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classical and intuitive picture

L=2: Giant Quadrupole Resonance (GQR) 
L=3: High Energy Octupole Resonance (HEOR)

strongly excited by a one-body operator, exhaust a sum-rule value

space spin isospin

Ô = ∑
σσ′ 

∑
ττ′ 

∫ ⃗rrLYL( ̂r)ψ̂†( ⃗rστ)⟨σ |{ 1
⃗σ } |σ′ ⟩⟨τ |{1

⃗τ} |τ′ ⟩ψ̂( ⃗rσ′ τ′ )

Giant resonances: collective modes of surface vibration

rich variety of modes depending on and .ΔL, ΔS, ΔT, ΔN
a!ected by many-body correlations (deformation and super"uidity)



Giant Monopole Resonance (GMR)
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volume change

Blaizot (’80)

incompressibility of 
nuclear matterÔ = ∑

στ
∫ d ⃗rr2ψ†( ⃗rστ)ψ( ⃗rστ)

Garg+ (’80)
Youngblood+ (‘99)

deformation splitting?

the Fermi mass distribution with c!6.107 fm and a
!0.523.
Fits to the angular distributions obtained from the peak

were carried out with a sum of isoscalar 0", 1#, 2", 3#,
and at higher excitation, 4" strengths. The isovector giant
dipole resonance contribution is relatively small but was cal-
culated from the known distribution !18" and held fixed in
the fits. The strengths of the multipoles were varied to mini-
mize #2. The errors in strengths were estimated by changing
the magnitude of the strength of one component until refit-
ting by varying the other components resulted in a #2 twice
that of the best fit. The fits obtained along with the individual
components of the fits are shown superimposed on the data
in Fig. 2. The continuum angular distributions could not be
fit with a sum of multipole strengths, suggesting that other
processes dominate the continuum. The best fit obtained is
shown in Fig. 2$c%.
The E0 and E2 strength distributions obtained for the

giant resonance peak are shown in Fig. 3. The errors ob-
tained as described above are shown. Uncertainties due to the
separation of the peak and continuum are not included. Both
distributions are quite asymmetric and the E0 distribution
contains (104#20

"15)% of the E0 energy-weighted sum rule
$EWSR%, while the E2 distribution contains (103#20

"18)% of
the E2 EWSR. The L!1 T!0 strength is distributed

roughly uniformly from Ex!10–25MeV while the higher
multipole strength $the data does always permit a reliable
distinction between L!3 and 4% is distributed evenly be-
tween Ex!8 and 30 MeV. To provide a rough quantitative
comparison with theory, the E0 and E2 distributions were
fitted with the predicted number of Gaussian peaks $two for
E0 and three for E2), varying the position and strength of
each independently, but constraining the widths of each com-
ponent to be the same for E0 and E2 separately. The E0
distribution was fitted with two Gaussians at Ex!12.1
$0.4MeV and 15.5$0.3MeV containing (36$10)% and
(68$9)% of the EWSR, while the E2 distribution was fitted
with three Gaussians at Ex!11.3$0.2MeV, 14.5
$0.5MeV, and 17.5$0.5MeV containing (44$7)%, (44
$8)%, and (15$8)%, respectively, of the E2 EWSR. The
earlier models for the GQR splitting $Kishimoto et al. !1",
Suzuki and Rowe !6", Auerbach and Yeverechyahu !5", and
Zawischa, Speth and Pal !7"% do not agree with the data,
generally predicting a much smaller splitting than observed.
The strength distributions calculated by Adgrall et al. and

by Suzuki and Rowe are shown superimposed on the data in
Fig. 3. The calculation for the GQR by Suzuki and Rowe is
much too narrow while that of Abgrall et al. agrees reason-
ably well with the data, though the experimental splitting
appears a little larger than predicted and the highest (K
!2) component is stronger than predicted. The GMR distri-
bution calculated by Abgrall et al. is in reasonable agreement
with the data though the experimental splitting is somewhat
less than the calculation. The positions and strengths of the
components extracted from the data are compared with those
predicted by Adgrall et al. in Fig. 4 and are in fair agree-
ment.

This work was supported in part by the U.S. Department
of Energy under Grant No. DE-FG03-93ER40773 and by the
Robert A. Welch Foundation.

