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Hierarchy of energy scales and nuclear many-body problem

• The major conflict: 
Separation of energy scales => effective field theories 

vs 
The physics on a certain scale is governed by the next 
higher-energy scale

• Possible solution:  
Keep/establish connections between the scales  
via emergent phenomena 

H = K + V
Hamiltonian:

center of mass internal degrees of freedom:  
next energy scale

String theory: 
merging strings 
NO “Interaction”

Standard Model: 
free propagation and 
interaction, singularities &  
renormalizations

“ab initio”

Configuration
Interaction (CI)

Density Functional 
Theory (DFT)

Collective
coordinates

(CC)

QCD

String 
theory

>106

Degrees of freedom  Energy [MeV]

electrons

strings

Atomic theory 13.6 x 10-6 

binding energy of H-atom



The Equation of Motion (EOM) method

EOM method: 
D. J. Rowe, Rev. of Mod. Phys. 40, 153 (1968). 
P. Schuck, Z. Phys. A 279, 31 (1976). 
S. Adachi and P. Schuck, NPA496, 485 (1989).
P. Danielewicz and P. Schuck, NPA567, 78 (1994) 
J. Dukelsky, G. Roepke, and P. Schuck, NPA 625, 14 (1995). 
P. Schuck and M. Tohyama, PRB 93, 165117 (2016). 
P. Schuck et al., Phys. Rep. 929, 1 (2021).

Generates EOM’s for time-dependent field operators and correlation functions, 
i.g., in-medium propagators.
Propagators are linked directly to observables.
Two-time (one fermion and two-fermion) propagators are most relevant ones 
for nuclear physics applications.
Interaction kernels: static (short-range correlations) + dynamical (long-range 
correlations).
The exact EOM’s for the propagators are coupled into an N-body equation 
hierarchy via dynamical kernels.
Practical implementations: full or partial decoupling via various approximations. 

Nuclear physics implementations beyond (Q)RPA: 2p2h, 3p3h 

Nuclear field theory, NFT (P.F. Bortignon, R. Broglia, G. Colo, Milano-Copenhagen; V. Tselyaev, S. 
Kamerdzhiev et al.,St. Petersburg) 
Quasiparticle-phonon model, QPM (V.G. Soloviev et al., Dubna; V. Ponomarev, TU-Darmstadt) 
Multiphonon approach (N. Lo Iudice, G. De Gregorio et al., Naples & Prague) 
Self-consistent Green functions (W. Dickhoff,  C. Barbieri, V. Soma, T. Duguet et al.) 
Second RPA, SRPA (C. Yannouleas, P. Chomaz, S. Drozdz, P. Papakonstantinou et al.) 
Relativistic NFT (E.L., P. Ring, P. Schuck, C. Robin, H. Wibowo, Y. Zhang)



The underlying mechanism of NN-interaction : 
meson exchange and EFTs

Charged mesons {π, ρ}:
Quantum  

Chromodynamics 
(QCD, high energy)

Quantum 
Hadrodynamics (QHD,  
intermediate energy)
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A strongly-correlated many body system:  
single-fermion propagator, particle-hole propagator and related observables

Hamiltonian, non-relativistic 
or relativistic, extendable to 3-body etc. 

Single-particle 
propagator

Residues - spectroscopic  
(occupation) factors  

Poles - single-particle 
energies

Fourier image: observables

G110(t� t0) = �ihT 1(t) 
†
10(t

0)i
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Particle-hole (ph)  
response function

Residues - transition 
densities 

Poles - excitation energies

Fourier image: observables

R 1’

2’

1

2



Exact equations of motion (EOM) for binary interactions: one-body problem

(*)

The self-energy and the one-body density  
are fully determined  by the bare (antisymmetrized) interaction  
and by the three-body correlation function 

is the full solution of (*): includes the dynamical term!Mean field, where

Irreducible kernel (Self-energy, exact): Free propagator

t-dependent (dynamical) term 
Long-range correlations

irr

=

=

irr

Instantaneous term (Hartree-Fock incl. “tadpole”) 
Short-range correlations

= =

1 1’

j l

5

As we will see in the following, it is useful to determine
the equation of motion for this function with respect to
t
0:

