

« Advances on Giant Nuclear Monopole Excitations and Application to Multimessenger Astrophysics », 11-15 juillet 2022, ECT* Trento

Nuclear incompressibility and sound speed in uniform matter and finite nuclei, impact for neutron stars.

Jérôme MARGUERON IP2I Lyon

Take-home message: The reproduction of E_{GMR} in Pb and Sn may require specific values for Q_{sat} . The suggested values are quite different from existing models.

In collaboration with:

Guilherme Grams (IAA Bruxelles) **Rahul Somasundaram** (IP2I Lyon) Elias Khan (IJCLab Orsay) Recent results in:

Anatomy of a neutron star (NS)

EoS [nuclear] <=> NS (M,R) [astro]

Inferring the EoS from the low-density nuclear regime

Opposite to determining the dense matter EoS from high density (perturbative QCD).

See Annala, Kurkela in PRL 117, 042501 (2016), PRL 120, 172703 (2018), Nat. Phys. 16, 907 (2020)

Extrapolation to low density:

Komoltsev & Kurkela, PRL 128, 202701 (2022)

Application to neutron star:

Gorda+, arXiv:2204.11877 Somasundaram+, arXiv:2204.14039

Meta-model for the nuclear EoS

Impact of K_{sat} & Q_{sat} on MR relation

JM, Casali, Gulminelli, PRC 97, 025806 (2018)

Impact of isovector NEP on MR relation

JM, Casali, Gulminelli, PRC 97, 025806 (2018)

Inferring nuclear properties from EISGMR

From n_c to n_{sat}

Running of several models (Skyrme, Gogny, RMFs):

General result: the uncertainty in a NEP is often generated by higher order NEPs. JM & Gulminelli, PRC 99, 025806 (2019)

Q_{sat} is model dependent

JM, Casali, Gulminelli, PRC 97, 025805 (2018)

Model (N)	Der. order	$E_{\rm sat}$ (MeV)	$E_{\rm sym}$ (MeV)	$n_{\rm sat}$ (fm ⁻³)	$L_{\rm sym}$ (MeV)	K _{sat} (MeV)	K _{sym} (MeV)	$Q_{\rm sat}$	Q _{sym} (MeV)	Z _{sat} (MeV)	Z _{sym} (MeV)	$m_{\rm sat}^*/m$	$\Delta m_{\rm sat}^*/m$	κ_v	K_{τ} (MeV)
$(1 \cdot \alpha)$		0	0	1	1	2	2	3	3	4	(ine v) 4				
	Phenomenological approaches														
Skyrme	Average	-15.88	30.25	0.1595	47.8	234	-130	-357	378	1500	-2219	0.73	0.08	0.46	-344
(16)	σ	0.15	1.70	0.0011	16.8	10	66	22	110	169	617	0.10	0.24	0.27	25
Skyrme	Average	-15.87	30.82	0.1596	49.6	237	-132	-349	370	1448	-2175	0.77	0.127	0.44	-354
(35)	σ	0.18	1.54	0.0039	21.6	27	89	89	188	510	1069	0.14	0.310	0.37	45
RMF	Average	-16.24	35.11	0.1494	90.2	268	-5	-2	271	5058	-3672	0.67	-0.09	0.40	-549
(11)	σ	0.06	2.63	0.0025	29.6	34	88	393	357	2294	1582	0.02	0.03	0.06	153
RHF	Average	-15.97	33.97	0.1540	90.0	248	128	389	523	5269	-9956	0.74	-0.03	0.34	-572
(4)	σ	0.08	1.37	0.0035	11.1	12	51	350	237	838	4156	0.03	0.01	0.07	169
Total	Average	-16.03	33.30	0.1543	76.6	251	-3	13	388	3925	-5268	0.72	0.01	0.39	-492
(50)	$\sigma_{ m tot}$	0.20	2.65	0.0054	29.2	29	132	431	289	2270	4282	0.09	0.20	0.22	166
	Min	-16.35	26.83	0.1450	9.9	201	-394	-748	-86	-903	-16 916	0.38	-0.47	0.00	-835
	Max	-15.31	38.71	0.1746	122.7	355	213	950	846	9997	-5	1.11	1.02	2.02	-254
						Ab init	<i>tio</i> appro	oaches	_APR						
APR	Average	-16.0	33.12	0.16	50.0	270	-199	-665	923	337	-2053	1.0	0.0	0.0	-376
(1)	σ	а	0.30	a	1.3	2	13	30	xF97T	94	125	а	а	a	30
Chiral EFT	Average	-15.16	32.01	0.171	48.1	214	-172	-139	-164	1306	-2317				-428
Drischler 2016	$\sigma_{ m tot}$	1.24	2.09	0.016	3.6	22	40	104	234	214	379				63
(7)	Min	-16.92	28.53	0.140	43.9	182	-224	-310	-640	901	-2961				-534
	Max	-13.23	34.57	0.190	53.5	242	-108	24	96	1537	-1750				-334

^aThis parameter is fixed.

