# Skyrme-QRPA for monopole modes of excitation 

A role of nuclear deformation
K. Yoshida (Kyoto U.)

## Giant resonances: collective modes of surface vibration

classical and intuitive picture

$L=2:$ Giant Quadrupole Resonance (GQR)
$L=3:$ High Energy Octupole Resonance (HEOR)
strongly excited by a one-body operator, exhaust a sum-rule value

$$
\hat{O}=\sum_{\sigma \sigma^{\prime}} \sum_{\tau \tau^{\prime}} \underset{\text { space }}{ } \vec{r} r^{L} Y_{L}(\hat{r}) \hat{\psi}^{\dagger}(\vec{r} \sigma \tau)\langle\sigma|\left\{\begin{array}{c}
1 \\
\vec{\sigma}
\end{array}\right\}\left|\sigma^{\prime}\right\rangle\langle\tau|\left\{\begin{array}{c}
1 \\
\vec{\tau}
\end{array}\right\}\left|\tau^{\prime}\right\rangle \hat{\psi}\left(\vec{r} \sigma^{\prime} \tau^{\prime}\right)
$$

rich variety of modes depending on $\Delta L, \Delta S, \Delta T$, and $\Delta N$. affected by many-body correlations (deformation and superfluidity)

## Giant Monopole Resonance (GMR)

$\hat{O}=\sum_{\sigma \tau} \int d \vec{r} r^{2} \psi^{\dagger}(\vec{r} \sigma \tau) \psi(\vec{r} \sigma \tau)$
volume change

incompressibility of nuclear matter

Blaizot ('80)
deformation splitting?
Garg+ ('80)
Youngblood+ ('99)


## Deformation splitting?

IVGDR

$$
\omega_{\|} \propto \frac{1}{R_{\|}}
$$

$K=0$

=0
$\omega_{\perp} \propto \frac{1}{R_{\perp}}$


GMR

no angle dependence contrary to GDR

$$
Y_{0}(\hat{r}) \quad Y_{1 K}(\hat{r})
$$

Yoshida-Nakatsukasa ('11)


## GMR in the Sm isotopes




## GMR in the Sm isotopes

## Yoshida-Nakatsukasa ('13) <br>  <br> Exp.: Itoh+ ('03) <br> 

## GMR in the Sm isotopes

## Yoshida-Nakatsukasa ('13) <br>  <br> 

## GMR in the Sm isotopes



## Coupling between GMR and GQR



## Deformation splitting of the GQR



## Coupling at the static level

Yoshida ('21)


## Deformation effect on GMR in light nuclei: universality



occurrence of the "lower-energy ( $\sim 15 \mathrm{MeV}$ )" peak due to coupling to the $K=0$ of GQR

## Deformation splitting in a light nucleus



First observation of the splitting of GMR strengths in a light system
universal feature in deformed nuclei
background-free high-resolution experiment @RCNP parameter-free nuclear DFT calculation

## Strengths: missing in the QRPA



QRPA misses some states around $10-15 \mathrm{MeV}$
beyond QRPA? clustering degree of freedom?

## Coupling between $\Delta L=2$



## Large deformation of neutron-rich Zr isotopes



Sumikama+ ('11)
Figure taken from RIDAI-RIKEN press release

GMR in deformed neutron-rich nuclei


## Isovector (IV)-GMR in deformed nuclei




$$
\begin{aligned}
& O=\int d \vec{r} r^{2} \psi^{\dagger}(\vec{r} \tau)\langle\tau| \tau_{3}\left|\tau^{\prime}\right\rangle \psi\left(\vec{r} \tau^{\prime}\right) \\
& \text { emergence of } \\
& \text { deformation "splitting" } \\
& \Delta E \sim 10 \mathrm{MeV}^{154} \mathrm{Sm} \\
& \sim 2 \times \Delta E(\mathrm{ISGMR})
\end{aligned}
$$

## due to the coupling to

 the $K=0$ of IV-GQR
## Isovector (IV)-GMR in deformed nuclei



## Summary

Deformation effect in GMR studied by nuclear DFT appearance of the deformation splitting
coupling to the $K=0$ component of the GQR
deformation splitting of the GQR $(K=0,1,2)$
taking place at the mean-field level
stronger coupling in well-deformed nuclei
universal in medium-mass and light nuclei, as well as in $n$-rich nuclei universal in IS and IV excitations

Coupling between the $K=0$ component of the dip. and oct. giant resonances (if the parity is a good quantum number)

## References

Yoshida ('10): Mod. Phys. Lett. A 25 (2010), 1783
Yoshida ('10): Phys. Rev. C 82 (2010), 034324
Yoshida-Nakatsukasa ('11): Phys. Rev. C 83 (2011), 021304(R)
Yoshida-Nakatsukasa ('13): Phys. Rev. C 88 (2013), 034309
Yoshida ('21): Phys. Rev. C 104 (2021), 044309