R110(t� t
0)
 �
@t0 = �i�(t� t

0)h
⇥
[V, 1](t), 

†
10(t

0)
⇤
+
i �

� hT [V, 1](t)[H, 
†
10 ](t

0)i. (22)

Using the commutator

[H, 
†
10 ] = "10 

†
10 + [V, †

10 ], (23)

one arrives at the EOM for R110(t� t
0):

R110(t� t
0)(�i �@t0 � "10) = ��(t� t

0)h
⇥
[V, 1](t), 

†
10(t

0)
⇤
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i

+ ihT [V, 1](t)[V, 
†
10 ](t

0)i. (24)

Combining it with the first EOM (20) and performing the
Fourier transformation to the energy (frequency) domain
with respect to the time di↵erence t� t

0, we obtain

G110(!) = G
(0)
110(!) +

X

220

G
(0)
12 (!)T220(!)G

(0)
2010(!), (25)

where we introduced the free (uncorrelated) one-fermion

propagator G
(0)
110(!) = �110/(! � "1) and the interaction

kernel (one-body T-matrix, not to be confused with the
time ordering operator):

T110(t� t
0) = T

(0)
110 (t� t

0) + T
(r)
110 (t� t

0),

T
(0)
110 (t� t

0) = ��(t� t
0)h
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[V, 1](t), 

†
10(t

0)
⇤
+
i,

T
(r)
110 (t� t

0) = ihT [V, 1](t)[V, 
†
10 ](t

0)i. (26)

Here and in the following we use the superscript ”(0)”
to denote the static parts of the interaction kernels and
”(r)” for their dynamical time-dependent parts, which
are associated with retardation e↵ects in our approach.
The EOM (25) which, in the operator form, is

G(!) = G
(0)(!) +G

(0)(!)T (!)G(0)(!), (27)

can be transformed to the Dyson equation:

G(!) = G
(0)(!) +G

(0)(!)⌃(!)G(!) (28)

with the interaction kernel ⌃(!), such as

T (!) = ⌃(!) + ⌃(!)G(0)(!)T (!), (29)

from which it follows that the operator ⌃ represents the
one-fermion self-energy (also called mass operator) as
the irreducible (with respect to one-fermion line) part
of the kernel T : ⌃ = T

irr. Analogously to Eq. (26), the
self-energy is decomposed into the instantaneous mean-
field part ⌃(0) and the energy-dependent dynamical part
⌃(r)(!):

⌃110(!) = ⌃(0)
110 + ⌃(r)

110(!). (30)

Notice here that the decomposition of the kernels (26,30)
into the static and time- (energy-) dependent, or dynam-
ical, parts is a generic feature and the direct consequence

of the time-independence of the bare interaction V of Eq.
(6).

The first static (instantaneous) terms of both kernels
coincide and read:

T
(0)
110 (t� t

0) = ��(t� t
0)h

⇥
[V, 1](t), 

†
10(t

0)
⇤
+
i =

= ��(t� t
0)h

⇥
[V, 1], 

†
10
⇤
+
i. (31)

Here we need first to evaluate the commutator [V, 1]
which, with help of the anticommutation relations (3),
can be obtained as

[V, 1] =
1

2

X

ikl

v̄i1kl 
†
i
 l k, (32)

where the Latin indices have the same meaning as the
number indices and the definition of the antisymmetrized
interaction matrix elements v̄1234 = v1234 � v1243 was
taken into account. Evaluating the anticommutator

[ †
j
 l k, 

†
10 ]+ =  

†
j
 l�10k �  †

j
 k�10l, (33)

one gets:

[[V, 1], 
†
10 ]+ = �

X

il

v̄1i10l 
†
i
 l. (34)

Thus, the first (instantaneous) part ⌃(0) of the mass op-
erator (30) is associated with the mean field contribution:

