode seems to be important !


