Effects of beyond-mean-field correlations and finite temperature on the nuclear monopole response

Elena Litvinova

Western Michigan University

MICHIGAN STATE
U N I V E R S I T Y

ECT* Workshop "Advances on giant nuclear monopole excitations and applications to multimessenger astrophysics"

$$
\mathcal{E C T}^{*} * \mathcal{T}^{\text {rento }}, \mathfrak{J u F y} 11-15,2022
$$

- The major conflict:

Separation of energy scales => effective field theories vs
The physics on a certain scale is governed by the next higher-energy scale

Hamiltonian:

Standard Model:
free propagation and interaction, singularities \& renormalizations

- Possible solution:

Keep/establish connections between the scales via emergent phenomena

The Equation of Motion (EOM) Method

-. Generates EOM's for time-dependent field operators and correlation functions, i.g., in-medium propagators.
-8. Propagators are linked directly to observables.
-. Two-time (one fermion and two-fermion) propagators are most relevant ones for nuclear physics applications.
-. Interaction kernels: static (short-range correlations) + dynamical (long-range correlations).
\&. The exact EOM's for the propagators are coupled into an N-body equation hierarchy via dynamical kernels.
-. Practical implementations: full or partial decoupling via various approximations.

EOM method:

D D. J. Rowe, Rev. of Mod. Phys. 40, 153 (1968).

- P. Schuck, Z. Phys. A 279, 31 (1976).

2S. Adachi and P. Schuck, NPA496, 485 (1989).
\therefore P. Danielewicz and P. Schuck, NPA567, 78 (1994)
$\quad J$. Dukelsky, G. Roepke, and P. Schuck, NPA 625, 14 (1995).
\therefore P. Schuck and M. Tohyama, PRB 93, 165117 (2016).
¿P. Schuck et al., Phys. Rep. 929, 1 (2021).

Nuclear physics implementations beyond (Q)RPA: 2p2h, 3p3h

¿ Nuclear field theory, NFT (P.F. Bortignon, R. Broglia, G. Colo, Milano-Copenhagen; V. Tselyaev, S. Kamerdzhiev et al.,St. Petersburg)
\downarrow Quasiparticle-phonon model, QPM (V.G. Soloviev et al., Dubna; V. Ponomarev, TU-Darmstadt)
\quad Multiphonon approach (N. Lo ludice, G. De Gregorio et al., Naples \& Prague)
¿Self-consistent Green functions (W. Dickhoff, C. Barbieri, V. Soma, T. Duguet et al.)
¿ Second RPA, SRPA (C. Yannouleas, P. Chomaz, S. Drozdz, P. Papakonstantinou et al.)
Relativistic NFT (E.L., P. Ring, P. Schuck, C. Robin, H. Wibowo, Y. Zhang)

Charged mesons $\{\pi, \rho\}$:

Quantum Chromodynamics (QHD, (QCD, high energy) intermediate energy)

Nuclear
Structure
(NS, low energy)

EFTS

$Q C D$

QHD
NS

Generic interaction: model-independent, ALL channels included:

$$
H=\sum_{12} t_{12} \psi^{\dagger}{ }_{1} \psi_{2}+\frac{1}{4} \sum_{1234} \bar{v}_{1234} \psi^{\dagger}{ }_{1} \psi^{\dagger}{ }_{2} \psi_{4} \psi_{3}
$$

Hamiltonian, non-relativistic or relativistic, extendable to 3-body etc.

$$
G_{11^{\prime}}\left(t-t^{\prime}\right)=-i\left\langle T \psi_{1}(t) \psi_{1^{\prime}}^{\dagger}\left(t^{\prime}\right)\right\rangle
$$

Single-particle propagator

Fourier image: observables

$$
\begin{aligned}
& G_{11^{\prime}}(\varepsilon)=\sum_{n} \frac{\eta_{1}^{n} \eta_{1^{\prime}}^{n *}}{\varepsilon-\left(E_{n}^{(N+1)}-E_{0}^{(N)}\right)+i \delta}+\sum_{m} \frac{\eta_{1}^{m *} \eta_{1^{\prime}}^{m}}{\varepsilon+\left(E_{m}^{(N-1)}-E_{0}^{(N)}\right)-i \delta} \\
& \eta_{1}^{n}=\langle 0| \psi_{1}\left|n^{(N+1)}\right\rangle, \quad \quad \eta_{1}^{m}=\left\langle m^{(N-1)}\right| \psi_{1}|0\rangle
\end{aligned}
$$

Residues - spectroscopic (occupation) factors

Poles - single-particle energies
$R_{12,1^{\prime} 2^{\prime}}\left(t-t^{\prime}\right)=-i\left\langle T\left(\psi_{1}^{\dagger} \psi_{2}\right)(t)\left(\psi_{2^{\prime}}^{\dagger} \psi_{1^{\prime}}\right)\left(t^{\prime}\right)\right\rangle$

Particle-hole (ph) response function

Fourier image: observables
$R_{12,1^{\prime} 2^{\prime}}(\omega)=\sum_{\nu}\left[\frac{\rho_{21}^{\nu} \rho_{2^{\prime} 1^{\prime}}^{\nu *}}{\omega-\omega_{\nu}+i \delta}-\frac{\rho_{12}^{\nu *} \rho_{1^{\prime} 2^{\prime}}^{\nu}}{\omega+\omega_{\nu}-i \delta}\right]$
Residues - transition densities
$\rho_{12}^{\nu}=\langle 0| \psi_{2}^{\dagger} \psi_{1}|\nu\rangle$
Poles - excitation energies