⌃(0)
110 = �h[[V, 1], 

†
10 ]+i =

X

il

v̄1i10l⇢li, (35)

where ⇢li = h †
i
 li is the ground-state one-body density

and we have applied the (anti)symmetry properties of the
antisymmetrized interaction matrix elements: v̄1234 =
�v̄1243 = �v̄2134 = v̄2143. The second (dynamical) part
⌃(r)(!) of the mass operator comprises all retardation
e↵ects induced by the nuclear medium.
In order to understand the dynamical part ⌃(r)(!) of

the self-energy ⌃(!), let us first evaluate its reducible

counterpart T
(r)
110 (t � t

0). Here we can use the result of
Eq. (32) for the commutator [V, 1], and the following
result for the second commutator:

[V, †
10 ] =

1

2

X

mnq

v̄mn10q 
†
m
 
†
n
 q, (36)

so that

T
(r)
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0) =

= � i
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or, returning to the number indices,

T
(r)
110 (t� t

0) = � i

4

X

203040

X

234

v̄1234 ⇥

⇥ hT †(2) (4) (3) †(30) †(40) (20)iv̄40302010 ,
(38)
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EOM: Dyson Equation



Particle-hole response 
(correlation function):

Equation of motion (EOM) for the particle-hole response 
(ph)

spectra of excitations,  
masses, decays, …

(**)

EOM: Bethe-Salpeter-Dyson Eq.

Irreducible kernel (exact):Free propagator

t-dependent (dynamical) term: 
Long-range correlations

contains the full solution of (**) including the dynamical term!

Self-consistent mean field F(0), where

Instantaneous term (“bosonic” mean field): 
Short-range correlations

⇢12,1020 = �220⇢110 � i lim
t0!t+0

R201,210(t� t0)
F (r)
12,1020(t� t0) =

X

ij

F (r;ij)
12,1020(t� t0)
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v vR(ph)=

v v(pp)= G

Emergence of effective  
“particles” (phonons, vibrations): 

Emergence of superfluidity:

Exact mapping: particle-hole (2q) quasibound states

Non-perturbative treatment of two-point G(n) in the dynamical kernels

Quantum many-body problem in a nutshell: Direct EOM for G(n) generates G(n+2) in the 
(symmetric) dynamical kernels and further high-rank correlation functions (CFs); an equivalent 

of the BBGKY hierarchy. NEquations = NParticles & Coupled 🙈  !!! 

Non-perturbative solution: 
 Cluster decomposition 

G(3)  = G(1) G(1) G(1)  + G(2) G(1)   +    Ξ(3) 

G(4)  = G(1) G(1) G(1) G(1) + G(2) G(2)  + G(3) G(1)  + Ξ(4)

P. C. Martin and J. S. Schwinger, 
Phys. Rev.115, 1342 (1959). 
N. Vinh Mau, Trieste Lectures 
1069, 931 (1970) 
P. Danielewicz and P. Schuck, 
Nucl. Phys. A567, 78 (1994) 
…

G GR(3) (pp)
(ph)

+

~~G(4) +

~~

G (pp)

G (pp)R(ph)

R (ph)

Truncation on two-body level



Emergence of effective degrees of freedom

E.L., P. Schuck, PRC 100, 064320 (2019) 
E.L., Y. Zhang, PRC 104, 044303 (2021)

Cf.: The Standard Model elementary interaction vertices: boson-exchange interaction is the input:

�, g,W±, Z0
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Emergent phonon vertices and propagators: calculable from the underlying H, which does not contain phonon 
degrees of freedom

H =
X

12

h12 
†
1 2 +

1

4

X

1234

v̄1234 
†
1 

†
2 4 3

H =
X

12

h̃12 
†
1 2 +

X

��0

W��0Q
†
�Q�0 +

X

12�

h
⇥�

12 
†
1Q

†
� 2 + h.c.

i
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“Ab-initio” 

Effective

~~
“Fish” diagrams Second-order

Possibly derivable?

