Experimental approach to Ktau using CAT-M active target and Grand Raiden spectrometer

Shinsuke OTA

RCNP (Newly joined in Sept. 2021) Contact person of GRAND RAIDEN and LAS spectrometer <u>ota@rcnp.osaka-u.ac.jp</u> and/or <u>ml-contact-ws@rcnp.osaka-u.ac.jp</u>

Contents

- Nuclear responses and matter property •
- Experimental approach to Ktau
- Systematic measurement with CAT-M and GRAND RAIDEN
 - Recent upgrade of CAT-M and systematic measurement •
 - Status of RCNP and GRAND RAIDEN
- Summary and Outlook

Nucleon system : micro and macro

- electron system \bullet
- pair condensation

Nucleon system : micro and macro

Property of macroscopic nucleon system

Physical property (in general)

For a certain phase of matter

- density
- permittivity / electric susceptibility / polarizability
- permeability / magnetic susceptibility
- electrical conductivity
- elastic modulus
- boiling / melting point / transition point
- thermal conductivity
- specific heat capacity

Theoretical approach to physical property

- In the field of condensed matter physics and material science, physical properties are being derived from energy density functional (ex. PHASE https://azuma.nims.go.jp/)
- In the field of nuclear physics, of course, the theoretical researchers estimate the physical properties of macroscopic nucleon system using the same technique.
 - It's difficult to quantify the medium effect or to validate the local density approximation in so-called nuclear matter.
 - The energy density functional of macroscopic nucleon system is still unknown
- We have to harry up, since the astronomical observation, which is the good reference of the theoretical calculation, goes fast!

Selection of target

(neologism)

Black: Stable nuclei

Systemtics of Isobar and Isologos chain is important.

Various reactions as probes

Various quantum changes

Macroscopic properties will be revealed from • the systematics of the featured values of the strength distributions.

Due to the finite-system effect, there will be,

- Strength fragmentation •
- Cross section
 Space-symmetric responses

	$\Delta S=0, \Delta T=0, \Delta A=0$	$\Delta S=1, \Delta T=0, \Delta A=0$	$\Delta S=0, \Delta T=1, \Delta A=0$	$\Delta S=1, \Delta T=1, \Delta A=0$	$\Delta A=2, \Delta S, \Delta T$
Variable	Number density	Spin density	Isovector density	Isovector spin density	Pair density
Property	Incompressibility	Magnetism	Symmetry energy	?	Pair condensation
Probe	(a,a), (d,d)	(p,p'), (6Li,6Li*)	(7Li,7Be*), (6He,6Li*)	(p,n),(n,p),(d,2p)	(a,6He),(a,6Li),(a (a,pn), (d,a), (n,3 (3He,n)

Quantum Change Mass number ΔA Spin ΔS Isospin ΔT Angular momentum ΔL

PHANES Project (Phases and Equation of State)

Quantify the bulk modulus and order parameter of condensations

condensed phases (pair, pion, alpha ...) phase mode and amplitude mode \Leftrightarrow order parameter

Equation of state and Ktau

$$(x^{p} + \alpha^{2} K_{\text{sym}})x^{2} + \frac{1}{6}(Q_{0} + \alpha^{2} Q_{\text{sym}})x^{3} + \mathcal{O}(x^{4})$$

History of ISGMR measurement (Z > = 20)

Cd(48) Patel+2012 Mo(42) Youngblood+2015, Howard+2020 Zr(40) Youngblood+2015, Gupta+2018 Ni(28) Youngblood+2018,

Ca(20) Button+2017, Howard+2020

Effect of uncertainty

- A new scaling parameter $\eta_{\tau} = (-K_{\tau}L^5)^{1/6}$ is suggested in the same manner with $\eta = (K_0L^2)^{1/3}$ (Sotani+2014 and Sotani+2022)
- In the M-R relation, uncertainty arises mainly from L parameter for now. But uncertainty or accuracy of K_{τ}

H. Sotani and SO to be submitted

Scaling using η_{τ}

 $\eta_{\tau} = (-K_{\tau}L^5)^{1/6}$ $\eta = (K_0L^2)^{1/3}$

H. Sotani and SO to be submitted

Experimental approach to macroscopic property

Is the neutron matter is soft or hard?

