DE LA RECHERCHE À L'INDUSTRIE

Investigating ISGR in unstable

nuclei: the active target

ACTAR@GANIL

Damien THISSE

ECT* Workshop

12-07-2022

How to populate resonances ?

Inelastic scattering at $E_{beam} \sim 35 - 100 \text{ MeV/A}$ in inverse kinematic Isoscalar target (T = 0) \rightarrow Isoscalar resonance $\Delta T = 0$ $\rightarrow a$, d Without spin (S = 0) \rightarrow Electric resonance $\Delta S = 0$ $\rightarrow a$ Energy of the beam \rightarrow Angular distribution defining multipolarity ΔL

How to measure them ?

Missing mass method: recoil particle kinematic energy + reaction angle \rightarrow E*

Why do we use active targets ?

Improve the detection efficiency of low kinetic energy recoiling particles Need of a high efficiency setup to compensate for the lower production rate of exotic nuclei

DE LA RECHERCHE À L'INDUSTRIE

Experiments at the GANIL facility

See talk of S. Bagchi

<u>Goals of MAYA experiments (related to GR)</u> Evolution of the incompressibility of nuclear matter with the N/Z ratio. Nickel isotopic line is well suited as it ranges over wide N/Z ratios.

C. Monrozeau et al. Phys. Rev. Lett. 100, 042501 (2008) $E^{(56Ni)}_{ISGMR} = 19.3 \pm 0.5 \text{ MeV}$ SPEG + MAYA @GANIL (2005) $EWSR(^{56}Ni)_{ISGMR} = 136 \pm 27 \%$ (d, d')

<u>Goals of MAYA experiments (related to GR)</u> Evolution of the incompressibility of nuclear matter with the N/Z ratio Nickel isotopic line is well suited as it ranges over wide N/Z ratios

C. Monrozeau et al. Phys. Rev. Lett. 100, 042501 (2008) $E^{(56Ni)}_{ISGMR} = 19.3 \pm 0.5 \text{ MeV}$ SPEG + MAYA @GANIL (2005) $EWSR(^{56}Ni)_{ISGMR} = 136 \pm 27 \%$ (d, d')

M. Vandebrouck et al., Phys. Rev. Lett. 113, 032504 (2014) $E^{(68Ni)}_{ISGMR} = 20.9 \pm 1.0 \text{ MeV} (d,d')$ LISE + MAYA @GANIL (2010) $E^{(68Ni)}_{ISGMR} = 21.1 \pm 1.9 \text{ MeV} (\alpha, \alpha')$

<u>Goals of MAYA experiments (related to GR)</u> Evolution of the incompressibility of nuclear matter with the N/Z ratio Nickel isotopic line is well suited as it ranges over wide N/Z ratios

C. Monrozeau et al. Phys. Rev. Lett. 100, 042501 (2008) $E^{(56Ni)}_{ISGMR} = 19.3 \pm 0.5 \text{ MeV}$ SPEG + MAYA @GANIL (2005) $EWSR(^{56}Ni)_{ISGMR} = 136 \pm 27 \%$ (d, d')

M. Vandebrouck et al., Phys. Rev. Lett. 113, 032504 (2014) $E^{(68Ni)_{ISGMR}} = 20.9 \pm 1.0 \text{ MeV} (d,d')$ LISE + MAYA @GANIL (2010) $E^{(68Ni)_{ISGMR}} = 21.1 \pm 1.9 \text{ MeV} (\alpha, \alpha')$

S. Bagchi et al., Phys. Lett. B 751, 371 (2015) $E^{(56Ni)}_{ISGMR} = 19.1 \pm 0.5 \text{ MeV}$ LISE + MAYA @GANIL (2011) $EWSR(^{56}Ni)_{ISGMR} = 240 \pm 120 \%$ (α, α')

<u>Goals of MAYA experiments (related to GR)</u> Evolution of the incompressibility of nuclear matter with the N/Z ratio Nickel isotopic line is well suited as it ranges over wide N/Z ratios