Dynamical self-energy: 

Quasiparticle-vibration coupling (QVC)



Dynamical kernel of particle-hole propagator (response)

i δ
δG =

G
×

= =i δ
δG

=
Induced (exchange) terms:
Consistency condition

+

2 2 ’

1 1 ’

R (n) +

2 2 ’

1 1 ’

2 2 ’

1 1 ’

+R(n) R
(n)

2 2 ’

1 1 ’

F      =
121 ’2 ’ R (n)(n+1)

F      =121 ’2 ’

1 ’ ’

2 2 ’

1 1 ’

2 2 ’

1 1 ’

2 ’ ’
2 2 ’

1 1 ’

2 2 ’

1 1 ’

+ + +Leading approach
(this work):

Iterated kernel:

“Nested”
configurations 
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The “anatomy”  (fine structure) of the ISGMR
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Isoscalar giant monopole resonance (ISGMR)  
in medium-mass and heavy nuclei: comparison to data

Δ is consistent with the experimental resolution: Δ = Γ/2
Phonon subspace of RQTBA (2q+phonon): Jπ =  2+, 3-, 4+, 5-, 6+ below 15 MeV
Further improvable by extending the phonon subspace

Knm = 258.28 MeV



ISGMR in tin: open-shell vs closed-shell

NL3* vs NL3?
A similar downward shift 

in the open-shell Sn 

Ready for comparison
with data

Knm = 271.8 MeV



ISGMR systematics in nickel isotopes



ISGMR systematics in nickel isotopes: the centroids

U. Garg, G. Colò, Progress in Particle and Nuclear Physics 101 (2018) 55–95  

Effective nuclear 
compression modulus
(incompressibility)

Knm = 271.8 MeV

“Softness” increases:
 

with the neutron 
number

with correlations 
beyond QRPA (q)PVC



Deformed nuclei

Mapping on the QVC in the canonical basis

Quasiparticle dynamical self-energy (matrix):
normal and pairing phonons are unified

Cf.: Quasiparticle static self-energy (matrix) in HFB

E.L., Y. Zhang, PRC 104, 044303 (2021)
Y. Zhang et al., PRC 105, 044326 (2022)

Superfluid dynamical kernel: adding particle-number violating contributions



Transformation to quasiparticle basis

Bogolyubov
transformation:

Propagator becomes diagonal

Dyson Eqs. decouple
for η=1 and η=-1:
Eq. for η=-1 is redundant

Dynamical self-energy: acquires the 
same form as the non-superfluid one!

Superfluid 
quasiparticle-vibration
coupling (QVC) vertices:

Γ

ν ν’µ

Γ ν’’

E.L., Y. Zhang, PRC 104, 044303 (2021)

HFB basis



The phonon spectrum in 38Si and QVC
(i) Relativistic meson-nucleon Lagrangian + (ii) Relativistic Hartree-Bogoliubov (RHB) + (iii) 
Quasiparticle random phase approximation (QRPA): J = 2+ - 5-, K = [0,J] . Finite amplitude 
method (FAM):  A. Bjelčić et al., CPC 253, 107184 (2020). Relativistic DD-PC1 interaction.

(iv) QVC vertex extraction:

Variation of the HFB
Hamiltonian at the

QRPA pole

(v) Dyson Eq. solution                         [E.L., Y. Zhang, PRC 104, 044303 (2021)]



Single-particle states in 249,251Cf
Deformed one-quasiparticle states: covariant and non-
relativistic mean-field calculations vs experiment:

Y. Zhang et al., PRC 105, 044326 (2022)

Beyond mean field: RHB+QVC
calculations. Dominant fragments in 251Cf 
and 249Cf. 

The spectroscopic factors are quenched even 
stronger than in spherical nuclei. Can this be 
measured? 

A. Afanasjev et al.: Long-standing problem 
of the description of single-particle states 
in deformed nuclei.

Systematic studies for 249Bk and 251Cf in 
the mean-field approximation:



Extended FAM (preliminary): 

QVC vertex 
extraction:

Variation of the HFB
Hamiltonian at the

QRPA pole

QVC

Generalized FAM (FAM-QVC)

QVC amplitude:

E.L., Y. Zhang, in progress (2022)



FAM-QVC (preliminary): 

E.L., Y. Zhang, in progress (2022)

β2 = 0.53
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Finite-temperature response: the ph+phonon dynamical kernel
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T = 0:T > 0: 1p1h+phonon dynamical kernel:
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X
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⇣⌦� En � µN
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⌘
< n|...|n >

averages thermal averages

Method: EOM
for Matsubara
Green’s functions



The role of the exponential factor: low-energy strength 

The final strength 
function at T>0:

