Measurements of the GMR in direct kinematics at RCNP and in unstable nuclei with the MAYA active target

SOUMYA BAGCHI INDIAN INSTITUTE OF TECHNOLOGY, DHANBAD, INDIA

11th July 2022 ADVANCES ON GIANT NUCLEAR MONOPOLE EXCITATIONS AND APPLICATIONS TO MULTI-MESSENGER ASTROPHYSICS

Outline

- Giant Monopole Resonance (GMR), nuclear incompressibility, and its importance
- GMR in ⁵⁶Ni using active target Maya at the GANIL facility
- GMR in Nd isotopes using Grand Raiden Spectrometer at the RCNP facility
- Summary

Giant Resonances

Collective excitations: Coherent superposition of 1p-1h transitions

11th July 2022

ADVANCES ON GIANT NUCLEAR MONOPOLE EXCITATIONS AND APPLICATIONS TO MULTI-MESSENGER ASTROPHYSICS

Schematic of Giant Resonances

Giant Resonances: Strength Distribution of Isoscalar / Isovector Resonances

Photo neutron cross-sections (γ, n)

- Giant resonances are characterized by excitation energies higher than the particle-emission • threshold (10 - 30 MeV)
- Broad resonance widths

Why study Giant Monopole resonance?

Nuclear Incompressibility

Incompressibility:

A measure of the resistance of matter to uniform compression

Why study nuclear incompressibility?

- Key input to the EoS of the nuclear matter
- Core collapse and supernovae explosion
- Formation of neutron star
- Collisions of heavy ions

$$E_{ISGMR} = \hbar \sqrt{\frac{K_A}{m < r^2 > }}$$

See talks on Thursday

Giant Dipole resonance

$$E_{ISGDR} = \hbar \sqrt{\frac{7}{3} \frac{K_A + \frac{27}{25} \epsilon_F}{m < r^2 >}}$$
 Isoscalar (In phase)
$$\Delta T = 0$$

Nuclear Incompressibility

$$K_A = K_{\infty} + K_{Surf} A^{-1/3} + K_{\tau} \left(\frac{N-Z}{A}\right)^2 + K_{Coul} Z^2 A^{-4/3}$$

$$E_{ISGMR} = \hbar \sqrt{\frac{K_A}{m < r^2 >}}$$

Once K_A is found.

From GMR data on ²⁰⁸Pb and ⁹⁰Zr and other nuclei,

K_∞ = 240 ± 10 MeV [See, e.g., G. Colò et al., Phys. Rev. C 70 (2004) 024307]

Fitting the centroid energies of soft Sn isotope and stiff Pb isotope simultaneously yielded a smaller value of K_{m} with large uncertainty, i.e., 230 ± 40MeV.

E. Khan, J. Margueron, I. Vidaña, PRL 109 (2012) 092501.E. Khan, J. Margueron, PRC 88 (2013) 034319.

7

Softness of nucleus

D. Patel et al Physics Letters B 718 (2012) 447-450

Similar situation in Sn isotopes T. Li, PRL 99, 162503 (2007)

$$E_{ISGMR} = \hbar \sqrt{\frac{K_A}{m < r^2 >}}$$
$$K_A \xrightarrow{\text{RPA}} K_\infty$$

Why the Tin and Cadmium are fluffy?

Previous works on Giant Monopole Resonance in Ni isotopes:

⁵⁶ Ni : ISGMR, ISGQR	[⁵⁶ Ni(<i>d,d</i> ') ⁵⁶ Ni*]	C. Monrozeau et al., PRL 100, 042501 (2008)
⁵⁸ Ni : ISGMR, ISGDR, ISGQR	[⁵⁸ Ni(α,α') ⁵⁸ Ni*]	Y. Lui et al., PRC 73 , 014314 (2006)
⁶⁰ Ni : ISGMR, ISGDR, ISGQR	[⁶⁰ Ni(α,α') ⁶⁰ Ni*]	Y. Lui et al., PRC 73 , 014314 (2006)
⁶⁸ Ni : ISGMR, ISGQR	[⁶⁸ Ni(α,α') ⁶⁸ Ni*]	M. Vandebrouck et al., PRL 113, 032504 (2014)
⁶⁸ Ni : ISGMR, ISGQR	[⁶⁸ Ni(d,d') ⁶⁸ Ni*]	M. Vandebrouck et al., PRC 92 , 024316 (2015)

Best probe for Isoscalar Resonances: α -particle or deuteron ($\Delta T = 0$)

