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Chiral Magnetic Effect

Induction of electric current along a magnetic field in the presence of chirality imbalance
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Chiral Magnetic Effect

Induction of electric current along a magnetic field in the presence of chirality imbalance
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Axial charge production in Glasma

Possible origins of the chirality imbalance in heavy-ion collisions:

* Quark production in Glasma

* Sphaleron transition in QGP/Glasma  Moore, Tassler (2011)
Mace, Schlichting, Venugopalan (2016)
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Possible origins of the chirality imbalance in heavy-ion collisions:

* Quark production in Glasma

* Sphaleron transition in QGP/Glasma  Moore, Tassler (2011)
Mace, Schlichting, Venugopalan (2016)

\t/ Before a coIIision After a collision
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Glasma
Color glass condensate (CGC) Glasma
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Chromo E and B fields _ FF ?é 0
U(1) B field exist only at the early stage.

mmmm) All the processes are far-from-equilibrium.

Challenges:
Nonequilibrium, Nonperturbative, Quantum dynamics of quarks, Expanding geometry

Real-time lattice simulations of axial charge production




Strong gauge fields A ~ 1/g mmmmmp classical approximation for the gauge fields

By systematic weak-coupling expansion around strong gauge fields, real-time evolution
equations for classical(-statistical) gauge fields and dynamical quantum quark fields can be
derived from the Schwinger-Keldysh path-integral formalism.  jeon (2014); Kasper, Hebenstreit, Berges (2014)

LO: Yang-Mills equations for boost-invariant classical gauge fields

[Dﬂa FW/] — Jyﬁ
external current ]

Dirac equation for quark mode functions

[iv" (0, +igA,) — m]p s.ec =0

» The backreaction from quarks to the gauge fields is negligible in the LO.
» These equations are solved with CGC initial conditions on the lattice in the expanding

geometry.
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CGC initial conditions

Classical YM egs. coupled to large-x color sources

Dy ) = 64 6(2 ) pay () + 67 6(x " Yoy ()

Solution at 7 = 0™ in the Fock-Schwinger gauge A™ = ()

Ez(’T = 0""’ Q[:J_) = —’Lg |:O{1(:1), 04%2)] . . i ?:
B.(r=0",x,) = —ige” [a"(’l),afz)} A" = aqy A" = o
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Wi

Ay (@) = (n)a Vin)
Viny (L) = GXP[ igV 2 0m)]

Kovner, McLerran, Weigert (1995)

Numerical solution for 7 > 0 in the McLerran-Venugopalan (MV) model
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Glasma flux tube

Instead of random color distributions, we consider a fixed configuration that leads to
single-flux-tube configuration of the SU(2) color fields with a Gaussian profile.

initial energy density
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Remark 1: This is not a topological configuration.
Remark 2: Glasma flux tubes are not confining flux tubes.
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Glasma flux tube

Instead of random color distributions, we consider a fixed configuration that leads to
single-flux-tube configuration of the SU(2) color fields with a Gaussian profile.

initial energy density
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Remark 1: This is not a topological configuration.
Remark 2: Glasma flux tubes are not confining flux tubes.
Breaking of a confining flux tube Decay of a Glasma flux tube
QW@ _ [hieh density gluons]
~1/g
v Quw Wy % ai@
"’ Qu Ja Ya yotiwya a¥@
* Production of one pair immediately * Production of one pair is not enough to
causes string breaking. shield the field for weak coupling.

* The field is gradually diluted.
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Quark fields

Up to the initial surface 7 = 07, the Dirac equation
under the CGC classical gauge fields can be solved

analytically. Gelis, Kajantie, Lappi (2006);

Gelis, Tanji (2016)

The evolution for 7 > 0 can be described by solving
the Dirac equation for the mode functions

ip-x

. ( " _
(7’7087' + ;F)/SD?? + {V)/ZD%' —m+ W) 77pr_,z/,3,c(m) =0

Up,s() = v(P,5)e

on the real-time lattice in the expanding geometry.

To realize the chiral anomaly on the lattice, we employ the Wilson fermion extended to
the expanding geometry. Tanji, Berges (2018)
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Wilson fermion and chiral anomaly

Adler-Bell-Jackiw anomaly equation
2

Ouit = 2m(Divsv) + ~ BB

[m g5 = (" vs59) ]

The Wilson fermion exactly satisfies

Ougt = 2mPivs) + (Yis Wp)

where 111} is the Wilson term added to the Dirac equation to suppress doublers.

The axial anomaly is realized if 5

. ~ g a a
(Yiys W) = EE -B

which has been proven to hold in the continuum limit in the Euclidean lattice gauge theory,
Karsten, Smit (1981)

and numerically confirmed in real-time lattice computations for non-expanding systems.