The generic exponential factor:

The exponential factor brings an additional enhancement in E<T energy region and provides the finite  
zero-energy limit of the strength (regardless its spin-parity) 

~

Dipole strength: absorption at T>0:

E.L., H. Wibowo, Phys. Rev. Lett. 121, 082501 (2018) 
H. Wibowo, E.L., Phys. Rev. C 100, 024307 (2019) 

Thermal unblocking:



Temperature evolution of the ISGMR

Strength distribution 
(Exponential factor not included) Centroids

E.L., H. Wibowo, PRL 121, 082501 (2018) 
E.L., H. Wibowo, EPJA 55, 223 (2019)

Major effect: softening as T grows 
Equation of State (EOS) to be modified



GT+ response and electron capture (EC) rates at T>0:   
the neighborhood of  78Ni

E.L., C. Robin, H. Wibowo, PLB 800, 
135134 (2020)
E.L., H. Wibowo, PRL 121, 082501 (2018) 
E.L., C. Robin, PRC 103, 024326 (2021)

2q:
2q+phonon

Parametrization (LMP)

GT+ response Electron capture rates around 78Ni

Amplifies the EC rates and, consequently,
Reduces the electron-to-baryon ratio leading to 
lower pressure
Promotes the gravitational collapse 
Increases the neutrino flux and effective cooling
Allows heavy nuclei to survive the collapse 

Interplay of superfluidity and collective effects
in core-collapse supernovae:

Su
pe

rfl
ui

d

    
     pairing

no pairing

N
on

-s
up

er
flu

id

Tc



Pairing gap (J=0) beyond BCS 

EOM at ω = ωs:

ωs ~ 2λ: 

Fermionic pair propagator:

N+2 N-2

Dynamical kernel
(“minimal” truncation): 

K(r)
121020(!) =
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+

Direct

Exchange

E.L., P.Schuck, Phys. Rev. C 102, 034310 (2020)



Formalism at T>0 

R12,1020(t�t0) = �i < T ( †
1 2)(t) 

†
20 10)(t

0) > ! R12,1020(t�t0) = �i < T ( †
1 2)(t) 

†
20 10)(t

0) >T

< ... >⌘< 0|...|0 > ! < ... >T⌘
X

n

exp
⇣⌦� En � µN

T

⌘
< n|...|n >Grand Canonical average:

Averages redefined:

Matsubara imaginary-time formalism: temperature-dependent dynamical kernel

Direct: Exchange:

BCS-like gap Eq., but with non-trivial T-dependence in K(r):

E.L., P.Schuck, Phys. Rev. C 104, 044330 (2021)



Pairing gap at Τ = 0, T>0 and critical temperature 

E.L., P.Schuck, Phys. Rev. C 104, 044330 (2021)



Are there theoretical limits on accuracy?

Higher-rank configurations = higher accuracy? Can we quantify this? How accurately 
we can describe the observed spectra, in principle?  

Spectroscopic accuracy in nuclear structure: experiment (laser spectroscopy [eV], 
nuclear resonance fluorescence [keV]) … no standards for theory. ~100 keV? 

Chemical accuracy 1 kcal/mol = 0.043 eV  is possible with the gold standard for 
quantum chemistry calculations, namely the canonical coupled cluster (CC) expansion 
truncated at the second order in the electronic excitation operator and including an 
approximate treatment of the triple excitations (CCSD(T), where S stands for single, D 
for double, and (T) for non-iterative triple) [P.J. Ollitrault et al, Phys. Rev. Res. 2, 
043140, 2020] 

CCSD(T) includes up to (correlated) 3p3h configurations and scales as O(N7) with the 
number of degrees of freedom N of the model Hamiltonian.  

In nuclear structure, there are relatively rare calculations with (correlated) 3p3h 
configurations for medium-heavy nuclei (QPM, EOM/RQTBA3, CC). The results are still 
not ideal. 

Is the problem in the underlying strong “forces”, which are not weak and known with 
limited accuracy? Or the many-body methods? Likely both. 

 Working with model (solvable) Hamiltonians allows one to solely focus on the many-
body problem. Can be studied with quantum and hybrid algorithms on NISQ devices. 



