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OUTLINE

Motivation for Relativistic approaches

RMF with Chiral symmetry and Confinement (RMF-CC)

Consequences on incompressibility and symmetry energy
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Why Relativistic approaches ?

Many models for nuclear matter exist, with chiral effective theory being one of them: a
perturbative expansion with a hierarchy of leading orders

Advantages : systematic addition of higher-order contributions, which allows us to know at
which density our expansion should stop (XEFT ~ 2n__,)

Disadvantages: breaks down at ~ 2n_,, whereas we need to describe nuclear matter at
higher densities

At high density, we need a relativistic approach since the sound speed in NS cores is
expected to be larger than 10% of the light speed. See recent radio observations as well as X-
ray observations from NICER of massive NSs.

Advantages : can go beyond 2n_,.

Disadvantages: no simple way to decide where the model breaks down, or to quantify the
uncertainties.



What is RMF-CC?

* An effective model describing the nuclear interaction as an exchange
of mesons.

* A lagrangian based on chiral symmetries from QCD and confinement
of the quarks (anchored to QCD).

* The mesons field will be decomposed as such:

Pr = @p+ Agpg

PN

Ground state expectation value, Small

i.e classical value=>» Hartree level fluctuations=>» Fock
level



1) Chiral symmetry

e At the limit of zero quark masses (u,d & s), QCD has a chiral symmetry

(non-interacting quarks with opposite parity are indistinguishable and
do not couple to each other)

* Had the symmetry been realised in nature, we would have observed

for each meson, a partner meson with the SAME mass but opposite
parity = the symmetry is broken

The radial component corresponds to the o meson of
Walecka, first identified by Chanfray (PRC 63 (2001)), and

the phase component corresponds to the massless Goldstone
boson, the pion

But since the quarks have a small mass, the symmetry is also
explicitly broken and the pion acquires a small mass!



2) Confinement

* It is well established that in QCD, only colour neutral objects can be
observed

 Since in our model, the nucleons are considered the “elementary
particles”, this effect should be taken into consideration

* In Guichon’s work (Guichon, Phys. Lett. B 200 (1988)), the quarks
wave functions get modified by the scalar field =2 the nucleon mass

depends on the surrounding scalar field:
The response

parameters, g;, Kys, might
be given by an underlyin
Nucleon & y i ying
Mpy(s) = My + gs5 + oolarisation | guark confining model
(confinement mechanism)

* We parametrize the nucleon mass as:




The chiral Lagrangian
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* 4 unknown parameters: mg, gs, gy & C

* Cand my can be fixed by lattice QCD ( see Somasundaram +, Eur.Phys.J.A 58 (2022) 5,

84) leaving us with g. et g,, to be fitted to nuclear saturation properties( Eq4; =
— 15.8 MeV ,ny,e = 0.155 fm™3)
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* K, is not well-known: The pure vector dominance model (VDM) implies the
identification of k, with the anomalous part of the isovector magnetic moment of the
nucleon (i.e., k, = 3.7, weak p scenario). However, pion-nucleon scattering data suggest

K, = 6.6 (strong p scenario) (G. Hohler and E. Pietarinen, Nucl. Phys. B95, 210 (1975)).
We also consider the case where Ky = 0.0 for reference.



Results

1) Hartree level (no pion)
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2) Hartree-Fock level (preliminary results including pions)
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Hartree versus Hartree-Fock
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Impact of k, on incompressibility and
symmetry energy
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Conclusions:

* HF improves the results from Hartree only: the value for a,,, is in better
agreement with experimental data, but K, is pushed to values too high.

Outlooks:

* The inclusion of higher order correction in the pion channel, also known
as the « pion cloud » which could decrease K, closer to its experimental
value and also lower the value of the coupling constants which is also a
desired effect in models

* Checking the effect of incorporating short range correlations (Jastrow '
functions, form factors)
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