Exact equations of motion (EOM) for binary interactions: one-body problem

EOM: Dyson Equation

$$
G_{11^{\prime}}\left(t-t^{\prime}\right)=-i\left\langle T \psi_{1}(t) \psi_{1^{\prime}}^{\dagger}\left(t^{\prime}\right)\right\rangle
$$

$G(\omega)=G^{(0)}(\omega)+G^{(0)}(\omega) \Sigma(\omega) G(\omega)$

$$
\begin{equation*}
\Sigma(\omega)=\Sigma^{(0)}+\Sigma^{(r)}(\omega) \tag{*}
\end{equation*}
$$

Free propagator
Irreducible kernel (Self-energy, exact):

Instantaneous term (Hartree-Fock incl. "tadpole") Short-range correlations

$$
\Sigma_{11^{\prime}}^{(0)}=-\delta\left(t-t^{\prime}\right)\left\langle\left[\left[V, \psi_{1}\right], \psi_{1^{\prime}}^{\dagger}\right]_{+}\right\rangle
$$

$$
=-\sum_{j l} \bar{v}_{1 j 1^{\prime} l} \rho_{l j}=
$$

t-dependent (dynamical) term
Long-range correlations

$$
\begin{aligned}
\Sigma_{11^{\prime}}^{(r)}(t & \left.-t^{\prime}\right)=-i\left\langle T\left[\psi_{1}, V\right](t)\left[V, \psi^{\dagger}{ }_{1^{\prime}}\right]\left(t^{\prime}\right)\right\rangle \\
& =-\frac{1}{4} \sum_{234} \sum_{2^{\prime} 3^{\prime} 4^{\prime}} \bar{v}_{1234} G^{i r r}\left(432^{\prime}, 23^{\prime} 4^{\prime}\right) \bar{v}_{4^{\prime} 3^{\prime} 2^{\prime} 1^{\prime}} \\
& =-\frac{1}{4}
\end{aligned}
$$

Mean field, where $\rho_{i j}=-i \lim _{t=t^{\prime}-0} G_{i j}\left(t-t^{\prime}\right)$ is the full solution of $\left(^{*}\right)$: includes the dynamical term!
The self-energy and the one-body density are fully determined by the bare (antisymmetrized) interaction and by the three-body correlation function

Equation of motion (EOM) for the paticlethole response

Particle-hole response (correlation function):

$$
R_{12,1^{\prime} 2^{\prime}}^{(p h)}\left(t-t^{\prime}\right)=-i\left\langle T\left(\psi_{1}^{\dagger} \psi_{2}\right)(t)\left(\psi_{2^{\prime}}^{\dagger} \psi_{1^{\prime}}\right)\left(t^{\prime}\right)\right\rangle
$$

spectra of excitations, masses, decays, ...

EOM: Bethe-Salpeter-Dyson Eq.

$$
R(\omega)=R^{(0)}(\omega)+R^{(0)}(\omega) F(\omega) R(\omega) \quad\left({ }^{* \star}\right) \quad F\left(t-t^{\prime}\right)=F^{(0)} \delta\left(t-t^{\prime}\right)+F^{(r)}\left(t-t^{\prime}\right)
$$

Free propagator

Instantaneous term ("bosonic" mean field): Short-range correlations

Self-consistent mean field $F^{(0)}$, where
$\rho_{12,1^{\prime} 2^{\prime}}=\delta_{22^{\prime}} \rho_{11^{\prime}}-i \lim _{t^{\prime} \rightarrow t+0} R_{2^{\prime} 1,21^{\prime}}\left(t-t^{\prime}\right)$
contains the full solution of (**) including the dynamical term!
t-dependent (dynamical) term: Long-range correlations

$$
F_{12,1^{\prime} 2^{\prime}}^{(r)}\left(t-t^{\prime}\right)=\sum_{i j} F_{12,1^{\prime} 2^{\prime}}^{(r ; i j)}\left(t-t^{\prime}\right)
$$

Non-perturbative treatment of two-point $G(n)$ in the dynamical kernels

¢. Quantum many-body problem in a nutshell: Direct EOM for $\mathcal{G}^{(n)}$ generates $G^{(n+2)}$ in the (symmetric) dynamical kernels and further high-rank correlation functions (CFs); an equivalent of the BBGKY hierarchy. NEquations $=$ Particles \& Coupled A !!! Truncation on two-body level
.8.Non-perturbative solution: $\quad G^{(3)}=G^{(1)} G^{(1)} G^{(1)}+G^{(2)} G^{(1)}+\Xi^{(3)}$
Cluster decomposition
$\rightarrow G^{(4)}=G^{(1)} G^{(1)} G^{(1)} G^{(1)}+G^{(2)} G^{(2)}+G^{(3)} G^{(1)}+\equiv(4)$

\&.P. C. Martin and J. S. Schwinger, Phys. Rev.115, 1342 (1959).
-. N. Vinh Mau, Trieste Lectures 1069, 931 (1970)
ヶ. P. Danielewicz and P. Schuck, Nucl. Phys. A567, 78 (1994)

$$
\text { \& } \ldots
$$

Exact mapping: particle-hole (iq) quasibound states
Emergence of effective "particles" (phonons, vibrations):

Emergence of superfluidity:

$\mathrm{O}_{\lambda} \longrightarrow \mathrm{O}_{x}^{\pi}$ $=$

Emergence of effective degrees of freedom

Dynamical self-energy:

