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✷ It is rich, self-consistent and beautiful 


QCD is the theory of hadrons 

(discovered early 1970s)

The most interesting phenomena are at strong

coupling

Solving theories at strong coupling is notoriously 
difficult, even classical (cf. turbulence)

50 years in search of sol’n. Only islands of knowledge



Promises:
Instantons 1974; 

Large-Nc 1976; 

OPE & Heavy quark expansions 1979-1995;

Supersymmetry: 1983-1994;

Seiberg-Witten model 1994-…;

Holography (ADS/QCD) 1998-2000’s;


Every time – euphoric hopes, but alas…


No complete sol’n; 

Still, not in vain!

Each finding is a discovery of a new island of 
knowledge!



A journey to one island began from A. Polyakov:

Thermal Yang-Mills


Euclidean time τ

Circumference of time direction τ = β = 1/T
Periodic b.c.

R3
R4 ➔ R3 × S1

Large r(S1) return

to R4
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In the vacuum no x dependence,

Ω is a unitary N×N matrix, Ω Ω+ =1

Upon diagonalization Ω = diag{eiδ1,eiδ2,…,eiδN}



 Polyakov’s criterion of confinement

Ω = diag{eiδ1,eiδ2,…,eiδN}

Tr Ω = 0

Small T (large β) ➔ strong coupling, all phases 
oscillate like crazy, each eigenvalue averages to 0!

Large T (small β) ➔ weak coupling, PT (quasiclassics) 
is applicable if 
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Center-symmetric phase



What is the center of a group?

–  The center of a group is the set of elements in 

the group which

commute with all the elements of the group.


–  For SU(Nc) the center is ZNc. Namely C is an 
element of the center iff C=zi×1,  with ziNc equal 1.


•  What is a center transformation in a gauge 
theory?
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•  Since, it seems to act so much like a gauge 
transformation, how do we know it is physical?

–  There exist gauge invariant (i.e. physical) 

observables which are NOT invariant under center 
transformation!


–  The Polyakov loop is the simplest example.

Indeed, Ω ➔ U(0) Ω U+(β)

Polyakov loop is NOT invariant under non-trivial 
center transformations! Tr Ω is the order parameter!

Tr Ω=0 ➔ center symm. OK; Tr Ω≠0 ➔ CS broken



Gross-Pisarsky-Yaffe effective potential for Tr Ω in YM

that the symmetry breaking pattern expected in the R4 limit is SU(2)F ! SO(2), so

that on R4 we expect two exactly massless “diquark” Nambu-Goldstone bosons, G±.

Given our choice of boundary conditions, at finite L these Nambu-Goldstone bosons

pick up e↵ective masses ⇠ '/L. So we should not expect to see any exactly gapless

bosons in the spectrum of the theory on R3 ⇥ S1, because there is no exact continuous

symmetry which could be spontaneously broken. Consequently, we can expect the

realization of the exact flavor symmetry to be identical for all L.

At large L, we expect an unbroken center symmetry, so that

htr⌦ni = 0, n = 1, . . . , N � 1. (3.6)

where ⌦ is the Polyakov loop around S1. Let us now examine the realization of center

symmetry at small L. This can be determined by a straightforward generalization

of the Gross-Pisarski-Ya↵e[24] calculation of the ⌦ e↵ective potential to the present

setting. The one-loop result is

V
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The first term comes from the gluons while the second term comes from the adjoint

fermions. The minimization of this one-loop e↵ective potential can be trusted to give

the correct estimate of the ground state of the system provided that ⇤L ⌧ 1. Since

we are asking about a Polyakov loop of characteristic size L, what is relevant is the

e↵ective size of the interactions at the scale L, and this is small precisely when ⇤L ⌧ 1.