 α -particle probe is better:

- Cross section: Reaction with α -particle > Reaction with deuteron
- Background: Deuteron breaks at low energy
- Deuteron has spin 1 and α-particle has spin 0

⁵⁶Ni(α,α')⁵⁶Ni*

Measurement at forwarding angles and inverse kinematics

Exotic beam (half life < seconds): Inverse kinematics (can not be a target)

Intensity of exotic beams very low ($\sim 10^4 - 10^5$ pps)

Reasonable yields: thick target is needed

Forward angles characteristic of multipoles

Very low energy (~ sub MeV) recoil particle will not come out of the thick target

⁵⁶Ni(α, α')⁵⁶Ni*

⁵⁶Ni = Projectile

 α = Target

Active target

A gas detector where the target gas also acts as a detector

- Angular coverage
- Effective target thickness can be increased without much loss of resolution
- Detection of very low energy recoil particle is possible

Experimental Area at GANIL, France

11th July 2022

Experimental Area at GANIL, France

Electrostatic mask to increase the dynamic range

Beam Subtraction and Track Reconstruction

Track and kinematics reconstruction inside MAYA

Results ⁵⁶Ni(α , α ') ⁵⁶Ni*

Results ⁵⁶Ni (α , α') ⁵⁶Ni*: Excitation energy spectra fitting

Results ⁵⁶Ni (α , α') ⁵⁶Ni* : Multipole Decomposition Analysis

19

Measurements in ⁵⁶Ni and ⁶⁸Ni with Maya

Giant resonances in Ni isotopes: Status

 Measurements of Ni isotopes from neutron-deficient to neutron-rich in one experimental setup (ACTAR setup!!)

21

Storage Ring

LOI: Investigation of the ISGMR in ⁵⁶Ni at the GSI Experimental Storage Ring (Continuation of the Proposal E105): J. C. Zamora and O. Kiselev et al., See talk by J. Zamora

Isovector Giant Dipole Resonances: Photo-neutron cross-section

B. L. Berman and S. C. Fultz, Rev. Mod. Phys. 47, 713 (1975)

11th July 2022

Photo-neutron cross-section in deformed nuclei:

Deformed Nucleus

$$R(\theta, \phi) = R_0(1 + \beta_2 Y_{20}(\theta, \phi))$$

a

b

$$\beta_2 (^{150}Nd) = 0.285(3)$$

B. L. Berman and S. C. Fultz, Rev. Mod. Phys. 47, 713 (1975) Photon Energy - MeV

11th July 2022 ADVANCES ON GIANT NUCLEAR MONOPOLE EXCITATIONS AND APPLICATIONS TO MULTI-MESSENGER ASTROPHYSICS

Isoscalar resonances in deformed nuclei

Isoscalar resonances in deformed nuclei:

QRPA calculations with Skyrme energy-density functional

Yoshida and Nakatsukasa, PRC 88, 034309 (2013)

26

Isoscalar GR has been studied in Sm isotopes, ²⁴Mg, ²⁸Si, Mo isotopes.

See talks by A. Pastore, L. Usman

Effect of deformation on ISGMR strength in Nd isotopes

- QRPA calculation: Position of the low-energy E0 peak matches with the position of the ISGQR (K = 0) peak suggesting the E0-E2 coupling
- TAMU data: Excitation energy spectra suffer from instrumental background as well as nuclear continuum; bombarding energy of α -beam 129 MeV
- At RCNP we can perform the experiment without instrumental background and much lower nuclear continuum background; bombarding energy of α -beam 400 MeV

Discrepancy in ISGMR strength distribution in deformed ¹⁵⁴Sm

RCNP data Phys. Rev. C 68, 064602 (2003)

TAMU data Phys. Rev. C 69, 034315 (2004)

- EWSR of the low-energy ISGMR component to that of the high-energy ISGMR component is not consistent in these two different sets of data
- Discrepancy may be due to different bombarding energies of the beam J. Kvasil et al., Phys. Rev. C 94, 064302 (2016)
- Need investigation of another nucleus having strong deformation

Experimental Setup

Faraday cup positions for different angles measurements

Requirements:

- α-beam to be halo free
- Beam energy ~ 386 MeV
- Intensity ~ 10 nA

7 different angular settings of the spectrometer: 0°, 2.5°, 3.5°, 5°, 6.5°, 8°, and, 9.5°

ADVANCES ON GIANT NUCLEAR MONOPOLE EXCITATIONS AND APPLICATIONS TO MULTI-MESSENGER ASTROPHYSICS

Research Center for Nuclear Physics: Grand Raiden Spectrometer

Coupled AVF and ring cyclotrons deliver 386 MeV α -particles

Enriched (> 95%) ^{142, 146, 148, 150}Nd targets (~ 5 mg/cm²)

Focal plane: position-sensitive MWDCs and plastic scintillators for momentum analysis and particle identification.