Emergent phonon vertices and propagators: calculable from the underlying H, which does not contain phonon degrees of freedom

$$
\begin{aligned}
H & =\sum_{12} h_{12} \psi_{1}^{\dagger} \psi_{2}+\frac{1}{4} \sum_{1234} \bar{v}_{1234} \psi_{1}^{\dagger} \psi_{2}^{\dagger} \psi_{4} \psi_{3} \\
H & =\sum_{12} \tilde{h}_{12} \psi_{1}^{\dagger} \psi_{2}+\sum_{\lambda \lambda^{\prime}} \mathcal{W}_{\lambda \lambda^{\prime}} Q_{\lambda}^{\dagger} Q_{\lambda^{\prime}}+\sum_{12 \lambda}\left[\Theta_{12}^{\lambda} \psi_{1}^{\dagger} Q_{\lambda}^{\dagger} \psi_{2}+\text { h.c. }\right] \quad \text { "Ab-initio" }
\end{aligned}
$$

Cf.: The Standard Model elementary interaction vertices: boson-exchange interaction is the input:
Possibly derivable?

$$
\gamma, g, W^{ \pm}, Z^{0}
$$

E.L., P. Schuck, PRC 100, 064320 (2019)
E.L., Y. Zhang, PRC 104, 044303 (2021)

Dynamical kernel of particle-hole propagator (response)

Induced (exchange) terms:
Consistency condition

Leading approach (this work):

Iterated kernel:

$$
F_{121^{\prime},}=
$$

"Nested" configurations

The "anatomy" (fine structure) of the ISGMR

$\cdot 8 \cdot \Delta$ is consistent with the experimental resolution: $\Delta=\Gamma / 2$
.§.Phonon subspace of RQTBA (2q+phonon): $J^{\pi}=2^{+}, 3^{-}, 4^{+}, 5^{-}, 6^{+}$below 15 MeV .\&.Further improvable by extending the phonon subspace

NL3* vs NL3? A similar downward shift in the open-shell Sn

Ready for comparison with data

ISGMR systematics in nickelisotopes:the centroids

U. Garg, G. Colò, Progress in Particle and Nuclear Physics 101 (2018) 55-95

Superfluid dynamical kernel: adding particle-number violating contributions
Mapping on the QVC in the canonical basis

Quasiparticle dynamical self-energy (matrix):
normal and pairing phonons are unified

Cf.: Quasiparticle static self-energy (matrix) in HFB

$$
\hat{\Sigma}^{0}=\left(\begin{array}{cc}
\tilde{\Sigma}_{11^{\prime}} & \Delta_{11^{\prime}} \\
-\Delta_{11^{\prime}}^{*} & -\tilde{\Sigma}_{11^{\prime}}^{T}
\end{array}\right)
$$

E.L., Y. Zhang, PRC 104, 044303 (2021)

Transformation to quasipartic le basis

Bogolyubov transformation:

$$
\psi_{1}=\sum_{\nu}\left(U_{1 \nu} \alpha_{\nu}+V_{1 \nu}^{*} \alpha_{\nu}^{\dagger}\right), \quad \psi_{1}^{\dagger}=\sum_{\nu}\left(V_{1 \nu} \alpha_{\nu}+U_{1 \nu}^{*} \alpha_{\nu}^{\dagger}\right)
$$

$$
\begin{aligned}
& G_{\nu \nu^{\prime}}^{(+)}(\varepsilon)=\sum_{12}\left(\begin{array}{ll}
U_{\nu 1}^{\dagger} & V_{\nu 1}^{\dagger}
\end{array}\right) \hat{G}_{12}(\varepsilon)\binom{U_{2 \nu^{\prime}}}{V_{2 \nu^{\prime}}} \\
& G_{\nu \nu^{\prime}}^{(-)}(\varepsilon)=\sum_{12}\left(\begin{array}{ll}
V_{\nu 1}^{T} & U_{\nu 1}^{T}
\end{array}\right) \hat{G}_{12}(\varepsilon)\binom{V_{\nu^{\prime}}^{*}}{U_{2 \nu^{\prime}}^{*}}
\end{aligned}
$$

Propagator becomes diagonal

Dyson Eqs. decouple
for $\eta=1$ and $\eta=-1$:
Eq. for $\eta=-1$ is redundant

$$
G_{\nu \nu^{\prime}}^{(\eta)}(\varepsilon)=\tilde{G}_{\nu \nu^{\prime}}^{(\eta)}(\varepsilon)+\sum_{\mu \mu^{\prime}} \tilde{G}_{\nu \mu}^{(\eta)}(\varepsilon) \Sigma_{\mu \mu^{\prime}}^{r(\eta)}(\varepsilon) G_{\mu^{\prime} \nu^{\prime}}^{(\eta)}(\varepsilon)
$$

$\Sigma_{\nu \nu^{\prime}}^{r(+)}(\varepsilon)=\sum_{\nu^{\prime \prime} \mu}\left[\frac{\Gamma_{\nu \nu^{\prime \prime}}^{(11) \mu} \Gamma_{\nu^{\prime} \nu^{\prime \prime}}^{(11) \mu *}}{\varepsilon-E_{\nu^{\prime \prime}}-\omega_{\mu}+i \delta}+\frac{\Gamma_{\nu \nu^{\prime \prime}}^{(02) \mu *} \Gamma_{\nu^{\prime} \nu^{\prime \prime}}^{(02) \mu}}{\varepsilon+E_{\nu^{\prime \prime}}+\omega_{\mu}-i \delta}\right] \stackrel{\sim}{\Gamma} \underbrace{\nu}_{\nu^{\prime \prime}}$
HFB basis
Dynamical self-energy: acquires the same form as the non-superfluid one!