Tanji, Mueller, Berges (2016);
Mueller, Hebenstreit, Berges (2016);
Mace, Mueller, Schlichting, Sharma (2017)
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Anomaly equation in the expanding geometry

ABJ anomaly equation in the 7-17] coordinates

—8 (T55) + 0% + // 2mmw —|——Ea B“

boost-invariant background

Axial charge density per unit transverse area and unit rapidity
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ABJ anomaly equation in the 7-7) coordinates
2

R T _ P .
;ar (7j5) + 0ijs + ;&ﬂg = 2m(Piys) + @E -B

boost-invariant background m =~ 0

Axial charge density per unit transverse area and unit rapidity

dNs o
d2.’lde’I’] — TJ5 (33)

T . g2 T
=— | 70ijidr' + = | T'E*-B"dr’
0 4m= Jo Y
outflow in the transverse plane J source term

* In a uniform system or at very early times, the transverse divergence term is negligible.
Then the axial charge density can be computed solely from the gauge fields.
* Otherwise, one needs to solve the Dirac equation.




Uniform Glasma

Take the limit of the flux tube width — o0

() : typical energy scale of the Glasma
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» Similar behavior to that with the MV initial condition.
» In this uniform system, the decay of the fields is a purely nonlinear effect.
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Uniform Glasma

N;=1
Verification of the anomaly relation m/Q = 0.01
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Quark mass dependence

> Lighter quarks m/Q < 0.1 are almost degenerated.
» Heavier quarks are affected by the pseudo scalar condensate term.

cifV5 92 ! I Tha a /
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Effects of mass

m/@Q = 0.5
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» The pseudo scalar condensate term is comparable to other terms.
» The axial charge is not always diminished by the mass term.
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Glasma flux tubes

The profile of flux tubes in the transverse plane

* Two flux tubes to satisfy the periodic b.c.
* Distorted Gaussian to have both E and B.
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Glasma flux tubes

The profile of flux tubes in the transverse plane
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Glasma flux tubes

The profile of flux tubes in the transverse plane

0 5 10 15 20 25 30

Qx

14/18



Glasma flux tubes

The profile of flux tubes in the transverse plane
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Glasma flux tubes

The profile of flux tubes in the transverse plane
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Glasma flux tubes

The profile of flux tubes in the transverse plane
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Glasma flux tubes
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» Similar behavior to that with the MV initial condition.
» The decay at later times is faster than the uniform case.
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Glasma flux tubes

Verification of the space-averaged anomaly relation
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Glasma flux tubes

Verification of the space-averaged anomaly relation
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Glasma flux tubes

Local anomaly budget
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For Q7 21 the outflow term takes some fraction of the anomaly budget.
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» The axial charge production in the longitudinally expanding geometry can
be described by the real-time lattice simulations with the Wilson fermion.

» The classical gauge fields having nonzero E- B exhibit nontrivial behaviors.

» Because the axial charge density is related with the time integral of E-B,
it depends on the time history and it can remain even after E- B dies out.

» In inhomogeneous gauge fields, it is crucial to solve the Dirac equation for
the proper description of the axial charge production including its spatial
dynamics.

e Real-time simulations of the Chiral Magnetic Effect in the
expanding system by applying a U(1) magnetic field.

* More realistic configurations?






Lattice formulation: Gauge sector

Gauge degrees of freedom: U;,U,, E'and E" (i=1,2)

Lattice Yang-Mills equations

0, U;(z) = ig%Ei(m)Ui(:E)

0-Uyp(z) = iga,7E"(x)U,(x)

] T
0, E' () = —— Z IIIl i J(x) + Ui —j (m)]traceless o

i (2) + Ui, —n ()], o cotess
QGJ_ j?é% [ 7] —-n ]t 1

gTala2

9, E"(z)

Z Im [Un i + U —’6( )]traceless

gTanaJ_

The clover definition for magnetic field is employed.



Lattice formulation: Quark sector

Dirac equation for the quark mode fucntions

: i " _
(27087 + ;f)/?’D,,7 + 1y’ Dy —m 4+ W) ¢pbu,5’c =0

Tree-level improved lattice covariant derivative ¢ =4/3,¢c0 = —1/6
C ~ ~ ~
Dyp(z) = — [Un()(z + 1) — Uj(x — f)o(z — 1))
a,,
c X . . . R
+ 2 (U (@)Ul + @) + 200) = Ul(e — p)Uj(x — 22)0(z — 2)]
M

Spatial Wilson term extended to the expanding geometry

Wie) = 5= 3 {er [Ti@)w(e +1) —20(2) + U (@~ Doz — )]

26 [U (2)Ui(z + )b(z + 2) — 20(2) + Ul (z — )Uf (@ — 20)(z — 2%)] }
QT% {er [Un(@)(e +1) = 20(2) + U (@ — )i (x — )]

+2¢5 [Uy(2)Uy (x + 2)0(x + 27) — 20(x) + U (& — A)US (& — 27) 9 (a — 207)] }