FIG. 3. The fractions of the E0 and E2 isoscalar EWSR in
154Sm are shown by the histograms. The error bars represent the
uncertainty due to the fitting of the angular distributions as de-
scribed in the text. The thick lines are the predictions of Abgrall
et al. !8", while the dashed line shows the prediction of Suzuki and
Rowe !6".

FIG. 4. Comparison of the predictions by Abgrall et al. !8" to
the parameters for the fits to the distributions shown in Fig. 3.
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Deformation splitting?

0

100

200

300

152
Nd

(mb)
(a)

0

100 150
Nd

0

100 148
Nd

0

100 146
Nd

0

100 144
Nd

0

100

5 10 15 20 25

Ph
ot

oa
bs

or
pt

io
n 

cr
os

s 
se

ct
io

n

E (MeV)

142
Nd

154
Sm

(b)

152
Sm

150
Sm

148
Sm

146
Sm

5 10 15 20 25
E (MeV)

144
Sm

SkM*Cal.:  
Exp. :

IVGDR Yoshida–Nakatsukasa (’11)

n

p

K=1

E0

!k /
1

Rk

!? /
1

R?

! /
1

R

E =

Z
drE[⇢](r)

=

Z
dr

 ~2

2m
⌧ (r) + ESky[⇢](r)

�

�2Ae↵

�⇢(r)�⇢(r0)

q ⇠ ⇢̃

⇢̃(r) = h ̂(r #) ̂(r ")i 6= 0

�hĤ �
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to statistical fluctuations in the subtracted spectrum. At high
excitation, small cross sections correspond to large E0
strength @5,6#. The E0 strength above EX59 MeV in the

subtracted spectrum corresponds to 76615% of the E0
EWSR, where the uncertainty is due to the uncertainty of the
angle bin width of the two spectra @5,6#, in excellent agree-
ment with the 72% obtained from the fits. The centroid

FIG. 7. ~a!–~d! The solid lines show the fractions of the isosca-
lar EWSR in 24Mg obtained in this work for the multipolarities
indicated. The error bars represent the uncertainty due to the fitting
of the angular distributions.

FIG. 8. ~a! The solid line shows the fraction of the E0 EWSR in
24Mg obtained from the fits to the angular distributions of the con-
tinuum. The error bars represent the uncertainty due to the fitting of
the angular distributions. ~b!–~d! The solid line shows the fraction
of the isoscalar EWSR obtained for the multipolarity indicated from
the fits to the angular distributions of the continuum.

TABLE IV. Sum rule strengths and energy moments obtained
for the distributions shown in Fig. 7 for the excitation range Ex
9–41 MeV.

L %EWSR
m1 /m0
~MeV!

rms width
~MeV!

0 72610 21.060.6 7.361.2
1 81214

126 18.861.7 6.761.0
2 72610 16.960.6 3.460.6
3 3126

19 25.261.0 4.561.2

GIANT RESONANCES IN 24Mg PHYSICAL REVIEW C 60 014304

014304-7

Youngblood+(’99)
24Mg @ TAMU
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FIG. 3. (Color online) The multipole strength distributions ob-
tained are shown. The black histogram shows those obtained by
analyzing the data for which the out-of-plane angle was measured.
The gray histogram shows those obtained in the reanalysis of the data
reported in Ref. [3] (in-plane only), and the wide gray histograms
show the distributions reported in Ref. [3]. Error bars represent the
uncertainty from the fitting of the angular distributions as described
in the text and do not include systematic errors.

in the different analyses. The ISGDR distribution has a peak
∼20 times its minimum cross section at lower excitation, but in
240-MeV α scattering in many nuclei [8] including 24Mg [3],
the continuum angular distribution is very similar to that of the
ISGDR, making the extracted strength very sensitive to contin-
uum choices. Much of the ISGDR strength also lies at higher
excitation where the angular distributions are less distinctive.