Superfluid quasiparticle-vibration coupling (QVC) vertices:

$$
\begin{aligned}
\Gamma_{\nu \nu^{\prime}}^{(11) \mu} & =\sum_{12}\left[U_{\nu 1}^{\dagger} g_{12}^{\mu} U_{2 \nu^{\prime}}+U_{\nu 1}^{\dagger} \gamma_{12}^{\mu(+)} V_{2 \nu^{\prime}}-V_{\nu 1}^{\dagger}\left(g_{12}^{\mu}\right)^{T} V_{2 \nu^{\prime}}-V_{\nu 1}^{\dagger}\left(\gamma_{12}^{\mu(-)}\right)^{T} U_{2 \nu^{\prime}}\right] \\
\Gamma_{\nu \nu^{\prime}}^{(02) \mu} & =-\sum_{12}\left[V_{\nu 1}^{T} g_{12}^{\mu} U_{2 \nu^{\prime}}+V_{\nu 1}^{T} \gamma_{12}^{\mu(+)} V_{2 \nu^{\prime}}-U_{\nu 1}^{T}\left(g_{12}^{\mu}\right)^{T} V_{2 \nu^{\prime}}-U_{\nu 1}^{T}\left(\gamma_{12}^{\mu(-)}\right)^{T} U_{2 \nu^{\prime}}\right]
\end{aligned}
$$

The phonon spectrumtin s8st and QVC

(i) Relativistic meson-nucleon Lagrangian + (ii) Relativistic Hartree-Bogoliubov (RHB) + (iii) Quasiparticle random phase approximation (QRPA): $J=2^{+}-5^{-}, K=[0, J]$. Finite amplitude method (FAM): A. BjelČić et al., CPC 253, 107184 (2020). Relativistic DD-PC1 interaction.

(iv) QVC vertex extraction:

$$
\Gamma_{\nu \nu^{\prime}}^{(i j) \varkappa}=\lim _{\delta \rightarrow 0} \sqrt{\frac{\delta}{\pi S\left(\omega_{\varkappa}\right)}} \operatorname{Im}\left(\delta \mathcal{H}_{\nu \nu^{\prime}}^{(i j)}\left(\omega_{\varkappa}+i \delta\right)\right) \quad \begin{gathered}
\text { Variation of the HFB } \\
\text { Hamiltonian at the } \\
\text { QRPA pole }
\end{gathered}
$$

(v) Dyson Eq. solution
[E.L., Y. Zhang, PRC 104, 044303 (2021)]
A. Afanasjev et al.: Long-standing problem of the description of single-particle states in deformed nuclei.

Systematic studies for ${ }^{249} \mathrm{Bk}$ and ${ }^{251} \mathrm{Cf}$ in the mean-field approximation:

Deformed one-quasiparticle states: covariant and nonrelativistic mean-field calculations vs experiment:
\qquad

Beyond mean field: RHB+QVC calculations. Dominant fragments in ${ }^{251} \mathrm{Cf}$ and ${ }^{249}$ Cf.

The spectroscopic factors are quenched even stronger than in spherical nuclei. Can this be measured?

Extended FAM (ore dminany) -

QVC vertex extraction:

$$
\Gamma_{\nu \nu^{\prime}}^{(i j) \varkappa}=\lim _{\delta \rightarrow 0} \sqrt{\frac{\delta}{\pi S\left(\omega_{\varkappa}\right)}} \operatorname{Im}\left(\delta \mathcal{H}_{\nu \nu^{\prime}}^{(i j)}\left(\omega_{\varkappa}+i \delta\right)\right)
$$

Variation of the HFB Hamiltonian at the QRPA pole

Generalized FAM (FAM-QVC)

$$
\begin{aligned}
& Q V C \\
& \delta \mathcal{R}_{\mu \nu}^{(20)}(\omega)=\frac{\delta \mathcal{H}_{\mu \nu}^{20}(\omega)+\sum_{\mu^{\prime} \nu^{\prime}} \Phi_{\mu \nu^{\prime} \nu \mu^{\prime}}^{(+)}(\omega) \delta \mathcal{R}_{\mu^{\prime} \nu^{\prime}}^{(20)}(\omega)+F_{\mu \nu}^{20}}{\omega-E_{\mu}-E_{\nu}} \\
& \delta \mathcal{R}_{\mu \nu}^{(02)}(\omega)=\frac{\delta \mathcal{H}_{\mu \nu}^{02}(\omega)+\sum_{\mu^{\prime} \nu^{\prime}} \Phi_{\mu \nu^{\prime} \nu \mu^{\prime}}^{(-)}(\omega) \delta \mathcal{R}_{\mu^{\prime} \nu^{\prime}}^{(02)}(\omega)+F_{\mu \nu}^{02}}{-\omega-E_{\mu}-E_{\nu}} .
\end{aligned}
$$

$$
\Phi_{\mu \nu^{\prime} \nu \mu^{\prime}}^{(+)}(\omega)=\sum_{n}\left[\delta_{\mu \mu^{\prime}} \sum_{\nu^{\prime \prime}} \frac{\bar{\Gamma}_{\nu^{\prime \prime} \nu}^{(11) n} \bar{\Gamma}_{\nu^{\prime \prime} \nu^{\prime}}^{(11) n *}}{\omega-E_{\mu}-E_{\nu^{\prime \prime}}-\omega_{n}}+\delta_{\nu \nu^{\prime}} \sum_{\mu^{\prime \prime}} \frac{\Gamma_{\mu \mu^{\prime \prime}}^{(11) n} \Gamma_{\mu^{\prime} \mu^{\prime \prime}}^{(11) n *}}{\omega-E_{\mu^{\prime \prime}}-E_{\nu}-\omega_{n}}-\right.
$$

QVC amplitude:

$$
\left.-\frac{\Gamma_{\mu \mu^{\prime}}^{(11) n} \bar{\Gamma}_{\nu \nu^{\prime}}^{(11) n *}}{\omega-E_{\mu^{\prime}}-E_{\nu}-\omega_{n}}-\frac{\Gamma_{\mu^{\prime} \mu}^{(11) n *} \bar{\Gamma}_{\nu^{\prime}}^{(11) n}}{\omega-E_{\mu}-E_{\nu^{\prime}}-\omega_{n}}\right]
$$

