

Investigating the Isoscalar Giant Monopole Resonance in Ni-70 using the Active-Target Time-Projection Chamber and S800 Spectrometer

Tan Ahn

University of Notre Dame

ECT* Workshop on Giant Resonances

ECT*, Trento, Italy

July 12, 2022

- Motivation and Experiment
- Preliminary Analysis
- Challenges and Outlook
- Summary

Brief Outline

- Motivation and Experiment
- Preliminary Analysis
- Challenges and Outlook
- Summary

Isoscalar Giant Monopole Resonance

- L=o, breathing mode
- Related to nuclear incompressibility of finite nuclear matter
- Symmetry energy; constrain nuclear equation-of-state; properties of neutron stars
- Evolution as a function of isospin; need ISGMR in very isospin asymmetric nuclei

Isoscalar Giant Monopole Resonance (ISGMR)

$$K_A \approx K_{\text{vol}} + K_{\text{surf}} A^{-1/3} + K_{\tau} \alpha^2 + K_{\text{Coul}} \frac{Z^2}{A^{4/3}} + \dots$$

$$E_{\rm ISGMR} = \hbar \sqrt{\frac{K_A}{m \langle r_0^2 \rangle}}$$

- K_A , finite nuclear incompressibility
- K_{τ} related to symmetry energy
- K_{τ} can be constrained by ISGMR measurements
- Measure curvature: most isospin asymmetric nuclei

Ni isotopic chain

- Medium-mass region; ⁷⁰Ni
 - Previous measurements
- Range of isospin
- Availability of neutron-rich Ni isotopes
- 70 Ni: (N-Z)/A = 0.2

Inelastic alpha scattering with the AT-TPC

- GMR -> Small angles -> 90 deg in C.O.M. frame -> 0 energy
- Gas target; Active-target time-projection chamber
- Image tracks; Several cm alpha track length
- Thick target, high geometrical efficiency

Tagging Ni recoils

- Inelastic cross section; elastic scattering background
- S800 spectrometer to tag Ni recoils
- Modification to AT-TPC
- Beam and reactants to pass through

AT-TPC GEM/Micromegas

- 10,240 triangular pads
- GEM + Micromegas (gain 10⁶)
- Use of pure He gas
 - Gas-recirculator, filter
- 3 cm diameter hole

AT-TPC coupled to S800

S800 Target Position

18008 – Zamora & 18027 – Ahn (shown without raised floor)

AT-TPC (upstream side)

AT-TPC (Downstream Side)

Experiment e18027 @ NSCL

- October 2020
- ⁷⁶Ge, primary beam, ⁷⁰Ni Beam ~ 82 MeV/u
- Pure He gas at 150 torr
- ⁷⁰Ni(α,α')⁷⁰Ni*
- Decay via 1n, 2n, 3n, 4n channels
- 2 B-rho settings to maximize the acceptance for ^{68,69}Ni & ^{66,67}Ni

Brief Outline

- Motivation and Experiment
- Preliminary Analysis
- Challenges and Outlook
- Summary

- Preliminary results
- Analysis: Jaspreet Randhawa
- More thorough analysis planned

AT-TPC coupled to S800

- B-Rho settings to maximize the acceptance for ^{68,69}Ni & ^{66,67}Ni
- α-particles tracked using RANSAC
- Obtained → Range, Vertex and angle

tof:Corr

Angle vs. reaction vertex

NOTRE DAME

Coverage in C.O.M. Frame

Rough correction for ⁶⁹Ni and ⁶⁶Ni acceptance

Difference of Spectra Procedure

- L=0 : Minima at ~ 2.7 degrees
- L=2 : nearly flat in 1-4 degrees

- ISGMR has maximum at 0 degrees in C.O.M. frame and declines sharply
- Competing ISGQR remains essentially flat over this range
- Subtract the inelastic scattering spectrum at the minimum of the expected ISGMR angular distribution from that at 0 deg. (or close to zero degrees)

UNIVERSITY OF NOTRE DAME

Gating on Isotopes

Ex {th_lab>10.0*3.14/180.0 && th_lab<90.0*3.14/180.0 && eLoss<1.4 && vertex_Z>70}

Brief Outline

- Motivation and Experiment
- Preliminary Analysis
- Challenges and Outlook
- Summary

Experimental Challenges

- Circumstantial; Solution straight forward
- Failure of Cyclotron power supply
 - Premature end to beamtime
 - Somewhat limited statistics

Experimental Challenges

- Contamination of detector gas
- Use of different gases for gas filter
 - Prior experiment, use of H_2 gas
 - Magboltz calculations

Intrinsic Experimental Challenges

- More sophisticated solutions needed
- Space charge issues
 - Local electric field distortions
 - Geometric limitations due to hole in Micromegas/GEMS
 - Limitations in energy and angle measurements
 - Map field distortions due to positive ion buildup
- Delta electrons present challenge for tracking algorithms
- Competition with neutron knockout reactions

Analysis Outlook

- Basic tracking using Random Sample Consensus (RANSAC)
- ATTPCROOT analysis framework
 - GENFIT (Kalman filter)
 - Goal: Robust and precise track fitting
- Ray-tracing for S800
 - S800 acceptance
 - Needed for getting accurate GMR peak
- https://github.com/ATTPC/ATTPCROOTv2

Summary

- Performed first experiment using AT-TPC coupled to S800 spectrometer to study ISGMR in neutron-rich nucleus ⁷⁰Ni
- Preliminary analysis; Detailed analysis commencing this summer
- Technical feasibility of active-target + spectrometer method
- Future measurement of ISGMR in ¹³²Sn at FRIB
- Program of measuring highly-excited unbound structures in nuclei

Thank you for your attention!

Acknowledgements

- Jaspreet Randhawa (ND)
- Samuel Henderson (ND)
- Umesh Garg (ND)
- Joseph Arroyo (ND)
- Lihao Yan (ND)
- Wolfgang Mittig (MSU)
- Daniel Bazin (MSU)
- P. Gueye (MSU)
- N. Watwood (MSU)
- Zach Serikow (MSU)
- Remco Zegers (MSU)
- Felix Ndayisabye (MSU)
- Jason Surbrook (MSU)
- Tom Ginter (MSU)
- Chandana (MSU)
- Mallory Smith (MSU)
- Shumpei Noji (MSU)
- Jorge Pereira (MSU)