Pèru, Goutte, and Berger [9] have calculated GMR,
ISGDR, and GQR distributions in 24Mg and 28Si using
the quasi-particle random phase approximation based on
Hartree-Fock-Bogolyubov states calculated with the Gogny
D1S effective force. These are shown compared with
multipole distributions obtained with 6Li scattering and α
scattering in Figs. 19 and 20 of Ref. [4]. The agreements
with the GMR distributions are fairly good, but there are
substantial differences for the ISDGR and GQR distributions.
They give centroids and strengths for the GQR and GMR
distributions, and these are compared with our results for
24Mg in Table I. The GMR centroid they obtain is a little lower
than the experimental numbers (but within the errors for the
results from the Ref. [3] data), whereas they report somewhat
more strength than seen in the α data but within the (relatively
large) errors in agreement with the strength obtained in the
6Li data. The GQR strength and centroids are in agreement
with the analysis of the α data reported in this work and only
slightly outside the errors for the 6Li results. The Gogny D1S
interaction used by Pèru, Gouette, and Berger [9] results in
a Knm = 228 MeV [10]. In the hydrodynamic model [11],
EGMR = (h̄2KA/m∗〈r2〉)1/2, where KA is the compressibility
of nucleus A. We have estimated the Knm values implied by
the 24Mg GMR energy obtained in this experiment and the 28Si
GMR energy reported in Ref. [12] by comparing them with the

Knm obtained  by comparing GMR energies and RPA
calculations with Gogny interaction. 
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in 24Mg and 28Si with the calculations of Ref. [9] as described in
the text, and for 40Ca, 90Zr, 116Sn, 144Sm, and 208Pb as reported
in Ref. [13]. The average value reported in Ref. [13] is also shown
along with its uncertainty.
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tained are shown. The black histogram shows those obtained by
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show the distributions reported in Ref. [3]. Error bars represent the
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in the different analyses. The ISGDR distribution has a peak
∼20 times its minimum cross section at lower excitation, but in
240-MeV α scattering in many nuclei [8] including 24Mg [3],
the continuum angular distribution is very similar to that of the
ISGDR, making the extracted strength very sensitive to contin-
uum choices. Much of the ISGDR strength also lies at higher
excitation where the angular distributions are less distinctive.

Pèru, Goutte, and Berger [9] have calculated GMR,
ISGDR, and GQR distributions in 24Mg and 28Si using
the quasi-particle random phase approximation based on
Hartree-Fock-Bogolyubov states calculated with the Gogny
D1S effective force. These are shown compared with
multipole distributions obtained with 6Li scattering and α
scattering in Figs. 19 and 20 of Ref. [4]. The agreements
with the GMR distributions are fairly good, but there are
substantial differences for the ISDGR and GQR distributions.
They give centroids and strengths for the GQR and GMR
distributions, and these are compared with our results for
24Mg in Table I. The GMR centroid they obtain is a little lower
than the experimental numbers (but within the errors for the
results from the Ref. [3] data), whereas they report somewhat
more strength than seen in the α data but within the (relatively
large) errors in agreement with the strength obtained in the
6Li data. The GQR strength and centroids are in agreement
with the analysis of the α data reported in this work and only
slightly outside the errors for the 6Li results. The Gogny D1S
interaction used by Pèru, Gouette, and Berger [9] results in
a Knm = 228 MeV [10]. In the hydrodynamic model [11],
EGMR = (h̄2KA/m∗〈r2〉)1/2, where KA is the compressibility
of nucleus A. We have estimated the Knm values implied by
the 24Mg GMR energy obtained in this experiment and the 28Si
GMR energy reported in Ref. [12] by comparing them with the

Knm obtained  by comparing GMR energies and RPA
calculations with Gogny interaction. 
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in 24Mg and 28Si with the calculations of Ref. [9] as described in
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in Ref. [13]. The average value reported in Ref. [13] is also shown
along with its uncertainty.
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24Mg. The transition strengths are smeared by using Γ = 2 MeV.

quasiparticle basis (α,β, · · · ) obtained in the HFB equations

(

hq − λq h̃q

h̃q −(hq − λq)

)(

ϕq

1,α(r,σ)
ϕq

2,α(r,σ)

)

= Eα

(

ϕq

1,α(r,σ)
ϕq

2,α(r,σ)

)

. (1)

The continuum states are discretized by a box at ρmax = 9.9 fm and zmax =
12 fm. The momentum dependence is explicitly taken into account in the residual
interactions whereas the two-body spin-orbit and the Coulomb interactions are
discarded. The details of the calculation scheme is described in Ref. 3.

3. Results and Discussion

3.1. Giant monopole and quadrupole resonances

In order to clearly see the mixing effect between the giant monopole resonance
(GMR) and the giant quadrupole resonance (GQR), we depict in Fig. 1 the response
functions for the isoscalar (IS) monopole and quadrupole excitations in 24Mg. In the
present calculation, we obtain the prolately deformed ground state for 24Mg. The
deformation parameters for neutrons and protons are 0.40 and 0.41, respectively.