E.L., Y. Zhang, in progress (2022)

E.L., Y. Zhang, in progress (2022)

Finite temperature response the pht phonon dynamical kemael

$$
\left.\left.R_{12,1^{\prime} 2^{\prime}}\left(t-t^{\prime}\right)=-i<\mathcal{T}\left(\psi_{1}^{\dagger} \psi_{2}\right)(t) \psi_{2^{\prime}}^{\dagger}, \psi_{1^{\prime}}\right)\left(t^{\prime}\right)>\quad \rightarrow \quad \mathcal{R}_{12,1^{\prime} 2^{\prime}}\left(t-t^{\prime}\right)=-i<\mathcal{T}\left(\psi_{1}^{\dagger} \psi_{2}\right)(t) \psi_{2^{\prime}}^{\dagger} \psi_{1^{\prime}}\right)\left(t^{\prime}\right)>_{T}
$$

$$
\left.<\ldots>\equiv<0|\ldots| 0\rangle \rightarrow<\ldots>_{T} \equiv \sum_{n} \exp \left(\frac{\Omega-E_{n}-\mu N}{T}\right)<n|\ldots| n\right\rangle
$$

averages
thermal averages

Method: EOM for Matsubara Green's functions

$$
\begin{aligned}
\mathcal{R}_{14,23}(\omega, T) & =\tilde{\mathcal{R}}_{14,23}^{0}(\omega, T)+ \\
& +\sum_{1^{\prime} 2^{\prime} 3^{\prime} 4^{\prime}} \tilde{\mathcal{R}}_{12^{\prime}, 21^{\prime}}^{0}(\omega, T)\left[\tilde{V}_{1^{\prime} 4^{\prime}, 2^{\prime} 3^{\prime}}(T)+\delta \Phi_{1^{\prime} 4^{\prime}, 2^{\prime} 3^{\prime}}(\omega, T)\right] \mathcal{R}_{3^{\prime} 4,4^{\prime} 3}(\omega, T) \\
\delta \Phi_{1^{\prime} 4^{\prime}, 2^{\prime} 3^{\prime}}(\omega, T) & =\Phi_{1^{\prime} 4^{\prime}, 2^{\prime} 3^{\prime}}(\omega, T)-\Phi_{1^{\prime} 4^{\prime}, 2^{\prime} 3^{\prime}}(0, T)
\end{aligned}
$$

$T>0: \quad 1 p 1 h+p h o n o n$ dynamical kernel: $\quad T=0:$

$$
\begin{array}{r}
\Phi_{14,23}^{(p h)}(\omega, T)=\frac{1}{n_{43}(T)} \sum_{\mu} \sum_{\eta_{\mu}= \pm 1} \eta_{\mu}\left[\delta_{13} \sum_{6} \gamma_{\mu ; 62}^{\eta_{\mu}} \gamma_{\mu ; 64}^{\eta_{\mu} *} \times\right. \\
\times \frac{\left(N\left(\eta_{\mu} \Omega_{\mu}\right)+n_{6}(T)\right)\left(n\left(\varepsilon_{6}-\eta_{\mu} \Omega_{\mu}, T\right)-n_{1}(T)\right)}{\omega-\varepsilon_{1}+\varepsilon_{6}-\eta_{\mu} \Omega_{\mu}}+ \\
+\delta_{24} \sum_{5} \gamma_{\mu ; 15}^{\eta_{\mu}} \gamma_{\mu ; 35}^{\eta_{\mu} *} \times \\
\times \frac{\left(N\left(\eta_{\mu} \Omega_{\mu}\right)+n_{2}(T)\right)\left(n\left(\varepsilon_{2}-\eta_{\mu} \Omega_{\mu}, T\right)-n_{5}(T)\right)}{\omega-\varepsilon_{5}+\varepsilon_{2}-\eta_{\mu} \Omega_{\mu}}- \\
\times \frac{\left(N\left(\eta_{\mu} \Omega_{\mu}\right)+n_{2}(T)\right)\left(n\left(\varepsilon_{2}-\eta_{\mu} \Omega_{\mu}, T\right)-n_{3}(T)\right)}{\omega-\varepsilon_{3}+\varepsilon_{2}-\eta_{\mu} \Omega_{\mu} \gamma_{\mu ; 24}^{\eta_{\mu} *} \times}- \\
\left.\times \frac{\left(N\left(\eta_{\mu} \Omega_{\mu}\right)+n_{4}(T)\right)\left(n\left(\varepsilon_{4}-\eta_{\mu} \Omega_{\mu}, T\right)-\eta_{1}(T)\right)}{\omega-\varepsilon_{1}+\varepsilon_{4}-\eta_{\mu} \Omega_{\mu}}\right],
\end{array}
$$

$$
\Phi_{14,23}^{(p h, p h)}(\omega)=\sum_{\mu} \times
$$

$$
\begin{array}{r}
\times\left[\delta_{13} \sum_{6} \frac{\gamma_{62}^{\mu} \gamma_{64}^{\mu *}}{\omega-\varepsilon_{1}+\varepsilon_{6}-\Omega_{\mu}}+\right. \\
+\delta_{24} \sum_{5} \frac{\gamma_{15}^{\mu} \gamma_{35}^{\mu *}}{\omega-\varepsilon_{5}+\varepsilon_{2}-\Omega_{\mu}}- \\
\quad-\frac{\gamma_{13}^{\mu} \gamma_{24}^{\mu *}}{\omega-\varepsilon_{3}+\varepsilon_{2}-\Omega_{\mu}}- \\
\\
\left.-\frac{\gamma_{31}^{\mu *} \gamma_{42}^{\mu}}{\omega-\varepsilon_{1}+\varepsilon_{4}-\Omega_{\mu}}\right]
\end{array}
$$