Correlation between K_{sat} and Q_{sat}

Khan, JM, Vidaña, PRL 109, 092501 (2012) Khan, JM, PRC 88, 034319 (2013)

Correlation between K_{sat} and Q_{sat}

JM, Casali, Gulminelli, PRC 97, 025805 (2018)

Improved nuclear modeling

Issues: Model dependence of K_{sat}. Better description of E_{GMR}/K_A over the nuclear chart: soft Sn / hard Pb puzzle. Piekarewicz & Centelles, PRC 79, 054311 (2009) Elias Khan, PRC 80, 011307 and 057302 (2009)

May be due to the theoretical tool -> weak impact for dense matter EoS.

May be due to the interaction -> possible large impact for dense matter EoS. More precisely may be due to Q_{sat.}

See talk of A. Pastore

-> if Q_{sat} is known: better extrapolation of the EoS for NS matter Requirement: The correlation between K_{sat} and Q_{sat} shall be broken.

> How? -> increase the number of parameters in the phenomenological nuclear force. -> adopt a meta-model approach.

Leptodermous expansion for eA

Liquid-drop model:

$$e_A(n_A, \delta_A) = e_{UM}(n_A, \delta_A) + E_{Coul} \frac{Z^2}{A^{4/3}} + E_{surf}(\delta_A)A^{-1/3} + \dots$$

where $n_A = 3A/(4\pi R_A^3)$ is the density and $\delta_A = (N - Z)/A$.

Compressible liquid-drop model:

$$e_{UM}(n_A, \delta_A) = E_{sat} + \frac{1}{2}K_{sat}x^2 + \frac{1}{2}e_{sym,2}(n_A)\delta_A^2$$
 with $x = \frac{n - n_{sat}}{3n_{sat}}$

Leptodermous expansion for KA

$$K_A = K_{sat} + K_{\tau} \delta^2 + K_{Coul} \frac{Z^2}{A^{4/3}} + K_{surf} A^{-1/3} + \dots$$

Blaizot, PR 64, 171 (1980)

Derivation of K_A from the CLDM:

We have:
$$K_A \equiv 9n_A \frac{\partial^2 (e_A n_A)}{\partial n_A^2} = R_A^2 \frac{\partial^2 e_A}{\partial R_A^2}$$
 since $P_A = 0$

We obtain:
$$K_{Coul} = \frac{3}{5} \frac{e^2}{r_0} \left(8 + \frac{Q_{sat}}{K_{sat}} \right)$$
$$K_{surf} = 4\pi r_0^2 \left\{ 2\sigma_{surf} \left(11 + \frac{Q_{sat}}{K_{sat}} \right) - 3n_A \frac{\partial \sigma_{surf}}{\partial n_A} \left(10 + \frac{Q_{sat}}{K_{sat}} \right) + 9n_A^2 \frac{\partial^2 \sigma_{surf}}{\partial n_A^2} \right\}$$
$$= 0 \quad \text{since } \sigma_{surf} (\delta_A) = 0$$

CLDM/eCLDM approach

Confrontation to data

Loss functions:

$$\chi_E^2 = \frac{1}{N_E} \sum_{i} \left(\frac{E_i^{exp} - E_i^{eCLDM}}{\delta E_i^{exp}} \right)^2$$

with E_i^{exp} from AME2020.

$$\chi_K^2 = \frac{1}{N_K} \sum_{i} \left(\frac{K_i^{exp} - K_i^{eCLDM}}{\delta K_i^{exp}} \right)^2$$

