Measurements of compression modes with radioactive ion beams: techniques and perspectives

Riccardo Raabe

KU Leuven, Instituut voor Kern- en Stralingsfysica

Riccardo Raabe – KU Leuven

Outline

- Experimental observables in the study of giant resonances
- Direct kinematics
- Methods in inverse kinematics
 - Peculiarity of the kinematics
 - Storage rings
 - Active targets Issues and mitigations
- Perspectives
 - Optimised active target and optimised use
 - Detection of de-excitation modes
- Summary

Experimental observables

- Identification of the channel (inelastic scattering)
- Excitation energy through kinematics (missing mass)
- Multipolarity from angular distributions
- De-excitation modes

M. Vandebrouck et al., PRL 113 (2014) 032504

C. Monrozeau et al., PRL 100 (2008) 042501

KU LEUVEN

Riccardo Raabe – KU Leuven

Direct kinematics

 Inelastic scattering: maximum cross section at very forward c.m. angles (ideally 0 degrees)

Stable nuclei

Direct kinematics
 Large spectrometers to measure momentum of scattered particle

Grand Raiden at RCNP Osaka

M. Itoh et al., Phys. Rev. C 68 (2003) 064602

Direct kinematics: de-excitation

- γ-ray coincidence
- Charged-particle coincidence
- \rightarrow background reduction
- ightarrow multipolarity of the transition
- \rightarrow microscopic structure

Inverse kinematics

- Heavy particle: Change in momentum is not measurable with sufficient resolution
- Light recoil:
 - forward angles
 - very low energy
- ightarrow cannot use a solid target

Inverse kinematics

- Heavy particle: Change in momentum is not measurable with sufficient resolution
- Light recoil:
 - forward angles
 - very low energy
- ightarrow cannot use a solid target

Low momentum-transfer in storage rings

Low energy recoils: detectors as vacuum interfaces

P. Egelhof (GSI), **EXL** Collaboration H. Moeini et al., NIMA 634 (2011) 77

Auxilliary vacuum side

Ultra-high vacuum side

Low momentum-transfer in storage rings

First measurement of isoscalar giant resonances in a stored-beam experiment

J.C. Zamora^{a,*}, T. Aumann^{a,b}, S. Bagchi^{c,b}, S. Bönig^a, M. Csatlós^d, I. Dillmann^b, C. Dimopoulou^b, P. Egelhof^b, V. Eremin^e, T. Furuno^f, H. Geissel^b, R. Gernhäuser^g, M.N. Harakeh^c, A.-L. Hartig^a, S. Ilieva^a, N. Kalantar-Nayestanaki^c, O. Kiselev^b, H. Kollmus^b, C. Kozhuharov^b, A. Krasznahorkay^d, Th. Kröll^a, M. Kuilman^c, S. Litvinov^b, Yu.A. Litvinov^b, M. Mahjour-Shafiei^{h,c}, M. Mutterer^b, D. Nagaeⁱ, M.A. Najafi^c, C. Nociforo^b, F. Nolden^b, U. Popp^b, C. Rigollet^c, S. Roy^c, C. Scheidenberger^b, M. von Schmid^a, M. Steck^b, B. Streicher^b, L. Stuhl^d, M. Thürauf^a, T. Uesaka^j, H. Weick^b, J.S. Winfield^b, D. Winters^b, P.J. Woods^k, T. Yamaguchi¹, K. Yue^{a,b,m}, J. Zenihiro^j

⁵⁸Ni 100 MeV/A

KU LEUVEN

CrossMark

Low momentum-transfer in storage rings

Issues

- Limited solid angle
- Target uniformity
- Background: δ rays

40

Active targets

Time-Projection Chamber (TPC) + gas is the target

- Electrons produced by ionization drift to an amplification zone
- Signals collected on a segmented "pad" plane ⇒ 2d-image of the track
- 3rd dimension from the drift time of the electrons
- Information:
 - angles
 - energy (from range or charge)
 - particle identification

ECT* Trento, 12/07/2022

Active targets

Advantages

- Large target thickness
 20 cm He @ 1 bar: 3.2 mg/cm²
 → high luminosity
- Efficient:
 - 4π geometry
 - Low thresholds
- Extremely versatile
 - different gases and pressures
 - variable shape
 - auxiliary detectors

Active targets

Inelastic scattering in active targets

- Scattered particles stopped in the gas
- Low-energy region becomes accessible

Riccardo Raabe – KU Leuven

۲

Active targets: dynamic range

۲

Active targets: dynamic range

Beam effects

- Signals from beam particles: saturation
 → change amplification

 ACTAR TPC: bias on pads
 CAT: T-GEM layers
- Signals from beam particles:
 field distortion
 → use mask

ACTAR TPC, B. Mauss et al., NIM A 940 (2019) 498

Beam effects

- Signals from beam particles: saturation
 → change amplification

 ACTAR TPC: bias on pads
 CAT: T-GEM layers
- Signals from beam particles:
 field distortion

 \rightarrow use mask

Riccardo Raabe – KU Leuven

ECT* Trento, 12/07/2022

Beam mask

- Size?
 - Beam divergence
 - Scattered beam
 - δ rays

ACTAR TPC Demonstrator: mask Work of A. Camaiani, KU Leuven

KU LEUVEN

Riccardo Raabe – KU Leuven

Beam mask

- Size?
 - Beam divergence
 - Scattered beam
 - δ rays

CAT-M: Magnet S. Ota, RCNP Osaka

KU LEUVEN

Riccardo Raabe – KU Leuven

Active targets: auxiliary detectors

Charged-particle detectors

- Where?
 Sides are more important than the front
- Risk of sparks
 - \rightarrow keep a safe distance
 - \rightarrow blind zone
- Use mylar foils to screen electrons
- Adjust pressure for best results

Riccardo Raabe – KU Leuven

ECT* Trento, 12/07/2022

Active targets: Auxiliary detectors

Charged-particle detectors

- Where?
 Sides are more important than the front
- Risk of sparks
 - \rightarrow keep a safe distance
 - \rightarrow blind zone
- Use mylar foils to screen electrons
- Adjust pressure for best results

⁵⁶Ni 50 MeV/nucleon, ⁴He 1 bar pressure

@ ACTAR TPC and @ CAT-M: work ofS. Ceruti, S. Fracassetti, A. Mentana,O. Poleshchuk, J Refsgaard

KU LEUVEN

Distance from house avia (mw

Riccardo Raabe – KU Leuven

Optimized active target

- Lower pressure
- Elongated geometry (1m?)
- Track reconstruction in gas
- Particle angles from tracks
- Particle energy from ancillary detectors
- Decay particles at forward angles

Riccardo Raabe – KU Leuven

ECT* Trento, 12/07/2022

Optimise beam use and opportunities

Yakitori mode

Measurement of de-excitation modes

Coincident charged-particle detection

 Active target are best suited! (with downstream detection)

Measurement of de-excitation modes

Coincident charged-particle detection

 Active target are best suited! (with downstream detection)

Coincident *γ***-ray detection**

• Coupling to scintillators

Summary

- Importance of extending the measurements to unstable nuclei
- Possibilities: storage rings, active targets Active targets more "affordable"
- Complex instruments, analysis very involved Some intrinsic issues but also possibilities to mitigate them

Further thoughts

- Can we go lower in energy?
 Perhaps with light systems (Ne, Mg, Si...)
 Post-accelerated ISOL beams??
- Background subtraction?