The role of the exponential factor: loweenergy strength

$$
S(E, T)=-\frac{1}{\pi} \lim _{\Delta \rightarrow+0} \operatorname{Im}\left\langle V^{0 \dagger} \mathcal{R}(E+i \Delta, T) V^{0}\right\rangle
$$

Thermal unblocking:

$$
\lim _{E \rightarrow 0} S(E, T)=0
$$

The generic exponential factor:

$$
\tilde{S}(E)=\frac{1}{1-e^{-E / T}} S(E)
$$

Dipole strength: absorption at $T>0$:

- . - The exponential factor brings an additional enhancement in $E<T$ energy region and provides the finite zero-energy limit of the strength (regardless its spin-parity)

Temperature evolution of the ISGMR

Strength distribution
(Exponential factor not included)

E.L., H. Wibowo, PRL 121, 082501 (2018)
E.L., H. Wibowo, EPJA 55, 223 (2019)

Centroids

-.Major effect: softening as T grows
\&Equation of State (EOS) to be modified

GT+ response

Pairing gap (J=0)-beyond BCS

Fermionic pair propagator:

$$
G\left(12,1^{\prime} 2^{\prime}\right)=(-i)^{2}\left\langle T \psi(1) \psi(2) \psi^{\dagger}\left(2^{\prime}\right) \psi^{\dagger}\left(1^{\prime}\right)\right\rangle
$$

$$
\begin{array}{cl}
i G_{12,1^{\prime} 2^{\prime}}(\omega)=\sum_{\mu} \frac{\alpha_{21}^{\mu} \alpha_{2^{\prime} 1^{\prime}}^{\mu *}}{\omega-\omega_{\mu}^{(++)}+i \delta}-\sum_{\varkappa} \frac{\beta_{12}^{\varkappa *} \beta_{1^{\prime} 2^{\prime}}^{*}}{\omega+\omega_{\varkappa}^{(--)}-i \delta} & \alpha_{12}^{\mu}=\left\langle 0^{(N)}\right| \psi_{2} \psi_{1}\left|\mu^{(N+2)}\right\rangle \\
N+2 & \beta_{12}^{\varkappa}=\left\langle 0^{(N)}\right| \psi_{2}^{\dagger} \psi_{1}^{\dagger}\left|\varkappa^{(N-2)}\right\rangle
\end{array}
$$

E.L., P.Schuck, Phys. Rev. C 102, 034310 (2020)

Dynamical kernel ("minimal" truncation):

$$
K_{121^{\prime} 2^{\prime}}^{(r)}(\omega)=
$$

Direct

Exchange

EOM at $\omega=\omega_{s}: \quad \alpha_{21}^{s}=\frac{1-n_{1}-n_{2}}{\omega_{s}-\tilde{\varepsilon}_{1}-\tilde{\varepsilon}_{2}} \frac{1}{4} \sum_{343^{\prime} 4^{\prime}} \delta_{1234} K_{343^{\prime} 4^{\prime}}\left(\omega_{s}\right) \alpha_{4^{\prime} 3^{\prime}}^{s} \quad \Delta_{1}=2 E_{1} \alpha_{11}^{s}$
$\omega_{s} \sim 2 \lambda:$

$$
\Delta_{1}=-\sum_{2} \mathcal{V}_{1 \overline{1} 2 \overline{2}} \frac{\Delta_{2}}{2 E_{2}}
$$

$$
\mathcal{V}_{121^{\prime} 2^{\prime}}=\frac{1}{2}\left(K_{121^{\prime} 2^{\prime}}^{(0)}+K_{121^{\prime} 2^{\prime}}^{(r)}(2 \lambda)\right)
$$

Averages redefined:
$\left.\left.R_{12,1^{\prime} 2^{\prime}}\left(t-t^{\prime}\right)=-i<\mathcal{T}\left(\psi_{1}^{\dagger} \psi_{2}\right)(t) \psi_{2^{\prime}}^{\dagger} \psi_{1^{\prime}}\right)\left(t^{\prime}\right)>\quad \rightarrow \quad \mathcal{R}_{12,1^{\prime} 2^{\prime}}\left(t-t^{\prime}\right)=-i<\mathcal{T}\left(\psi_{1}^{\dagger} \psi_{2}\right)(t) \psi_{2^{\prime}}^{\dagger} \psi_{1^{\prime}}\right)\left(t^{\prime}\right)>_{T}$
Grand Canonical average: $\quad<\ldots>\equiv<0|\ldots| 0>\rightarrow<\ldots>_{T} \equiv \sum_{n} \exp \left(\frac{\Omega-E_{n}-\mu N}{T}\right)<n|\ldots| n>$

Matsubara imaginary-time formalism: temperature-dependent dynamical kernel

Direct:

$$
\mathcal{K}_{121^{\prime} 2^{\prime}}^{(r ; 11)}\left(\omega_{n}\right)=-\sum_{\nu^{\prime} \nu^{\prime \prime}} w_{\nu^{\prime}} w_{\nu^{\prime \prime}}
$$

$$
\times\left[\sum_{\nu \mu} \frac{\Theta_{121^{\prime} 2^{\prime}}^{\mu \nu ; \nu^{\prime} \nu^{\prime \prime}(+)}}{i \omega_{n}-\omega_{\nu \nu^{\prime}}-\omega_{\mu \nu^{\prime \prime}}^{(++)}}\left(e^{-\left(\omega_{\nu \nu^{\prime}}+\omega_{\mu \nu^{\prime \prime}}^{(++)}\right) / T}-1\right)\right.
$$

$$
\left.-\sum_{\nu \varkappa} \frac{\Theta_{121^{\prime} 2^{\prime}}^{\varkappa \nu \nu^{\prime} \nu^{\prime \prime}(-)}}{i \omega_{n}+\omega_{\nu \nu^{\prime}}+\omega_{\varkappa \nu^{\prime \prime}}^{(--)}}\left(e^{-\left(\omega_{\nu \nu^{\prime}}+\omega_{\varkappa \nu^{\prime \prime}}^{(--)}\right) / T}-1\right)\right]
$$