Incompressibility and ISGMR Energy

$$E_{\rm GMR} = \hbar \sqrt{\frac{K_A}{m\langle r^2 \rangle}}$$

 $+K_{0,S}A^{-1/3}$ K_A T/ $\Lambda_{0,V}$ $\kappa_{ au,V}$ Incompressibility SNM Asymmetry term of incompressibility

0.20

-200

-300 -

-400 -

Y^{-500 -}

-700 -

-800 -

Incompressibility from theory

- Scatter in wide range of each parameter and correlation is almost nothing
- Many of interactions are out of candidates?

Colo+2014

How about the neutron matter?

The systematics including the unstable nuclei is desired.

 $K_{\tau,V} + K_{\tau,S} A^{-1/3} \sum_{i=1}^{N-2} \frac{(N-Z)^2}{2}$ $+K_{\rm Coul}rac{2}{A^{4/3}}+\mathcal{O}(A^{-2/3})$

Systematic measurement with CAT-M and GRAND RAIDEN

Implementation of nuclear reaction in the laboratory frame

Forward kinematics

- Stable nucleus
- High resolution
 - (w/ spectrometer)

Center-of-mass frame

Collider experiment

Inverse kinematics

- Unstable nucleus •
- Large acceptance •
 - Angle •
 - Excitation energy ullet
- Decay measurement ullet

CAT Active target GMR Measurement with Unstable Nuclei

Gaseous active target for high-Intensity-beam experiments

Upto 1 MHz

- Regular triangle shape
- Dual-gain thickGEM
- High-rate DAQ system

=> Measurement for the Tin isotope

Exp by S.Ota and U.Garg Measurement of 132Sn at RIBF CAT-S RIBF113 ESPRI 350kcps 132Sn 21 33Sb 48% 134Te 26% Diamond LP-MWDC

800kcps

Diamond LP-MWDC

2.6

2.55

- 350kcps cocktail beam including 132Sn, 133Sb and 132Te
- Particles are analyzed and identified by using BigRIPS Spectrometer
- (d,d') with CAT-S

Background by delta-rays are discriminated using pulse height and angular-hough-transform technique

Performance of CAT-S

Excitation energy distribution 0.6 MeV (σ)

Good resolution for the measurement

Angular distribution of elastic scattering

Strength of ISGMR

- Lorentzian fitting Assuming :
 - Width of the resonance
 - Energy difference between ISGQR
- Escale = 15.77 + 1.3 1.0 (10-20 MeV)
- Egqr = 12.3+0.63-0.75 MeV

Preliminary plot was removed

Isospin dependence of the incompressibility

Statistical error is large, but the door to measuring the incompressibility of tin-region unstable nuclei, is opened

Next step is to increase the statistics

Preliminary plot was removed

For high accuracy and prec

$$K_A = K_{0,V} + K_{0,S}A^{-1/3} + (K_{\tau,V} + K_{\tau,S}A^{-1/3})$$

Stable isotopes : RCNP Grand RAIDEN

Unstable isotopes : RIBF + CAT-M

d precision determination $(N-Z)^2 + K_{\rm Coul} \frac{Z}{A^{4/3}} + K_{\rm Coul} \frac{Z}{A^{4/3}}$

132Sn

Isobar : Fixed mass (or surface) effect Isotone : Proton degrees of freedom \bullet

New approaches to higher accuracy

- Isologos: Mass (or surface) effect
- Deformed nuclei : **Deofrmation**

Dometic

- RCNP, CNS, RIKEN, Kyoto, Tohoku… ulletInternational
- Prof. U. Garg (Notre Dame) \bullet
- Prof. R. Raabe (KU Leuven) HIIMAC
- Prof. X. Tang (IMP) ullet
- Prof. J. Gibelin (LPC Caen)

Inverse kinematics

Systematic measurements with active target

$$K_A = K_{0,V} + K_{0,S}A^{-1/3} + (K_{\tau,V} + K_{\tau})$$

 $K_{r,S}A^{-1/3}$) $\frac{(N-Z)^2}{A^2} + K_{Coul}\frac{Z^2}{A^{4/3}} + K_{Coul}\frac{Z^2}{A^{4/3}}$

CAT-M Active Target

- 10 times larger statistics
- double-layered wire field cage
 - 40x40x20 cm^3
- M-THGEM (or THGEMs)
 - 32 x 28 x 20 cm^3 active volume
- Gas type: Hydrogen, Duterium, He+CO2
- Gas pressure : 0.2-0.4 atm.
- Readout pads
 - Regular triangular shape with 7-mm side
 - Capability of better resolution than the size
 - Num of readout pads : 4046

TPC + Magnet

Construction of TPC field cage + Magnet was done on 07/09.