Lipkin Hamiltonian on quantum computer

Two-level Lipkin (Meshkov-Glick), LMG, Hamiltonian:

M. Hlatshwayo, R. LaRose et al., arXiv:2203.01478, Phys. Rev. C (2022)

Excitation operator:

Quasispin operators:

…

Configuration complexity:

ε

N = 2j + 1

Monopole
excitations



Lipkin Hamiltonian on quantum computer

The algorithm: Variational Quantum Eigensolver (VQE) + quantum EOM (qEOM) 

VQE: a minimal encoding scheme is found (“J-scheme”) and implemented, based on the 
symmetry of the LMG Hamiltonian. Yields an accurate ground state |0>.  

 qEOM generates efficiently the EOM matrix: 

M. Hlatshwayo, R. LaRose et al., arXiv:2203.01478, Phys. Rev. C (2022)



Lipkin Hamiltonian on quantum computer: hardware results

Conventions:
nq = number of states 
N = number of particles
v = v /ε effective interaction strength

I-scheme: individual spin basis, nq = 2N

J-scheme: total spin basis                  
(coupled form), symmetry: nq = Ν/2 + 1

Observations:
Higher-rank excitation ~ higher accuracy
Stronger coupling ~ lower accuracy
More particles ~ lower accuracy 
Less qubits ~ higher accuracy

M. Hlatshwayo, R. LaRose et al., arXiv:2203.01478, Phys. Rev. C (2022)



Outlook

Summary: 

 The nuclear field theory (NFT) is formulated and advanced in the Equation of Motion (EOM) 
framework, with the emphasis on emergent degrees of freedom. 
 The emergent collective effects renormalize interactions in correlated media, underly the 
spectral fragmentation mechanisms, affect superfluidity and weak decay rates.  
Relativistic NFT is generalized to finite temperature and applied to neutral and charge-
exchange response of medium-heavy nuclei as well as to the studies of nuclear superfluidity. 
 The presented study of the monopole excitations suggest that correlations beyond mean 
field/QRPA are significant and enhanced in open-shell nuclei. Together with the finite-
temperature effects, they have important astrophysical implications. 

Current and future developments: 

Deformed nuclei: correlations vs shapes; first results on quasiparticle states just released 
(Yinu Zhang et al.); 
HFB pairing: EOM for the response function; formulation underway; 
Toward an “ab initio” description: implementations with bare NN-interactions; 
Superfluid pairing at T>0 to extend the application range (r-process);  
Efficient algorithms for strong coupling regimes; quantum computing for increasing N and α 
(Manqoba Hlatshwayo); 
Relativistic EOM’s, bosonic EOM’s, hadron physics, neutron stars,… 
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Excitation spectrum: Hierarchy of configuration complexity

Fragmentation mechanism

Fractals: Koch curve

2q:

Gross structure

2q+phonon:

Fine structure

2q+2phonon:

22

(131)

where ⌘ = 5hr2i/3 and the second term in the brackets
eliminates the spurious translational mode [93].