Exchange:

$$
\mathcal{K}_{121^{\prime} 2^{\prime}}^{(r ; 12)}\left(\omega_{n}\right)=\sum_{\nu^{\prime} \nu^{\prime \prime}} w_{\nu^{\prime}} w_{\nu^{\prime \prime}}
$$

$$
\times\left[\sum_{\nu \mu} \frac{\Sigma_{121^{\prime} 2^{\prime}}^{\mu \nu \nu^{\prime}(+)}}{i \omega_{n}-\omega_{\nu \nu^{\prime}}-\omega_{\mu \nu^{\prime \prime}}^{(++)}}\left(e^{-\left(\omega_{\nu \nu^{\prime}}+\omega_{\mu \nu^{\prime \prime}}^{(++)}\right) / T}-1\right)\right.
$$

$$
\left.-\sum_{\nu \varkappa} \frac{\Sigma_{121^{\prime} 2^{\prime}}^{\varkappa \nu ; ; \nu^{\prime} \nu^{\prime \prime}(-)}}{i \omega_{n}+\omega_{\nu \nu^{\prime}}+\omega_{\varkappa \nu^{\prime \prime}}^{(--)}}\left(e^{-\left(\omega_{\nu \nu^{\prime}}+\omega_{\varkappa \nu^{\prime \prime}}^{(--)}\right) / T}-1\right)\right],
$$

E.L., P.Schuck, Phys. Rev. C 104, 044330 (2021)

$$
f_{1}(T)=\frac{1}{\exp \left(E_{1} / T\right)+1}
$$

$$
\Delta_{1}(T)=-\sum_{2} \mathcal{V}_{1 \overline{1} 2 \overline{2}} \frac{\Delta_{2}(T)\left(1-2 f_{2}(T)\right)}{2 E_{2}}
$$

$$
\mathcal{V}_{121^{\prime} 2^{\prime}}=\frac{1}{2}\left(K_{121^{\prime} 2^{\prime}}^{(0)}+K_{121^{\prime} 2^{\prime}}^{(r)}(2 \lambda)\right)
$$

E.L., P.Schuck, Phys. Rev. C 104, 044330 (2021)
-. Higher-rank configurations = higher accuracy? Can we quantify this? How accurately we can describe the observed spectra, in principle?
-. Spectroscopic accuracy in nuclear structure: experiment (laser spectroscopy [eV], nuclear resonance fluorescence [keV]) ... no standards for theory. ~100 keV?
\cdot Chemical accuracy $1 \mathrm{kcal} / \mathrm{mol}=0.043 \mathrm{eV}$ is possible with the gold standard for quantum chemistry calculations, namely the canonical coupled cluster (CC) expansion truncated at the second order in the electronic excitation operator and including an approximate treatment of the triple excitations (CCSD (T), where S stands for single, D for double, and (T) for non-iterative triple) [P.J. Ollitrault et al, Phys. Rev. Res. 2, 043140, 2020]
\& $\operatorname{CCSD}(T)$ includes up to (correlated) 3p3h configurations and scales as $O\left(N^{7}\right)$ with the number of degrees of freedom N of the model Hamiltonian.
\&. In nuclear structure, there are relatively rare calculations with (correlated) 3p3h configurations for medium-heavy nuclei (QPM, EOM/RQTBA3, CC). The results are still not ideal.
\&. Is the problem in the underlying strong "forces", which are not weak and known with limited accuracy? Or the many-body methods? Likely both.
-. Working with model (solvable) Hamiltonians allows one to solely focus on the manybody problem. Can be studied with quantum and hybrid algorithms on NISQ devices.

Two-level Lipkin (Meshkov-Glick), LMG, Hamiltonian:

$$
\hat{H}=\epsilon \hat{J}_{z}-\frac{v}{2}\left(\hat{J}_{+}^{2}+\hat{J}_{-}^{2}\right)-\frac{w}{2}\left(\hat{J}_{+} \hat{J}_{-}+\hat{J}_{-} \hat{J}_{+}\right)
$$

Quasispin operators:

$$
\begin{aligned}
& \hat{J}_{z}=\frac{1}{2} \sum_{p=1}^{N}\left(\hat{a}_{p,+}^{\dagger} \hat{a}_{p,+}-\hat{a}_{p,-}^{\dagger} \hat{a}_{p,-}\right) \\
& \hat{J}_{+}=\sum_{p=1}^{N} \hat{a}_{p,+}^{\dagger} \hat{a}_{p,-} \text { and } \hat{J}_{-}=\left(\hat{J}_{+}\right)^{\dagger}
\end{aligned}
$$

$N=2 j+1$

Monopole excitations

Configuration complexity:
Excitation operator:

$$
\hat{O}_{n}^{\dagger}=\sum_{\alpha} \sum_{\mu_{\alpha}}\left[X_{\mu_{\alpha}}^{\alpha}(n) \hat{K}_{\mu_{\alpha}}^{\alpha}-Y_{\mu_{\alpha}}^{\alpha}(n)\left(\hat{K}_{\mu_{\alpha}}^{\alpha}\right)^{\dagger}\right]
$$

$$
\hat{K}_{\mu_{1}}^{1}=a_{i}^{\dagger} a_{j^{\prime}} \quad \hat{K}_{\mu_{2}}^{2}=a_{i}^{\dagger} a_{j}^{\dagger} a_{j^{\prime}} a_{i^{\prime}}
$$