C. Monrozeau et al. Phys. Rev. Lett. 100, 042501 (2008) $E^{(56Ni)}_{ISGMR} = 19.3 \pm 0.5 \text{ MeV}$ SPEG + MAYA @GANIL (2005) $EWSR(^{56}Ni)_{ISGMR} = 136 \pm 27 \%$ (d, d')

M. Vandebrouck et al., Phys. Rev. Lett. 113, 032504 (2014) $E^{(68Ni)_{ISGMR}} = 20.9 \pm 1.0 \text{ MeV} (d,d')$ LISE + MAYA @GANIL (2010) $E^{(68Ni)_{ISGMR}} = 21.1 \pm 1.9 \text{ MeV} (\alpha, \alpha')$

S. Bagchi et al., Phys. Lett. B 751, 371 (2015) $E^{(56}Ni)_{ISGMR} = 19.1 \pm 0.5 \text{ MeV}$ LISE + MAYA @GANIL (2011) $EWSR(^{56}Ni)_{ISGMR} = 240 \pm 120 \%$ (α, α')

Limitation of MAYA: efficiency and angular resolution for low energy particles...

T. Roger et al., NIMA 895, 126 (2018)

DE LA RECHERCHE À L'INDUSTR

... lead to the development of ACTAR-TPC

T. Roger et al., NIMA 895, 126 (2018)

Ion beam from cyclotron S-step purification in LISE3 mol In-flight separation method D6 detection D6 detection LISE3 Experimental setup Experimental setup

DE LA RECHERCHE À L'INDUSTR

An event in ACTAR TPC

DE LA RECHERCHE À L'INDUSTR

An event in ACTAR TPC

A 2D example

N pair of points randomly chosen

Voxels grouped inside cylinders (radius R)

For each, the total charge and the number of voxels inside are calculated.

Track = cylinder fulfilling a given condition

A 2D example

N pair of points randomly chosen

Voxels grouped inside cylinders (radius R)

For each, the total charge and the number of voxels inside are calculated.

Track = cylinder fulfilling a given condition

The process is repeated until a stop condition is fulfilled.

DE LA RECHERCHE À L'INDUSTRIE

Measurement of the kinematics parameters

Simulation using nptool (GEANT4)

40

20

10

-10¹ 0

2

3

4

A Matta et. al., J. Phys. G: Nucl. Part. Phys., 43 045113 (2016)

« Offer an unified framework for preparation and analysis of complex experiments, making an efficient use of Geant4 and ROOT toolkits »

14

10

5

6

5

Angle in CM frame (deg)

Summary

C. Monrozeau et al. Phys. Rev. Lett. 100, 042501 (2008)

M. Vandebrouck et al., Phys. Rev. Lett. 113, 032504 (2014)

S. Bagchi et al., Phys. Lett. B 751, 371 (2015)

Problematic of the analysis :

Precision in the reconstruction of short tracks (small angles in CM frame)

Strong impact of the simulations on the analysis

Next steps :

Performing the simulation to obtain the efficiency of reconstruction and apply it on real data \rightarrow validate the method on ⁵⁸Ni

Improved

Perform the same work on the ⁶⁸Ni data

ISGMR in 58,68Ni Soft monopole in ⁶⁸Ni

Summary

C. Monrozeau et al. Phys. Rev. Lett. 100, 042501 (2008)

M. Vandebrouck et al., Phys. Rev. Lett. 113, 032504 (2014)

S. Bagchi et al., Phys. Lett. B 751, 371 (2015)

Problematic of the analysis :

Precision in the reconstruction of short tracks (small angles in CM frame)

Strong impact of the simulations on the analysis

Next steps :

Performing the simulation to obtain the efficiency of reconstruction and apply it on real data \rightarrow validate the method on ^{58}Ni

Improved resolutions and efficiencies

Perform the same work on the ⁶⁸Ni data

ISGMR in ^{58,68}Ni Soft monopole in ⁶⁸Ni

Thank you

From SRIM simulation

