DE LA RECHERCHE À L'INDUSTRIE

Investigating ISGR in unstable

 nuclei: the active target ACTAR@GANILDamien THISSE

ECT* Workshop
12-07-2022

cea

How to populate resonances?

Inelastic scattering at $\mathrm{E}_{\text {beam }} \sim 35 \mathbf{- 1 0 0}$ MeVIA in inverse kinematic Isoscalar target $(T=0) \rightarrow$ Isoscalar resonance $\Delta T=0 \quad$ \} a, d Without spin $(S=0) \rightarrow$ Electric resonance $\Delta S=0\} a$
Energy of the beam \rightarrow Angular distribution defining multipolarity ΔL

How to measure them?
Missing mass method: recoil particle kinematic energy + reaction angle $\rightarrow \mathrm{E}^{*}$

Why do we use active targets?
Improve the detection efficiency of low kinetic energy recoiling particles
Need of a high efficiency setup to compensate for the lower production rate of exotic nuclei

cea
 Experiments at the GANIL facility

Ion beam from cyclotron

C.E. Demonchy et al. NIM A 583, 341-349 (2007)

Goals of MAYA experiments (related to GR)
 Evolution of the incompressibility of nuclear matter with the N/Z ratio.
 Nickel isotopic line is well suited as it ranges over wide N/Z ratios.

C. Monrozeau et al. Phys. Rev. Lett. 100, 042501 (2008) $\mathrm{E}^{*}\left({ }^{56} \mathrm{Ni}\right)_{\text {ISGMR }}=19.3 \pm 0.5 \mathrm{MeV}$ EWSR($\left.{ }^{56} \mathrm{Ni}\right)_{\text {ISGMR }}=136 \pm 27 \%$ SPEG + MAYA @GANIL (2005) (d, d')

Goals of MAYA experiments (related to GR) Evolution of the incompressibility of nuclear matter with the N/Z ratio Nickel isotopic line is well suited as it ranges over wide N/Z ratios

C. Monrozeau et al. Phys. Rev. Lett. 100, 042501 (2008) $\begin{array}{ll}E^{*}(56 \mathrm{Ni})_{\text {IGGRR }}=19.3 \pm 0.5 \mathrm{MeV} & \text { SPEG }+ \text { MAYA @GANIL (2005) } \\ \text { EWSR }(56 \mathrm{Ni})_{\text {ISGMR }}=136 \pm 27 \% & \text { (d, d') }\end{array}$
(d, d')
M. Vandebrouck et al., Phys. Rev. Lett. 113, 032504 (2014) $\mathrm{E}^{*}\left({ }^{68} \mathrm{Ni}\right)_{\text {ISGMR }}=20.9 \pm 1.0 \mathrm{MeV}$ (d, d') LISE + MAYA @GANIL (2010) $\mathrm{E}^{*}\left({ }^{68} \mathrm{Ni}\right)_{\mid \text {ISGMR }}=21.1 \pm 1.9 \mathrm{MeV}\left(\alpha, \alpha^{\prime}\right)$

Goals of MAYA experiments (related to GR) Evolution of the incompressibility of nuclear matter with the N/Z ratio Nickel isotopic line is well suited as it ranges over wide N/Z ratios

C. Monrozeau et al. Phys. Rev. Lett. 100, 042501 (2008)

```
\(\mathrm{E} *\left({ }^{56} \mathrm{Ni}\right)_{\text {ISGMR }}=19.3 \pm 0.5 \mathrm{MeV}\) SPEG + MAYA @GANIL (2005) EWSR( \(\left.{ }^{56} \mathrm{Ni}\right)_{\text {ISGMR }}=136 \pm 27 \%\)
(d, d')
```

M. Vandebrouck et al., Phys. Rev. Lett. 113, 032504 (2014) $E *(68 \mathrm{Ni})_{\text {ISGMR }}=20.9 \pm 1.0 \mathrm{MeV}\left(\mathrm{d}, \mathrm{d}^{\prime}\right) \quad$ LISE + MAYA @GANIL (2010) $\mathrm{E}^{*}\left({ }^{68} \mathrm{Ni}\right)_{\text {ISGMR }}=21.1 \pm 1.9 \mathrm{MeV}\left(\alpha, \alpha^{\prime}\right)$
S. Bagchi et al., Phys. Lett. B 751, 371 (2015)
$\mathrm{E}^{*}\left({ }^{56} \mathrm{Ni}\right)_{\text {ISGMR }}=19.1 \pm 0.5 \mathrm{MeV}$
EWSR $\left({ }^{56} \mathrm{Ni}\right)_{\text {IGGMR }}=240 \pm 120 \%$
LISE + MAYA @GANIL (2011)
(a, a^{\prime})

Goals of MAYA experiments (related to GR) Evolution of the incompressibility of nuclear matter with the N/Z ratio Nickel isotopic line is well suited as it ranges over wide N/Z ratios

C. Monrozeau et al. Phys. Rev. Lett. 100, 042501 (2008)

```
\(\mathrm{E}^{*}\left({ }^{56} \mathrm{Ni}\right)_{\text {|SGmR }}=19.3 \pm 0.5 \mathrm{MeV}\) SPEG + MAYA @GANIL (2005) EWSR( \(\left.{ }^{56} \mathrm{Ni}\right)_{\text {ISGMR }}=136 \pm 27 \%\)
(d, d')
```

