Skyrme-QRPA for monopole modes of excitation

A role of nuclear deformation

K. Yoshida (Kyoto U.)

Giant resonances: collective modes of surface vibration

classical and intuitive picture

L=2: Giant Quadrupole Resonance (GQR)

L=3: High Energy Octupole Resonance (HEOR)

strongly excited by a one-body operator, exhaust a sum-rule value

$$\hat{O} = \sum_{\sigma\sigma'} \sum_{\tau\tau'} \int \vec{r} r^L Y_L(\hat{r}) \hat{\psi}^\dagger(\vec{r}\sigma\tau) \langle \sigma | \left\{ \frac{1}{\sigma} \right\} | \sigma' \rangle \langle \tau | \left\{ \frac{1}{\vec{\tau}} \right\} | \tau' \rangle \hat{\psi}(\vec{r}\sigma'\tau')$$
 space spin isospin

rich variety of modes depending on ΔL , ΔS , ΔT , and ΔN . affected by many-body correlations (deformation and superfluidity)

Giant Monopole Resonance (GMR)

$$\hat{O} = \sum_{\sigma\tau} \int d\vec{r} r^2 \psi^{\dagger}(\vec{r}\sigma\tau) \psi(\vec{r}\sigma\tau)$$

volume change

@Texas A&M Univ.

incompressibility of nuclear matter

Blaizot ('80)

deformation splitting?

Deformation splitting?

IVGDR

$$\omega_{\perp} \propto rac{1}{R_{\perp}}$$

K=0

K=1

GMR

no angle dependence contrary to GDR $Y_0(\hat{r})$ $Y_{1K}(\hat{r})$

Yoshida-Nakatsukasa ('11)

GMR in the Sm isotopes

GMR in the Sm isotopes

Yoshida-Nakatsukasa ('13)

Exp.: Itoh+ ('03)

GMR in the Sm isotopes

Yoshida-Nakatsukasa ('13)

deformation splitting

Yoshida-Nakatsukasa ('13)

$$\beta = 0.31$$
 1.9 $\beta = 0.29$ 3.2

larger strengths in the lower peak in a strongly-deformed nucleus

stronger coupling between GMR and GQR as deformation increases

splitting energy ratio of strengths

Coupling between GMR and GQR

Deformation splitting of the GQR

EDF-based QRPA satisfies the nuclear self-consistency shape (density distribution) and potential

Kishimoto+('75)

 $\Delta E \sim 6 \text{ MeV}$ ordinal coordinate

 $\Delta E \sim 2 \text{ MeV}$ doubly-stretched coordinate

Coupling at the static level

Deformation effect on GMR in light nuclei: universality

occurrence of the "lower-energy (\sim 15 MeV)" peak due to coupling to the K=0 of GQR

Deformation splitting in a light nucleus

Splitting of ISGMR strength in the light-mass nucleus ²⁴Mg due to ground-state deformation

Y.K. Gupta^{a,1}, U. Garg^a, J.T. Matta^a, D. Patel^a, T. Peach^a, J. Hoffman^{a,2}, K. Yoshida^{b,c}, M. Itoh^{d,3}, M. Fujiwara^d, K. Hara^d, H. Hashimoto^d, K. Nakanishi^d, M. Yosoi^d, H. Sakaguchi^e, S. Terashima^e, S. Kishi^e, T. Murakami^e, M. Uchida^{e,4}, Y. Yasuda^e, H. Akimune^f, T. Kawabata^{g,5}, M.N. Harakeh^h

First observation of the splitting of GMR strengths in a light system

universal feature in deformed nuclei

background-free high-resolution experiment @RCNP parameter-free nuclear DFT calculation

Strengths: missing in the QRPA

QRPA misses some states around 10–15 MeV beyond QRPA? clustering degree of freedom?

Coupling between $\Delta L = 2$

leading to a large width of the ISGDR

Large deformation of neutron-rich Zr isotopes

Sumikama+ ('11) Figure taken from RIDAI-RIKEN press release

GMR in deformed neutron-rich nuclei

SkM* Yoshida('10) $\Gamma = 2 \text{ MeV}$

IV strengths in low energy excitation of neutrons

deformation splitting in IVGMR

Isovector (IV)-GMR in deformed nuclei

$$O = \int d\vec{r} r^2 \psi^{\dagger}(\vec{r}\tau) \langle \tau | \tau_3 | \tau' \rangle \psi(\vec{r}\tau')$$

emergence of deformation "splitting"

$$\Delta E \sim 10 \text{ MeV} @ ^{154} \text{Sm}$$

 $\sim 2 \times \Delta E(\text{ISGMR})$

due to the coupling to the K=0 of IV-GQR

Isovector (IV)-GMR in deformed nuclei

 $O = \int d\vec{r}r^2 Y_0(\hat{r}) \psi^{\dagger}(\vec{r}\tau) \langle \tau | \tau_{\pm 1} | \tau' \rangle \psi(\vec{r}\tau')$

emergence of deformation "splitting" $\Delta E \sim 10 \ \mathrm{MeV} \ \mathrm{@}^{154} \mathrm{Sm}$

universal in IV excitations $\mu_{\tau} = -1.0, +1$

Summary

Deformation effect in GMR studied by nuclear DFT appearance of the deformation splitting coupling to the K=0 component of the GQR deformation splitting of the GQR (K=0,1,2) taking place at the mean-field level stronger coupling in well-deformed nuclei universal in medium-mass and light nuclei, as well as in n-rich nuclei universal in IS and IV excitations

Coupling between the K=0 component of the dip. and oct. giant resonances (if the parity is a good quantum number)

References

Yoshida ('10): Mod. Phys. Lett. A 25 (2010), 1783

Yoshida ('10): Phys. Rev. C 82 (2010), 034324

Yoshida-Nakatsukasa ('11): Phys. Rev. C 83 (2011), 021304(R)

Yoshida-Nakatsukasa ('13): Phys. Rev. C 88 (2013), 034309

Yoshida ('21): Phys. Rev. C 104 (2021), 044309