To determine the phase of the theory, one only has to specify the first bN/2c
expectation values powers of the holonomy, since the others are related to them by

charge conjugation symmetry. Thus, to preserve center symmetry, we have to make

sure that the e↵ective potential for |tr⌦k|2 is positive for k < bN/2c. This gives the

condition

|'| < 2⇡

3N
(3.8)

for center symmetry to be preserved at small L⇤. If ' > 2⇡
3N

, then center symmetry

breaks at small L⇤. We thus expect that, provided that the twist ' obeys the condition

0 < |'| < 2⇡

3N
(3.9)

then the large L and small L regimes of the theory are smoothly connected, in the

sense that all order parameters for all of the symmetries — center symmetry and the

discrete and continuous chiral symmetries — realized in the same mode for any L.
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Veff

All eigenvalues clump say, at δ=0, Tr Ω≠0, hence CS broken

DECONFINEMENT, phase transition at β~1/Λ

Nothing you calculate at large T (small β) is 
useful in the strong coupling regime




Many years later: Ünsal and collaborators:


Can one change the theory at short distances in such a 
way that CS (and other appropriate symmetries) are 

preserved, and there is no phase transition on the way to 
large distances?


The answer is YES!


A couple of ways ensuring smooth journey were 
found, of which I like one particular better than 
others because it is quite physical: add Weyl 
(Majorana) fermions in the adjoint representation.

Planar equivalence with AS quarks 

(just quarks at N=3)



Nf Weyl fermions: What is expected on R4?

Nf =1  ☞ Supersymmetry (SYM) /No PT potential

Nf =2  ☞ SU(2)flavor ➔ U(1)flavor, Z2NN_flavor ➔ Z2

Nf =3  ☞ probably similar

Nf =4  ☞ ???

Nf =5  ☞ Banks-Zaks conformal regime

Nf =6  ☞ loss of asymptotic freedom!

If β ≠ 0 and large,  add center symmetry



R4 ➔ R3 × S1,  β small, quasiclassical domain
Ünsal and collaborators ☞ periodic b.c. for fermions (spatial)

symmetry-twisted boundary conditions, where the pattern of chiral symmetry breaking

is the same for large L and at small L[23].

In this paper we show that there is a way to compactify adjoint QCD which is

consistent with full adiabatic continuity. Moreover, the construction we describe below

preserves all of the of the nice properties of QCD(Adj) described above.

2 Comment on the holonomy e↵ective potential

Much of our analysis below will rest on the Coleman-Weinberg e↵ective potential for

the holonomy of the gauge field on S1

L. This Gross-Pisarski-Ya↵e (GPY) e↵ective

potential[24] determines the realization of center symmetry. Here we want to make

some remarks about its domain of validity.

The GPY e↵ective potential is calculated in the one-loop approximation. This

approximation is valid for determining the fate of center symmetry so long as L⇤ ⌧
1. There are a number of ways to see this. The realization of center symmetry is

determined by Polyakov loops of size L, and YM theory is weakly coupled on a length

scale L so long as L⇤. One can also note that the one-loop e↵ective potential for gluons

can be written as

V
e↵

=
NX

a,b=1

Z
d3p log(1� e�Lp+i(↵a�↵b)) (2.1)

where ei↵a are the eigenvalues of the holonomy. The 3-momentum integrals above are

all dominated by momenta of scale 1/L, and, as claimed above, the theory is weakly

coupled at this scale.

The fact that the GPY e↵ective potential is reliable for L⇤ ⌧ 1 is why we can

be sure that pure YM theory is in a deconfined phase at high temperatures T = 1/L,

with a free energy approaching F = (N2 � 1)⇡2/45T 4 for T/⇤ � 1. Of course,

this does not mean that generic low energy observables are analytically calculable at

high temperatures, and indeed it is well known that pure YM theory remains strongly

coupled on length scales ` & 1/(�[L]L) for any L. Here �[L] is the ’t Hooft coupling.