	$E_{\rm ISGMR}$	$E_{\rm ISGMR}$	R_A	K_A
	(MeV)	(MeV)	(fm)	(MeV)
	from Ref. 🖪	(this work $)$	(SLy5)	from Eq. (1)
90 Zr	$17.58^{+0.06}_{-0.04}$	17.62 ± 0.07	4.256	135.6 ± 1.1
	$17.66^{+0.07}_{-0.07}$			
92 Zr	$17.71\substack{+0.09\\-0.07}$	17.62 ± 0.12	4.293	138.0 ± 1.9
	$17.52_{-0.04}^{+0.04}$			
94 Zr	$15.75_{-0.15}^{+0.27}$	15.80 ± 0.21	4.330	112.9 ± 3.0
112 Sn	$15.23^{+0.26}_{-0.14}$	15.69 ± 0.44	4.556	123.2 ± 6.9
	$16.10^{+0.10}_{-0.10}$			
114 Sn	$15.90^{+0.10}_{-0.10}$	15.90 ± 0.10	4.585	128.2 ± 1.6
116 Sn	$15.70^{+0.10}_{-0.10}$	15.70 ± 0.10	4.614	126.5 ± 1.6
$^{118}\mathrm{Sn}$	$15.60_{-0.10}^{+0.10}$	15.60 ± 0.10	4.641	126.4 ± 1.6
120 Sn	$15.50^{+0.10}_{-0.10}$	15.50 ± 0.10	4.667	126.2 ± 1.6
122 Sn	$15.20^{+0.10}_{-0.10}$	15.20 ± 0.10	4.691	122.6 ± 1.6
124 Sn	$14.33_{-0.14}^{+0.17}$	14.72 ± 0.40	4.715	116.2 ± 6.3
	$15.10^{+0.10}_{-0.10}$			
$(^{132}\mathrm{Sn}^{\dagger})$	14.80	14.80	4.803	121.8
204 Pb	$13.70^{+0.10}_{-0.10}$	13.70 ± 0.10	5.516	137.7 ± 2.0
206 Pb	$13.60^{+0.10}_{-0.10}$	13.60 ± 0.10	5.532	136.5 ± 2.0
$^{208}\mathrm{Pb}$	$13.50_{-0.10}^{+0.10}$	13.50 ± 0.10	5.548	135.3 ± 2.0

Grams, Somasundaram, JM, Khan, arXiv 2207.01884 (nucl-th)

[†]Fictitious data.

Exploration of the parameter space (MCMC)

	$\mathrm{E}_{\mathrm{sat}}$	n_{sat}	$\mathrm{K}_{\mathrm{sat}}$	Q_{sat}	$\mathrm{Z}_{\mathrm{sat}}$	$\mathrm{E}_{\mathrm{sym}}$	$\mathcal{L}_{\mathrm{sym}}$	$\mathrm{K}_{\mathrm{sym}}$	$\mathrm{Q}_{\mathrm{sym}}$	$\mathrm{Z}_{\mathrm{sym}}$
	(MeV)	(fm^{-3})	(MeV)	(MeV)	(MeV)	(MeV)	(MeV)	(MeV)	(MeV)	(MeV)
From Ref. [3]	-15.8 ± 0.3	$0.155{\pm}0.005$	230 ± 20	$300{\pm}400$	-500 ± 1000	32 ± 2	$60{\pm}15$	-100 ± 100	0 ± 400	-500 ± 1000
dist1f and dist2f	-15.8	0.155	[210, 250]	$[-1800,\!600]$	-500	32	[40, 60]	[-300, 100]	0	-500
dist3f	-15.8	0.155	[210, 250]	[-1800, 600]	-500	32	[80, 100]	[-300, 100]	0	-500
Use of flat (unbiased) prior										

Exploration of different scenarios:

- 1- dist1 & dist1f: all known experimental data are considered for K_A (90,92Zr, 112-124Sn and 204-208Pb).
- 2- dist2 & dist2f: same as dist1 & dist1f but considering a fictitious value for K_A in ¹³²Sn.
- 3- dist3 & dist3f: same as dist2 \& dist2f but considering a large prior for L_{sym} .

Results

Results

Results

Sound speed in finite nuclei

 $9K_A$ hA $C_{s,A}$

We find that $c_{s,A} \approx 0.5c_{s'}$ mostly due to finite size terms.

Sound speed in finite nuclei

dist3f (large L_{sym}) excluded by xEFT + unitary gas limit. A small fraction of dist2f is viable.

Conclusions

The impact of the uncertainties in K_{sat} on the dense matter EoS is small. However, the next NEP Q_{sat} is unknown and have a large impact on the dense matter EoS. -> It is important to better determine Q_{sat} .

Hypothesis: Q_{sat} could be determined from E_{GMR} .

The model dependence of E_{GMR} and the difficulty to reproduce Sn and Pb with the same functional may be due to Q_{sat} . Q_{sat} acts differently in Sn and Pb since $\langle n \rangle_A$ is different -> induces a A-dependence of E_{GMR} .

With an eCLDM approach, we were able to extract (MCMC approach) the best value for Q_{sat} . We found that $Q_{sat} \approx -950$ MeV is optimal to reproduce Zr, Sn and Pb isotopes.

We also found a big impact of finite-size effect on the sound speed in finite nuclei: $c_{s,A} \approx 0.5c_s$.