A su�ciently large quasiparticle basis in both Fermi
(particle) and Dirac (antiparticle) sectors should be used
in solving Eqs. (116, 126). Although the dynami-
cal kernels �(!), which induce fragmentation of two-
quasiparticle configurations, may be cut o↵ outside a
window confined by the energy of interest, the static
kernel Ṽ has to be included in the complete or nearly
complete two-quasiparticle space [29]. The latter ker-
nel is responsible for the correct location of the simple
(R(Q)RPA) modes of the strength distribution and asso-
ciated mainly with the medium-range correlations, while
the former kernels introduce the long-range e↵ects caus-
ing the redistribution of the strength. Here the complete-
ness means that the two-quasiparticle basis, in which
Eqs. (116, 126) are solved, should include all the single-
quasiparticle states which participate in the RMF self-
consistent procedure. In our case the basis spans the
single-quasiparticle states with the angular momenta up
to 41/2 in both Fermi and Dirac sectors, the same range
where the parameters of the Lagrangian have been fitted.
The respective energy range of the two-quasiparticle ex-
citations is confined by ⇠250 MeV in the Fermi sector
and by ⇠-1950 MeV in its Dirac counterpart. Keep-
ing the complete two-quasiparticle basis in Eqs. (116,
126) guarantees full self-consistency, in particular, the
proper decoupling of the dipole translational mode from
the intrinsic dipole excitations in R(Q)RPA [10, 92]. This
fact can be verified numerically, for instance, by cal-
culating the isoscalar dipole strength distribution pro-
duced by the response to the operator of Eq. (131),
where the radial form factor is corrected for the center
of mass motion. Without this correction one typically
sees a dominant peak located at zero energy, as we show
in the left panel of Fig. 15 in comparison to the right
panel, where the response to the corrected isoscalar op-
erator is displayed, for 48Ca. One can see that in the
latter case the zero-energy translational mode is sup-
pressed. Moreover, this property is kept in the extended
R(Q)TBA and EOM/R(Q)TBA3 models - indeed, the
subtraction procedure of Eqs. (120, 126) leads to the
purely R(Q)RPA kernel in the ! ! 0 limit. This feature
is known since early implementations of the time blocking
method with the subtraction [71]. However, in R(Q)TBA
and EOM/R(Q)TBA3 the translational mode may be
fragmented because, like the physical states, it can be
coupled to the phonons. Although, due to the subtrac-
tion procedure, the main peak of the translational mode
remains at zero energy, its fragments may spread around
it. As the excited states calculated with the uncorrected
and corrected isoscalar dipole operators look di↵erent in
both the R(Q)TBA and EOM/R(Q)TBA3, in the present
implementations these models do not guarantee complete
decoupling of the spurious mode from the physical states.
A solution to this problem was proposed in Ref. [94] in
the form of a projection operator applied to the dynami-
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FIG. 15. The low-energy isoscalar dipole strength distri-
butions in 48Ca calculated in R(Q)RPA, R(Q)TBA and
EOM/R(Q)TBA3 with� = 200 keV for the uncorrected (left)
and corrected (right) for the spurious translational mode op-
erators of Eq. (131).
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FIG. 16. Giant dipole resonance in 42,48Ca nuclei calculated
within R(Q)RPA, R(Q)TBA and EOM/R(Q)TBA3 with � =
500 keV, in comparison to experimental data of Ref. [83, 95].

cal kernel, that prevents the coupling of complex config-
urations to the translational mode and, thus, removes its
admixture to the physical states. Performing this trans-
formation is beyond the scope of the present article, but
will be considered in future work. The sensitivity of our
present implementation to the two-quasiparticle basis in-
completeness was inspected and revealed that an energy
cut-o↵ of this basis by ⇠100 MeV in the Fermi sector and
⇠-1800 MeV in its Dirac counterpart does not introduce
noticeable changes in the excitation spectra, that can be
used for more economical calculations.
The results of calculations for the electromagnetic

dipole response in 42,48Ca are displayed in Fig. 16. The
strength distribution obtained within EOM/RQTBA3

(red solid curves) is plotted against the results of RQRPA
(black dot-dashed curves) and RQTBA (blue dashed
curves) and compared to experimental data (green curves
and circles) of Ref. [83] in terms of the dipole photoab-
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FIG. 19. The low-energy dipole spectrum of 68Ni nucleus
calculated within RQRPA, RQTBA and EOM/RQTBA3 with
� = 200 keV. Top: the isoscalar dipole strength distribution,
bottom: the electromagnetic dipole strength distribution in
comparison to experimental data of Ref. [108].

strength below 15 MeV, which is often associated with
the pygmy dipole resonance and the neutron skin oscilla-
tion, lies above the neutron emission threshold that is
located experimentally at ⇠7.8 MeV [83]. Thus, this
strength forms mostly a continuous spectrum. It can
be seen that RQRPA provides a too poor description of
the observed strength: it gives a distinct peak at about
9.5 MeV while the experimental strength of Ref. [108]
shows a nearly flat distribution with a slow growth to-
ward higher energies up to 13 MeV, where it relatively
sharply increases by a factor of two. RQTBA approach
produces a significant improvement of the description
of the strength: the main RQRPA peak is fragmented
and the overall strength distribution comes out much
flatter following better the experimental trend. The
EOM/RQTBA3, in turn, smoothes the strength distri-
bution further improving the agreement with data. The
only remaining drawback is that the total strength be-
tween 6 and 10 MeV is somewhat overestimated. Fur-
ther refinement of the model should clarify whether more
spreading toward lower energies can be induced by more
complex configurations and the exact treatment of the
continuum [71, 110] or the static e↵ective interaction of
the NL3 type, the minimal RMF parametrization with
only 6 parameters, employed for these calculations is re-
sponsible for the remaining discrepancy.