As a corollary, if we find a field theory where the GPY potential indicates that the

theory is confined at small L⇤, this is also reliable. For example, in adjoint QCD with

NF quarks with periodic boundary conditions the GPY e↵ective potential is

V
e↵

(⌦) =
2(NF � 1)

⇡2L4

X

n�1

1

n4

⇥|tr⌦n|2 � 1
⇤
, (2.2)

and tr⌦n = 08n 6= kN on the minimum of the potential for NF > 1[9]. So the

theory is in a confined phase for NF > 1. Of course, this does not imply that one can
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The overall sign of Veff changes if Nf =2,…

eiδ1,eiδ2,…,eiδN

Tr Ω=0

CS ➔ OK

SU(2)flavor unbroken 😭 
No smooth journey

The same refers to prvs works with

fundamentals (Ü+MS)



What’s to be done? (if anything)

3 Symmetry analysis on R3 ⇥ S1

Take adjoint QCD with NF = 2, and consider the quark boundary conditions

 (x
3

+ L) =

✓
ei' 0

0 e�i'

◆
 (x

3

) (3.1)

where  is a flavor doublet,

 =

 
 u

 d

!
. (3.2)

Note that ' = ⇡ corresponds to the standard anti-periodic ‘thermal’ boundary con-

ditions, while ' = 0 corresponds to periodic ‘spatial’ boundary conditions. Turning

on a generic twist angle ' is equivalent to working with periodic quark fields with a

background flavor SU(2)F holonomy

✓
ei' 0

0 e�i'

◆
= U = Pei

H
S1 A3 , (3.3)

where A is the background flavor gauge field. It is also equivalent to turning on an

imaginary chemical potential i'/L for the charge associated to the Cartan subgroup

U(1)F ⇢ SU(2)F .

One can package the two Weyl fermion flavors  u and  d into a Dirac fermion  .

Then the fermion number symmetry U(1)F is isomorphic to the chiral SO(2) = U(1)

subgroup of SU(2) which remains unbroken. Hence,

F = QU(1)F
, (3.4)

where F is the fermion charge. U(1)F acts as the quark number symmetry U(1)Q. The

Euclidean path integral with the boundary condition (3.1) computes a twisted partition

function

Z̃(L,') = tr(�1)F e�L bHei' bQU(1)F (3.5)

where bH is the Hamiltonian operator while bQU(1)F
is the charge operator for the U(1)F

symmetry. Note that in our theory Z̃(L,') is real for any value of '.

The same twist was explored before in [25], with a discussion of the holonomy

e↵ective potential at finite N , and an analysis of symmetry breaking patterns using a

Nambu-Jona-Lasinio-type model. The emphasis of our analysis is rather di↵erent, but

of course it agrees in all areas of overlap. Add more comments on this earlier

work?

Suppose that the quarks are massless. Then the boundary condition (3.1) explicitly

breaks the flavor symmetry from SU(2)F to U(1)F ⌘ SO(2) for any finite L. Recall
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SU(2)flavor ➔ U(1)flavor explicitly 😀  ☞ 
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β



Smooth journey achieved in the interval 0<|φ|< 2π/3N !

that the symmetry breaking pattern expected in the R4 limit is SU(2)F ! SO(2), so

that on R4 we expect two exactly massless “diquark” Nambu-Goldstone bosons, G±.

Given our choice of boundary conditions, at finite L these Nambu-Goldstone bosons

pick up e↵ective masses ⇠ '/L. So we should not expect to see any exactly gapless

bosons in the spectrum of the theory on R3 ⇥ S1, because there is no exact continuous

symmetry which could be spontaneously broken. Consequently, we can expect the

realization of the exact flavor symmetry to be identical for all L.