M. Hlatshwayo, R. LaRose et al., arXiv:2203.01478, Phys. Rev. C (2022)

Lipkin Hamiloniah on quantum compter

The algorithm: Variational Quantum Eigensolver (VQE) + quantum EOM (qEOM)

-. VQE: a minimal encoding scheme is found ("J-scheme") and implemented, based on the symmetry of the LMG Hamiltonian. Yields an accurate ground state IO>.
-. qEOM generates efficiently the EOM matrix:

$$
\begin{aligned}
{\left[\begin{array}{cc}
\mathcal{A} & \mathcal{B} \\
\mathcal{B}^{*} & \mathcal{A}^{*}
\end{array}\right] } & {\left[\begin{array}{l}
X^{n} \\
Y^{n}
\end{array}\right]=E_{0 n}\left[\begin{array}{cc}
\mathcal{C} & \mathcal{D} \\
-\mathcal{D}^{*} & -\mathcal{C}^{*}
\end{array}\right]\left[\begin{array}{l}
X^{n} \\
Y^{n}
\end{array}\right] } \\
\mathcal{A}_{\mu_{\alpha} \nu_{\beta}} & =\langle 0|\left[\left(\hat{K}_{\mu_{\alpha}}^{\alpha}\right)^{\dagger},\left[\hat{H}, \hat{K}_{\nu_{\beta}}^{\beta}\right]\right]|0\rangle \\
\mathcal{B}_{\mu_{\alpha} \nu_{\beta}} & =-\langle 0|\left[\left(\hat{K}_{\mu_{\alpha}}^{\alpha}\right)^{\dagger},\left[\hat{H},\left(\hat{K}_{\nu_{\beta}}^{\beta}\right)^{\dagger}\right]\right]|0\rangle \\
\mathcal{C}_{\mu_{\alpha} \nu_{\beta}} & =\langle 0|\left[\left(\hat{K}_{\mu_{\alpha}}^{\alpha}\right)^{\dagger}, \hat{K}_{\nu_{\beta}}^{\beta}\right]|0\rangle \\
\mathcal{D}_{\mu_{\alpha} \nu_{\beta}} & =-\langle 0|\left[\left(\hat{K}_{\mu_{\alpha}}^{\alpha}\right)^{\dagger},\left(\hat{K}_{\nu_{\beta}}^{\beta}\right)^{\dagger}\right]|0\rangle .
\end{aligned}
$$

M. Hlatshwayo, R. LaRose et al., arXiv:2203.01478, Phys. Rev. C (2022)

M. Hlatshwayo, R. LaRose et al., arXiv:2203.01478, Phys. Rev. C (2022)

Conventions:

-. $n_{q}=$ number of states
-. $N=$ number of particles
$\cdot \mathcal{*} v=v / \varepsilon$ effective interaction strength
\%. I-scheme: individual spin basis, $n_{q}=2^{N}$
-. J-scheme: total spin basis (coupled form), symmetry: $n_{q}=N / 2+1$

Observations:
-8. Higher-rank excitation ~ higher accuracy
-. Stronger coupling ~ lower accuracy
\% More particles ~ lower accuracy
-. Less qubits \sim higher accuracy

Summary:

-r. The nuclear field theory (NFT) is formulated and advanced in the Equation of Motion (EOM) framework, with the emphasis on emergent degrees of freedom.

- ?. The emergent collective effects renormalize interactions in correlated media, underly the spectral fragmentation mechanisms, affect superfluidity and weak decay rates.
-.S.Relativistic NFT is generalized to finite temperature and applied to neutral and chargeexchange response of medium-heavy nuclei as well as to the studies of nuclear superfluidity.
-.f. The presented study of the monopole excitations suggest that correlations beyond mean field/QRPA are significant and enhanced in open-shell nuclei. Together with the finitetemperature effects, they have important astrophysical implications.

Current and future developments:

-C.Deformed nuclei: correlations vs shapes; first results on quasiparticle states just released (Yinu Zhang et al.);

- C. HFB pairing: EOM for the response function; formulation underway;
-S. Toward an "ab initio" description: implementations with bare NN-interactions;
- .S Superfluid pairing at $T>0$ to extend the application range (r-process);
- 反.Efficient algorithms for strong coupling regimes; quantum computing for increasing N and α (Manqoba Hlatshwayo);
- \&.Relativistic EOM's, bosonic EOM's, hadron physics, neutron stars,...

Many thanks for collabor ation and support:

Yinu Zhang (WMU)
Manqoba Hlatshwayo (WMU) Herlik Wibowo (AS Taipei) Caroline Robin (U. Bielefeld \& GSI) Peter Schuck (IPN Orsay) Peter Ring (TU München) Tamara Niksic (U Zagreb)

US-NSF PHY-1404343 (2014-2018) 2018 NSF CAREER PHY-1654379 (2017-2023)

2019-2020:

Thank you!

Excitation spectrum: Hierarchy of configuration complexity

Fragmentation mechanism

Fractals: Koch curve

Data: O. Wieland et al., Phys. Rev. C 98, 064313 (2018)

Excitation operator:

$$
P=\sum_{i} \sigma^{(i)} \tau_{-}^{(i)}
$$

β - decay half-life

$$
T_{1 / 2}^{-1}=\frac{g_{A}^{2}}{D} \int_{Q_{\beta}} f\left(Z, \Delta_{n p}-E\right) S(E) d E
$$