In the top panel of Fig. 19 we show the ISE1 coun-
terpart of the low-energy dipole strength in 68Ni. Re-
markably, the coarse-grain pattern of the isoscalar dipole
strength is very similar to that of the electromagnetic
one. A similar sharp peak appears in RQRPA at about
9.5 MeV and similar fragmentation e↵ects are induced
by the 2q⌦phonon and 2q⌦2phonon configurations. In
the final EOM/RQTBA3 calculation a relatively distinct
peak at approximately 7.5 MeV remains on the back-
ground of the flat isoscalar strength distribution, that is

not the case for the EME1 strength. While there is no ex-
perimental data for the ISE1 strength in 68Ni, some theo-
retical studies are available. In particular, Ref. [109] pro-
vides RPA and QRPA calculations of the isoscalar dipole
strength for a chain of nickel isotopes including 68Ni. In
the low-energy region both QRPA based on the Gogny
D1S forces and continuum RPA with the SLy4 Skyrme
interaction give a dominant peak around 10.5 MeV, that
agrees reasonably well with our RQRPA calculation. For
the EME1 strength the authors of Ref. [109] obtain a
two-peak structure at the energies corresponding to the
major and a minor peaks of their ISE1 strength distribu-
tion. However, fragmentation e↵ects, if they were added
beyond R(Q)RPA, would, probably, change those pat-
terns, as it typically occurs in various implementations of
the PVC mechanism. The insights about the exact con-
tinuum e↵ects provided in this work are very important
and point out to the necessity of an accurate continuum
treatment.
Other types of interactions may be also considered in a

future work. Density-dependent parametrizations of the
meson-exchange interaction [111, 112] or point-coupling
[113, 114] should provide a better performance in the de-
scription of the modes related to the symmetry energy as
they imply more careful fits of the isovector sector [115].
Ideally, the realization of the presented approach should
be based on a microscopic interaction, in order to in-
crease the predictive power. Numerical implementations
based on microscopic interactions should provide a rea-
sonable approximation to the two-body density matrix at
the starting point. There can be various strategies, such
as the Similarity Renormalization Group [56], Brückner
G-matrix [116, 117] or the Unitary Correlation Opera-
tor Method [63, 64] with subsequent solution of the RPA
equations and extracting the two-body densities. The
capabilities of various potentials describing the nucleon-
nucleon scattering data to successfully perform within
the presented approach will be also addressed by future
e↵ort.

VIII. SUMMARY AND OUTLOOK

In this article we revisit, compare and advance non-
perturbative approaches to the quantum many-body
problem. The equation of motion method is reviewed for
the one-fermion and two-time two-fermion Green func-
tions in a strongly-correlated medium. The dynami-
cal kernels of the final EOM’s containing three- and
four-body propagators are approximated by the non-
perturbative cluster expansions truncated on the two-
body level. The resulting EOM’s form a closed set of
equations for one- and two-fermion propagators, where
the latter include the particle-hole, particle-particle, and
hole-hole components.
This approach is confronted with another class of

closely related methods developed originally as exten-
sions of the Landau-Migdal Fermi-liquid theory by the

Data: O. Wieland et al., Phys. Rev. C 98, 064313 (2018)

Giant dipole resonance in 42,48Ca

“Pygmy” dipole resonance in 68Ni
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Spin-isospin excitations: Gamow-Teller resonance in neutron-rich nickel 

2q:

2q+phonon

C. Robin, E.L., EPJA 52, 205 (2016) 
C. Robin, E.L., PRL 123, 202501 (2019) 
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