At large L, we expect an unbroken center symmetry, so that

htr⌦ni = 0, n = 1, . . . , N � 1. (3.6)

where ⌦ is the Polyakov loop around S1. Let us now examine the realization of center

symmetry at small L. This can be determined by a straightforward generalization

of the Gross-Pisarski-Ya↵e[24] calculation of the ⌦ e↵ective potential to the present

setting. The one-loop result is

V
e↵

(⌦;') = � 2

⇡2L4

X

n�1

1

n4

⇥|tr⌦n|2 � 1
⇤
+

2

⇡2L4

X

n�1

2 cos(n')

n4

⇥|tr⌦n|2 � 1
⇤
. (3.7)

The first term comes from the gluons while the second term comes from the adjoint

fermions. The minimization of this one-loop e↵ective potential can be trusted to give

the correct estimate of the ground state of the system provided that ⇤L ⌧ 1. Since

we are asking about a Polyakov loop of characteristic size L, what is relevant is the

e↵ective size of the interactions at the scale L, and this is small precisely when ⇤L ⌧ 1.

To determine the phase of the theory, one only has to specify the first bN/2c
expectation values powers of the holonomy, since the others are related to them by

charge conjugation symmetry. Thus, to preserve center symmetry, we have to make

sure that the e↵ective potential for |tr⌦k|2 is positive for k < bN/2c. This gives the

condition

|'| < 2⇡

3N
(3.8)

for center symmetry to be preserved at small L⇤. If ' > 2⇡
3N

, then center symmetry

breaks at small L⇤. We thus expect that, provided that the twist ' obeys the condition

0 < |'| < 2⇡

3N
(3.9)

then the large L and small L regimes of the theory are smoothly connected, in the

sense that all order parameters for all of the symmetries — center symmetry and the

discrete and continuous chiral symmetries — realized in the same mode for any L.
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At large L, we expect an unbroken center symmetry, so that

htr⌦ni = 0, n = 1, . . . , N � 1. (3.6)

where ⌦ is the Polyakov loop around S1. Let us now examine the realization of center

symmetry at small L. This can be determined by a straightforward generalization

of the Gross-Pisarski-Ya↵e[24] calculation of the ⌦ e↵ective potential to the present

setting. The one-loop result is

V
e↵

(⌦;') = � 2

⇡2L4

X

n�1

1

n4

⇥|tr⌦n|2 � 1
⇤
+

2

⇡2L4

X

n�1

2 cos(n')

n4

⇥|tr⌦n|2 � 1
⇤
. (3.7)

The first term comes from the gluons while the second term comes from the adjoint

fermions. The minimization of this one-loop e↵ective potential can be trusted to give

the correct estimate of the ground state of the system provided that ⇤L ⌧ 1. Since

we are asking about a Polyakov loop of characteristic size L, what is relevant is the

e↵ective size of the interactions at the scale L, and this is small precisely when ⇤L ⌧ 1.

To determine the phase of the theory, one only has to specify the first bN/2c
expectation values powers of the holonomy, since the others are related to them by

charge conjugation symmetry. Thus, to preserve center symmetry, we have to make

sure that the e↵ective potential for |tr⌦k|2 is positive for k < bN/2c. This gives the

condition

|'| < 2⇡

3N
(3.8)

for center symmetry to be preserved at small L⇤. If ' > 2⇡
3N

, then center symmetry

breaks at small L⇤. We thus expect that, provided that the twist ' obeys the condition

0 < |'| < 2⇡

3N
(3.9)

then the large L and small L regimes of the theory are smoothly connected, in the

sense that all order parameters for all of the symmetries — center symmetry and the

discrete and continuous chiral symmetries — realized in the same mode for any L.
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To preserve center symmetry we need

What about the Hagedorn phase transition?
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phase φ is not just zero


singularities, note that we can write the partition function as

Z =

Z
dE⇢(E)e��E . (5.9)

The singularities at qi map exponentially growing terms in the density of states. Indeed,

the density of states can be written as

⇢(E) =

" 1X

i=1

e+�iE⇢i(E)

#
+R(E) , (5.10)

where �i = �R log qi, the functions ⇢i(E) have subexponential growth at large E, R(E)

is also a sub-exponential function of E, and �i, ⇢i(E), R(E) all depend on '.