The test of biasing to the field cage + magnet was done at CNS without wire plane. The achieved electric field strength was 0.85 kV/cm/atm.

But with the wire plane, it becomes lower to be 0.69 kV/cm/atm and the slightly lower strength of 0.63kV/cm/atm was chosen for stable operation, which is also acceptable.

Alpha with magnet

The first event display of the alpha source with magnet taken on 2021/07/09!

cat-m.yaml run3036 (2987 evts recorded)

Fri Jul 9 18:52:02 2021(1625824322)

RCNP次期計画検討会

33

30 < |x| < 90 has higher threshold,

many delta-rays are recorded

Comparison with / without magnet

H445-1 : one event (left), 50 events (right) (30-50) has higher threshold

136Xe(d,d') at 100 MeV/u at HIMAC (21H445)

c.f.) 132Sn(d,d) for 5days

Pb(82) Patel+2013

Sm(60) Ito+2003 Xe(54) Ota, Endo, Stefano ... (2021) Sn(50) Li+2010, 132Sn Ota at RIBF / Garg (a,a) at FRI Cd(48) Patel+2012 Mo(42) Youngblood+2015, Howard+2020 Zr(40) Youngblood+2015, Gupta+2018 Kr(36) Meas. Ota, Endo, Stefano 2021, 2022 Ni(28) Youngblood+2018, **58, 64Ni GANIL**

Ca(20) Button+2017, Howard+2020

Forward kinematics

High precision measurement with GRAND RAIDEN

$$K_A = K_{0,V} + K_{0,S}A^{-1/3} + (K_{\tau,V} + K_{\tau})$$

 $_{\tau,S}A^{-1/3})\frac{(N-Z)^2}{A^2} + K_{Coul}\frac{Z^2}{A^{4/3}} + \mathcal{O}(A^2)$

Systematic measurements

Isotope : Z = const => Neutron Isotone : N = const => Proton Isobar : A = const => Isovector Isodiapher : N-Z = const => Isoscalar "Isologos?": (N-Z)/A or A/Z = const => Mass

Deformation effect in ISGMR

My question: How can we derive nuclear incompresibilities in deformed nuclei

Present status of RCNP ring cyclotron facility

	11			
Grand Raiden				
Resolving Power	37,000			
Bending Radius	3 m			
Bending Angle	162 deg			
Bending Power	5.4 Tm			
Dispersion	15.4 m			
Solid Angle	~4 msr			
Horizontal	±20mr			
Vertical	±70mr			
Momentum Acceptance	5 %			
Angle	0-70 deg			

Rinc Cyclotron will be operated in this autumn p up to 400 MeV, a up to 400 MeV etc.

GRAND RAIDEN (and LAS) are tested using the beam in June and July, 2022

DAQ Upgrade in GRAND RAIDEN / LAS

- CAMAC-Based system, with which the trigger rate more than 5 kcps can be handled, is replaced with the VME-based system.
- VME modules that have multi-event buffer are employed.
- Live time ratio more than 80% is achieved even with the trigger rate of 50 kcps.
 - Of course, depending on the number of hits in the detectors and on what kind of data is stored.

Many nuclei are waiting for being measured its monopole.

Proton(Z

Isotope : Z = const => Neutron Isotone : N = const => Proton Isobar : A = const => Isovector Isodiapher : N-Z = const => Isoscalar "Isologos?" : (N-Z)/A or A/Z = const => Mass

Summary and Outlook

- Ktau value contains the information on higher order coefficients
- Experimentally deduced Ktau value or the systematically measured values of nuclear incompressibility will provide the robust reference to the theory
- To evaluate the Ktau value more accurately, the systematic measurement with various mass number is required. •
 - CAT-M (+ other active targets in the world!!!) and GRAND RAIDEN
 - Systematic measurement along isobar chain with CAT-M and Isologos chain with GRAND RAIDEN will start •
 - Connection between deformation and nuclear incompressibility should be discussed. ٠
- Man power is needed! Please come to Japan and perform experiment!
 - Please make a contact !