We show in the lower panel of Fig. 1 the transition strengths for the Kπ =
0+ component of the IS quadrupole excitation. At around 15 MeV, we can see a
Kπ = 0+ component of GQR. It is noted here that the total strength of GQR
spreads in higher energy region because the GQR splits into three resonances of
the Kπ = 0+, 1+ and 2+ components, and the resonance peak of the Kπ = 0+

component lowers in energy due to the deformation. In the upper panel of Fig. 1, we
show the transition strengths for the IS monopole excitation. At the same energy
region of 15 MeV, we can see a prominent peak as well as the resonance at around

Yoshida(’10)

occurrence of the “lower-energy (~15 MeV)”  
peak due to coupling to the K=0 of GQR

Deformation e!ect on GMR in light nuclei: universality
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Splitting of ISGMR strength in the light-mass nucleus 24Mg due 
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The isoscalar giant monopole resonance (ISGMR) strength distribution in 24Mg has been determined from 
background-free inelastic scattering of 386-MeV α particles at extreme forward angles, including 0◦ . 
The ISGMR strength distribution has been observed for the first time to have a two-peak structure in a 
light-mass nucleus. This splitting of ISGMR strength is explained well by microscopic theory in terms of 
the prolate deformation of the ground state of 24Mg.

 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

The isoscalar giant monopole resonance (ISGMR) has been in-
vestigated in a wide range of atomic nuclei from 12C to 208Pb 
[1–7] and has been shown to be an effective way to obtain an ex-
perimental value for the nuclear incompressibility [8,9]. However, 
identification of the full E0 energy-weighted sum rule (EWSR) in 
lighter nuclei (A < 60) has not been possible due to fragmenta-
tion of the strength, the nearly complete overlap of the ISGMR 
with the isoscalar giant quadrupole resonance (ISGQR) and other 
multipoles, uncertainties in the extraction of the strength distri-
butions, and the difficulty in distinguishing the multipole strength 
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4 Present address: Department of Physics, Tokyo Institute of Technology, Tokyo 

152-8850, Japan.
5 Present address: Department of Physics, Kyoto University, Kyoto 606-8502, 

Japan.

from other direct processes (quasi-free knock-out process, for ex-
ample). The fragmented ISGMR strength in lighter nuclei further 
renders it nearly impossible to identify effects such as the theoret-
ically predicted splitting of the ISGMR due to ground-state defor-
mation. While the splitting of the isovector giant dipole resonance 
(IVGDR) due to deformation has been documented in a number 
of nuclei [8], a similar effect on the ISGMR strength has been re-
ported so far only in the deformed Sm nuclei [10–13] and in the 
fission decay of 238U [14]; this “ISGMR splitting” is understood in 
terms of the mixing of the ISGMR with the K π = 0+ component 
of the ISGQR [10].

Recent microscopic calculations [15,16] in the deformed
Hartree–Fock–Bogoliubov (HFB) approach and the quasiparticle 
random-phase approximation (QRPA) with a Skyrme and Gogny 
energy-density functional have shown that the ISGMR strength dis-
tribution exhibits a two-peak structure due to deformation even 
in light-mass nuclei. In particular, the calculations indicate that 
the prolate-deformed ground state of 24Mg leads to a two-peak 
ISGMR strength structure because of the aforementioned mix-
ing of the ISGMR with the K π = 0+ component of the ISGQR. 

http://dx.doi.org/10.1016/j.physletb.2015.07.021
0370-2693/ 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.

First observation of the splitting of GMR strengths in a light system

background-free high-resolution experiment @RCNP
parameter-free nuclear DFT calculation

universal feature in deformed nuclei

Deformation splitting in a light nucleus
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FIG. 5. ISGMR strength distributions in 24Mg. The dash-dotted
(blue) and solid (red) lines show microscopic calculations for
spherical and prolate ground-state deformation, respectively.

of the ground state. A comparison of the experimental and
theoretical strength distributions further establishes that this
structure corresponds to that of a deformed nucleus.