The Hagedorn length scale is set by �
1

, and in the R⇤ ! 0 limit it coincides

with the deconfinement scale. The existence of the infinite set of singularities shows

how hard it is to avoid Hagedorn instabilities by introducing symmetry twists in the

partition function. One must not only arrange the symmetry twist to cancel the leading

Hagedorn growth, but also the entire function ⇢
1

(E) multiplying it, and then repeat

this for all exponentially growing pieces of ⇢(E). If one is to avoid having Hagedorn

singularities on q 2 (0, 1), the most that can remain in the twisted density of states is

the function R(E).

Indeed, in general the twist by U(1) 2 SU(2)F is not enough to completely cancel

the Hagedorn singularities. At ' = ⇡, all states contribute to the partition function

with the same sign, so there are no cancellations. As ' is decreased from ⇡ to 0,

cancellations are induced, but they are not enough to eliminate all exponential growth

in the partition function. Instead, the location of the leading singularity moves toward

q = 1 from below as ' approaches 0. Only when ' = 0 are all Hagedorn singularities

in the physical domain eliminated. This corresponds to the (�1)F twist discussed in

[11].

6 Spectral conspiracies

Let us return to Sec. 3 in which we established adiabatic continuity in L as L evolves

from small to large values provided that the angle ' defining Z̃(L,') is chosen in

the interval 0 < ' < 2⇡(3N)�1. As was noted in [29] adiabatic continuity implies

certain cancellations between the boson and fermion contribution in Z̃(L,'). Indeed,

the theory at hand possesses a Hagedorn (exponentially growing) density of hadronic

states which typically leads to a phase transition at some finite value of L. In [29]

it was conjectured that to ensure the necessary cancellation in Z̃(L) = tr(�1)F e�L bH

– 10 –



a dynamical “supersymmetry” must emerge (at least for highly excited states) in the

form of the Bose-Fermi degeneracy at each level. From the consideration in Sec. 3 we

see that the absence of all Hagedorn phase transitions in Z̃(L,') requires much more

contrived spectral conspiracies, non-local in mass, i.e. involving a large number of levels

with di↵erent fermion numbers and masses. Indeed, the Hagedorn phase transitions

must be absent in Z̃(L,') for any value of ' from the interval 0 < ' < 2⇡(3N)�1. The

conventional, “local” Bose-Fermi degeneracy by itself does not provide cancellations in

Z̃(L,') = tr(�1)F e�L bHei' bQU(1)F because of di↵erent phase factors for the boson and

fermion sates in the given pair.

A qualitative picture of necessary cancellations is outlined in Figs. 3 and 4 which

present linear and equidistant Regge trajectories, both primary and daughter, in the

domain of large angular momentum J and excitation numbers n. The asymptotic

linearity of the Regge trajectories arguably exists for high excitations.

In discussing the hadronic sates we will follow the line of reasoning of [Cohen et

al.] which puts the set of all local gauge invariant operators into correspondence with

the set of states with the appropriate quantum numbers.

Assembling all hadrons from the given level, see Fig. 3, (i.e. with given value of

M2) we cannot obtain cancellations with the exponential accuracy for any ' because

the phase factor exp
�
i'QU(1)F

�
changes as we move in the horizontal direction along

the level. This is shown with more clarity in Fig. 4. Summing all states with the given

Q does not help either, because for all even Q this sum will include only bosonic states,

while for odd Q only fermionic. Thus, the conspiracy needed must involve many levels

in the spectrum, with di↵erent Q and M2. At large N one can conjecture that the

interval of Q which would be needed for cancellations scales as N .

Since there is no local supersymmetry in the theory, when we change Q or M2 by

one unit we expect the the values of M2 to “breath” chaotically, as shown in Fig. 4.
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