M. Vandebrouck et al., Phys. Rev. Lett. 113, 032504 (2014) $\mathrm{E}^{*}\left({ }^{68} \mathrm{Ni}\right)_{\text {ISGMR }}=20.9 \pm 1.0 \mathrm{MeV}\left(\mathrm{d}, \mathrm{d}^{\prime}\right) \quad$ LISE + MAYA @GANIL (2010) $\mathrm{E}^{*}\left({ }^{68} \mathrm{Ni}\right)_{\text {ISGMR }}=21.1 \pm 1.9 \mathrm{MeV}\left(\alpha, \alpha^{\prime}\right)$
S. Bagchi et al., Phys. Lett. B 751, 371 (2015)

```
E*(56Ni)
LISE + MAYA @GANIL (2011)
EWSR(56Ni) IGGMR = 240 土 120%
\[
\left(a, a^{\prime}\right)
\]
```


Limitation of MAYA: efficiency and angular resolution for low energy particles...

Cea ... lead to the development of ACTAR-TPC

T. Roger et al., NIMA 895, 126 (2018)

Drift region: filled with He (95\%) and CF_{4} (quencher)

Output format:
 Pixel ID (x, y)
 Time w.r.t. to trigger (z) Charge deposited (q)

128×128 pixels of $2 \mathrm{~mm}^{2}$
16384 channels in a square of 25.6×25.6 cm 2
Dedicated electronics

CeZ ... lead to the development of ACTAR-TPC

T. Roger et al., NIMA 895, 126 (2018)

2 experiments done and being analysed:

ISGMR in ${ }^{58} \mathrm{Ni}$ and ${ }^{68} \mathrm{Ni}$ (2019)

Ion beam from cyclotron
 3-step purification in LISE3 m In -flight separation method

Ce2 An event in ACTAR TPC

Ce2 An event in ACTAR TPC

YZ

HOW TO

Ce2 Identification and reconstruction of tracks

RANSAC method: iterative method to find the tracks

From: B. Mauss, PhD Thesis (2019)

RANSAC method: iterative method to find the tracks

N pair of points randomly chosen
Voxels grouped inside cylinders (radius R)
For each, the total charge and the number of voxels inside are calculated.

Track = cylinder fulfilling a given condition

RANSAC method: iterative method to find the tracks
A 2D example

N pair of points randomly chosen
Voxels grouped inside cylinders (radius R)
For each, the total charge and the number of voxels inside are calculated.

Track = cylinder fulfilling a given condition
The process is repeated until a stop condition is fulfilled.

From: B. Mauss, PhD Thesis (2019)

Cea Identification and reconstruction of tracks

RANSAC method: iterative method to find the tracks

RANSAC method: iterative method to find the tracks

Ce2 Measurement of the kinematics parameters

$\left.{ }^{58} \mathrm{Ni}\left(\alpha, \alpha^{\prime}\right)\right)^{58} \mathrm{~N}^{*}$ dataset
Particle identification: charge vs range

${ }^{58} \mathrm{Ni}\left(\mathrm{\alpha}, \mathrm{\alpha}^{3}\right){ }^{58} \mathrm{Ni}{ }^{*}$ dataset
Kinematics: E (${ }^{58} \mathrm{Ni}$) vs angle in CM frame

cea
 Simulation using nptool (GEANT4)

A Matta et. al., J. Phys. G: Nucl. Part. Phys., 43045113 (2016)
«Offer an unified framework for preparation and analysis of complex experiments, making an efficient use of Geant4 and ROOT toolkits "

Theta-Energy

Courtesy of Alex Arokia Raj (PhD thesis work)

NA

C. Monrozeau et al. Phys. Rev. Lett. 100, 042501 (2008)
M. Vandebrouck et al., Phys. Rev. Lett. 113, 032504 (2014)
S. Bagchi et al., Phys. Lett. B 751, 371 (2015)

ISGMR in ${ }^{58,68} \mathbf{N i}$
Soft monopole in ${ }^{68} \mathrm{Ni}$

Problematic of the analysis:

Precision in the reconstruction of short tracks (small angles in CM frame)
Strong impact of the simulations on the analysis
Next steps:
Performing the simulation to obtain the efficiency of reconstruction and apply it on real data \rightarrow validate the method on ${ }^{58} \mathrm{Ni}$

Perform the same work on the ${ }^{68} \mathrm{Ni}$ data

N A

C. Monrozeau et al. Phys. Rev. Lett. 100, 042501 (2008)
M. Vandebrouck et al., Phys. Rev. Lett. 113, 032504 (2014)
S. Bagchi et al., Phys. Lett. B 751, 371 (2015)

ISGMR in ${ }^{58,68} \mathbf{N i}$
Soft monopole in ${ }^{68} \mathrm{Ni}$

Problematic of the analysis:

Precision in the reconstruction of short tracks (small angles in CM frame)
Strong impact of the simulations on the analysis
Next steps:
Performing the simulation to obtain the efficiency of reconstruction and apply it on real data \rightarrow validate the method on ${ }^{58} \mathrm{Ni}$

Perform the same work on the ${ }^{68} \mathrm{Ni}$ data

Ce2 Range to energy conversion

From SRIM simulation