Calibration with ²⁴Mg (α , α ')

In ²⁴Mg, well-known low-lying discrete states

High-resolution reference spectra obtained from T. Kawabata

Calibration parameters were obtained using the kinematical relations between the incident particle, the target nucleus, and the scattered α particle.

31

Particle Identification

Pulse height from plastic scintillators mounted on the focal plane versus horizontal focal plane position obtained from MWDCs.

Instrumental Background

Double Focusing Mode of the Spectrometer

Elastic Scattering of α -particles with ¹⁴²Nd

Optical Potential Parameters

Elastic α -scattering on ¹⁴²Nd

Fit to the elastic scattering data by chi² minimization

Oxygen Contamination Subtraction

- Inelastic alpha scattering data off ¹⁶O (SiO₂ target) from M. Itoh
- Beam energy is the same
- Oxygen spectrum is changed to the Nd kinematics
- Smeared to the experimental resolution
- Scaling of the spectrum done by taking the ratio of the corresponding peaks
- After scaling, the oxygen spectrum in Nd kinematics is subtracted from the Nd data

Strength distribution extraction: Multipole Decomposition Analysis

$$\frac{d^2 \sigma^{exp}(\theta_{C.M.}, E_x)}{d\Omega dE_x} = \sum_{\lambda} A_{\lambda}(E_x) \frac{d^2 \sigma_{\lambda}^{DWBA}(\theta_{C.M.}, E_x)}{d\Omega dE_x}$$

- Until L = 7 multipoles have been considered
- Optical parameters used from the elastic scattering data
- Coupled channel code (CHUCK3) was used to calculate the theoretical angular distribution at a particular energy
- IVGDR contribution has not yet been subtracted
- Energy bins used 400 keV

38

Summary

- Active target is an alternative to study the GMR of exotic nuclei using inelastic alpha particle scattering
- Fluffiness in some nuclei is still an open question. Need further data.
- Storage ring is another good approach to study the GMR for exotic nuclei
- Data analysis of Nd isotopes taken using the Grand Raiden Spectrometer is ongoing. Energy bins 400 keV show statistical fluctuations. 1 MeV energy bin would be better.
- IVGDR contribution has not yet been subtracted
- Data from another strongly deformed nucleus ¹⁷²Yb ($\beta_2 = 0.33$) was taken.

47

Maya Collaboration

S. Bagchi, J. Gibelin, M.N. Harakeh, N. Kalantar-Nayestanaki, N.L. Achouri, H. Akimune,
B. Bastin, K. Boretzky, H. Bouzomita, M. Caamaño, L. Càceres, S. Damoy, F. Delaunay,
B. Fernández-Domínguez, M. Fujiwara, U. Garg, G.F. Grinyer, O. Kamalou, E. Khan,
A. Krasznahorkay, G. Lhoutellier, J.F. Libin, S. Lukyanov, K. Mazurek, M.A. Najafi, J. Pancin,
Y. Penionzhkevich, L. Perrot, R. Raabe, C. Rigollet, T. Roger, S. Sambi, H. Savajols, M. Senoville,
C. Stodel, L. Suen, J.C. Thomas, M. Vandebrouck, J. Van de Walle

RCNP Collaboration

M. Abdullah, S.Bagchi, M. N. Harakeh, H.Akimune, D. Das, T.Doi, L. Donaldson, Y.Fujikawa, M.Fujiwara, T.Furuno, U.Garg, Y.Hijikata, K.B.Howard, K.Inaba, S.Ishida, M.Itoh, N.Kalantar-Nayestanaki, T.Kawabata, S.Kawashima, K.Kitamura, N.Kobayashi, Y.Matsuda, A.Nakagawa, S.Nakamura, K.Nosaka, S.Okamoto, S.Ota, R. Pramanik, S. Roy, S.Weyhmiller, Z.Yang, J. Zamora

The isotopes used in this research were supplied by the United States Department of Energy Office of Science by the Isotope Program in the Office of Nuclear Physics.

49