The theoretical strength distributions were obtained as a
self-consistent solution of the deformed HFB and QRPA
equations employing the Skyrme SkM* functional [40].
Details of the calculation scheme can be found in Refs. [11,41].
In the present calculations, the smearing width of 3 MeV
was introduced to take into account the spreading effects.
The SkM* functional gives an intrinsic quadrupole moment
Q0 = 54.0 e fm2, which is consistent with the measured B(E2)
of the first 2+ state listed in Table I. In the energy region of
6 to 35 MeV, the obtained IS monopole strength exhausts 83%
of EWSR. Thus, the theoretical strengths have been scaled
down by a factor 0.57/0.83 ∼ 0.68 in Fig. 5 for comparison
with the experimental data. This mismatch between theoretical
and experimental strengths is not too worrisome considering
that the experimental strengths can have ∼20% systematic
uncertainty resulting from the choice of the OMPs used and
the DWBA calculations, as has been noted in previous works
as well [2,32,42]. In addition to the strengths obtained for
the prolate-deformed ground state, the strength distributions
are obtained for a spherical configuration for comparison.
The prominent peak around 16 MeV in the ISGMR strength
distribution appears only when the ground state is deformed.

The ISGDR strength distribution in 24Mg is shown in
Fig. 6, and consists of a broad peak centered around 25
MeV. A total of 111.1+10.9

−7.2 % EWSR is exhausted over the
excitation-energy region of 6 to 35 MeV. Unlike the ISGMR,
the deformation effects on ISGDR are not very pronounced
either in the experimental data or in the theoretical strength
distributions (also shown in Fig. 6). The rising strength at the
highest excitation energies is, most likely, spurious, resulting
from direct processes (knock-out and quasifree processes, for
example) that mimic the angular distributions of ISGDR [42].

The experimentally determined ISGQR distribution in
24Mg is shown in Fig. 7. In contrast with the pronounced
peak observed in the heavier nuclei (A ! 90), the ISGQR
distribution for 24Mg is quite broad. Microscopic calculations
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FIG. 6. ISGDR strength distributions in 24Mg. The dotted (blue)
line shows microscopic calculations for the spherical ground state.
The dash-dotted (magenta), dash-double-dotted (green), and solid
(red) lines show microscopic calculations for prolate ground-state
deformation for K = 0,1 and the sum of K = 0 and 1, respectively.

for ISGQR are compared with the experimental data in the
Fig. 7. The theory predicts a peak close to 22 MeV, consistent
with 65A−1/3 MeV for a spherical ground state. Similar to
ISGMR, the prolate ground state of 24Mg pushes the ISGQR
peak to lower energies with significant broadening due to K
splitting. Theoretical prediction of the division of the ISGQR
strength into individual components, K = 0, 1, and 2, is also
shown in Fig. 7. The sum of these components in the energy
region 15–25 MeV is in reasonable agreement with the data.
Again, comparison of data with the spherical and deformed
ground-state microscopic calculations clearly indicates that
ISGQR strength fragmentation in 24Mg corresponds to a
prolate-deformed ground state. A total of 148 ± 8% E2 EWSR
is exhausted over the excitation-energy region of 6 to 35 MeV.

FIG. 7. ISGQR strength distributions in 24Mg. The dotted (blue)
line shows microscopic calculations for the spherical ground state.
The dash-dotted (magenta), dash-double-dotted (green), dashed
(orange), and solid (red) lines show microscopic calculations for
prolate ground-state deformation for K = 0,1,2 and the sum of
K = 0 to 2, respectively. The arrow indicates the peak position of
K = 0 component.
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data. The widths of the peaks were chosen to best represent
the data. It can be seen that the fluid dynamical calculations
give a fairly good representation of the data. A calculation
for the GQR strength using the same Nishizaki and Ando
prediction is shown superimposed on the GQR data in the
bottom panel and also gives a good representation of the
data.

The isoscalar E1 and E3 distributions obtained in 154Sm
are shown in Fig. 14. As for the other nuclei, the E1 strength
is divided into two components, though in 154Sm the compo-
nents are definitely not Guassian in shape. There is some
disagreement on the origin of the lower component of the E1
strength [27,29–31], but the upper component is expected to
be the compression mode, which is treated in the Nishizaki
and Ando [41] calculations. A calculation using the param-
eters from Nishizaki and Ando, with the strength normalized
to the experimental strength of the upper component, and the
lower component taken from the 144Sm analysis (shifted in
energy with 1/A1/3) is shown superimposed on the data. The
calculation gives a reasonable representation of the high en-
ergy portion of the data. It would appear that the lower com-
ponent of the ISGDR is both shifted down in energy and
itself split into more than one component in 154Sm relative to
144Sm. The distribution of HEOR strength calculated using
the splitting predicted in Nishizaki and Ando calculation is
shown superimposed on the data in the bottom panel of Fig.
13. Except for the dip in the middle of the data, the calcula-
tion gives an excellent representation of the data.

V. CONCLUSIONS

Within errors, all of the isoscalar E0, E1, E2, and 3!" E3
giant resonance strength was located in 116Sn, 144Sm, 154Sm,

FIG. 13. The E0 strength distribution obtained for 154Sm is
shown by the histograms in the top two panels. In the top panel, a
calculation using the parameters of Abgrall et al. [40] is shown by
the dashed line and one using the parameters of Nishizaki and Ando
[41] is shown by the gray line. A two Gaussian fit to the E0 distri-
bution with the parameters in Table VI is shown in the middle
panel. The E2 strength distribution obtained for 154Sm is shown by
the histogram in the bottom panel and a calculation using the pa-
rameters of Nishizaki and Ando [41] is shown by the gray line.

FIG. 14. The E1 (E3) strength distribution obtained for 154Sm is
shown by the histogram in the top (bottom) panel. Calculations
using the parameters of Nishizaki and Ando [41] are shown by the
gray lines. The dashed line is the shifted 144Sm distribution for the
lower component of the ISGDR as described in the text. The gray
line for the E1 distribution includes the contribution illustrated by
the dashed line.

YOUNGBLOOD, LUI, CLARK, JOHN, TOKIMOTO, AND CHEN PHYSICAL REVIEW C 69, 034315 (2004)

034315-12

Youngblood+ (’04)

leading to a large width of the ISGDR

Yoshida–Nakatsukasa (’13)
Coupling between ΔL = 2

IS dipole
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1. 背 景 
 陽子と中性子から構成される原子核は、球形やラグビーボール型に変形した形状など
様々な形状をとり、陽子数や中性子数に関する魔法数とも密接に関連しています。良く
知られているのが魔法数と球形の関係で、陽子数及び中性子数の一方もしくは両方が２、
８、２０、２８、４０、５０などの魔法数になると球形となります。変形した形状にお
いても、変形魔法数と呼ばれる魔法数が存在し、陽子数及び中性子数が変形魔法数にな
ると大きく変形した状態で安定化する事が知られています。 
 自然界に存在する安定なジルコニウム同位体 90Zr（ジルコニウム-９０）では、陽子
数４０と中性子数５０が魔法数であり、その形状は球形となります（図１）。90Zr に中
性子を１０個加えて中性子数を６０にすると、大変形領域に入って球形は急激に変化し、
さらに中性子を加えると中性子数６４まで緩やかに変形度が大きくなることが知られ 

 
図１ 原子核図表。横軸が中性子数、縦軸が陽子数。青線で囲まれた領域は大変形領域であり、
境界の点線部は推測である。赤２重線は、本研究によりジルコニウム（Zr）同位体に発見され
た中性子の変形魔法数６４である。黒２重線は魔法数（球形）を、緑２重線は Zr 同位体を表す。
紫の四角は元素合成の経路を示している。色付けされている領域は、β崩壊の半減期が測定さ
れている領域である。黒は安定な原子核で、青は半減期が長く、赤は短い。 
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The spin and parity of the parent nucleus 106
39 Y67 are

possibly 2þ or 3þ, because the ground states of 99;101Y
are indicated to have the same proton configuration,
5=2þ[422], as 101;103;105Nb [18–20] and the spin and parity
of 10841 Nb67 is suggested to be 2

þ or 3þ [21]. The 4þ1 and the
second 2þ (2þ2 ) states of

106Zr are likely to be populated in
the ! decay of 106Y by comparison with the population of
the 4þ1 and 2þ2 states of 108Mo in the ! decay of 108Nb [21].
If the 324 keV " ray is the transition to the 2þ1 state, the
excited-state energy is 477 keV. Since Eð2þ1 Þ of 106Zr is
slightly larger than that of 104Zr (Fig. 2), Eð4þ1 Þ is expected
to increase gradually and to be 450–500 keV. The energies
of the 4þ1 and 2þ2 states of 106Zr are predicted by using the
interacting boson model [22]. The parameters of the inter-
acting boson model are obtained from a least-squares fit to
the known level energies of 108Mo, 110Ru, and 112Pd along
the isotonic chain (N ¼ 66). The largest deviations be-
tween the experimental and theoretical Eð4þ1 Þ and Eð2þ2 Þ
are 34 keVand 76 keV, respectively. The Eð4þ1 Þ and Eð2þ2 Þ
of 106Zr are extrapolated to be 455 keV and 618 keV,
respectively. Therefore, the excited states at 477 keV and
607 keV were tentatively assigned as the 4þ1 and 2þ2 states
in 106Zr, respectively. The transition from the 2þ2 state to
the 2þ1 state is expected, but no "-ray peak at 455 keV was
observed due to the low statistics.

The " rays emitted from a new isomeric state of 108Zr
were observed within 4 #s after the implantation of 108Zr
as shown in Fig. 1(b). Five "-ray peaks at energies of 174,
279, 348, 478, and 606 keV were unambiguously mea-
sured. A half-life of 620% 150 ns was derived from the
sum of time spectra for these five " rays. Some low-
intensity "-ray peaks from the 108Zr isomer might not
have been identified, and no information on "-" coinci-
dences was obtained due to the low statistics. Nevertheless,
it can be estimated that the energy of the isomeric state
is likely more than 1 MeV. The ground-state band is
populated up to 4þ; thus, the spin is likely more than or

equal to 4. Before discussing possible structures of the
observed isomer, low-lying states of 108Zr are discussed.
If a spherical ground state would appear around 110Zr

due to the predicted N ¼ 70 subshell gap [7], then Eð2þ1 Þ
would have to suddenly increase and R4=2 drop to & 2.
However, Eð2þ1 Þ of 106Zr is similar to that of Zr isotopes
with A ¼ 100–104, which are well deformed with !2 ¼
0:355ð10Þ, 0.43(4), and 0.47(7) for A ¼ 100, 102, and 104,
respectively [4,5]. Because the "-ray energies of 174 and
348 keV in 108Zr are slightly larger than those of 152 and
324 keV in 106Zr and the relevant energies smoothly
change from 100Zr to 108Zr (Fig. 2), the 174 and 348 keV
" rays were tentatively assigned as the transitions from the
2þ1 state to the ground state and from the 4þ1 state to the 2þ1
state, respectively. R4=2 gradually changes with values of
2.57, 3.15, 3.25, 3.13, and 3.00 for A ¼ 100, 102, 104, 106,
and 108, respectively. Values of R4=2, which is close to 3.3
for a rigid rotor, indicate the rotational character of a
deformed nucleus. The ground state of 108Zr is most likely
as deformed as 106Zr. Therefore, the spherical subshell gap
at N ¼ 70 seems not to be large enough to change the
ground state of 108Zr to spherical shape.
The structural evolution around the neutron-rich Zr iso-

topes can be visualized using 1=Eð2þ1 Þ [14]. Figure 3 shows
1=Eð2þ1 Þ as a function of the neutron number. The values of
1=Eð2þ1 Þ suddenly increase at N ¼ 60 for Kr, Sr, Zr, and
Mo isotopes because of the onset of deformation. 1=Eð2þ1 Þ
reaches a maximum at N ¼ 64 for both Zr and Mo iso-
topes. Another remarkable behavior at N ¼ 64 has been
observed for Mo isotopes. Hua et al. observed a band
crossing due to the rotation alignment of an h11=2 neutron
pair [23]. The shift of the band crossing to higher rotational
frequency in 106Mo is interpreted as a consequence of the
deformed subshell closure at N ¼ 64. The maximum of
1=Eð2þ1 Þ at N ¼ 64 can also be interpreted as being due
to the deformed subshell closure at N ¼ 64 with !2 &
0:47ð7Þ [5] for 104Zr.
The r-process path between A ¼ 110 and A ¼ 125 may

be affected by the weakening of the spin-orbit force, which
is associated with the neutron skin [24]. The harmonic-
oscillator-like doubly magic nucleus of 110Zr [24] or the
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Isovector (IV)-GMR in deformed nuclei
O = ∫ d ⃗rr2Y0( ̂r)ψ†( ⃗rτ)⟨τ |τ±1 |τ′ ⟩ψ( ⃗rτ′ )
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Summary
Deformation e!ect in GMR studied by nuclear DFT

appearance of the deformation splitting
coupling to the K=0 component of the GQR

stronger coupling in well-deformed nuclei

deformation splitting of the GQR (K=0,1,2)

universal in medium-mass and light nuclei, as well as in n-rich nuclei
universal in IS and IV excitations

taking place at the mean-#eld level

Coupling between the K=0 component of the dip. and oct. giant resonances
(if the parity is a good quantum number)
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