Lattice calculation of sphaleron diffusion rate in gluodynamics

A.Yu. Kotov

Institute for Theoretical and Experimental Physics, Moscow & Joint Institute for Nuclear Research, Dubna

Gauge Topology 3: from Lattice to Colliders

31 May, 2018, Trento

Topology changing transitions in YM

$$\Gamma_{CS} = \lim_{t \to \infty} \frac{\langle \Delta N_{CS}^2 \rangle}{Vt}$$
$$\Delta N_{CS} = Q_4 = \int d^4 x q(x)$$
$$q(x) = \frac{g^2}{32\pi^2} F_{\mu\nu}^a \tilde{F}_a^{\mu\nu}$$

Sphaleron diffusion rate and chiral charge

- EW theory: baryon number n_B violation
- QCD: quark chirality non-conservation
- Fluctuation-dissipation theorem

$$\frac{dQ_5}{dt} = -CQ_5 \frac{\Gamma_{CS}}{2T}$$

Weak coupling

$$\Gamma_{CS} \sim \alpha^5 \log 1/lpha T^4$$

"Desperate extrapolation" to finite α (semiclassical field theory): $\Gamma_{CS} \sim 30 \alpha_s^4 T^4$

G.D. Moore and M.Tassler, The Sphaleron Rate in SU(N) Gauge Theory, JHEP 1102 (2011) 105, arXiv:1011.1167

Weak coupling

$$\Gamma_{CS} \sim lpha^5 \log 1/lpha T^4$$

"Desperate extrapolation" to finite α (semiclassical field theory): $\Gamma_{CS}\sim 30\alpha_s^4T^4$

G.D. Moore and M.Tassler, The Sphaleron Rate in SU(N) Gauge Theory, JHEP 1102 (2011) 105, arXiv:1011.1167

Holography

•
$$N = 4SYM$$
: $\Gamma = \frac{(g^2 N)^2}{256\pi^3}T^4$

D.T. Son, A.O. Starinets, Minkowski space correlators in AdS / CFT correspondence: Recipe and applications, JHEP 0209 (2002) 042, arXiv: hep-th/0205051

• Improved holographic QCD (large- N_c): $\Gamma(T_c)/T_c^4 > 1.64$

U. Gursoy et al., The Chern-Simons Diffusion Rate in Improved Holographic QCD, JHEP 1302 (2013) 119,

arXiv:1212.3894

Topological charge density correlator $G(t) = \langle \int d^3x q(0)q(ar{x},t)
angle$

$$\Gamma_{CS} = -\lim_{\omega \to 0} \frac{2T}{\omega} \operatorname{Im}[G^{R}(\omega, \vec{k} = 0)] = -2\pi T \lim_{\omega \to 0} \frac{\rho(\omega)}{\omega}$$
$$G_{E}(t) = \int_{0}^{\infty} \rho(\omega) \frac{\cosh \omega(\beta/2 - t)}{\sinh \omega \beta/2} d\omega$$

Similar to

- shear and bulk viscosity N. Astrakhantsev, V. Braguta, AK, 2017, 2018 H.B. Meyer, 2007
- electric conductivity G. Aarts et al., 2014
- heavy quark diffusion O. Kaczmarek, 2014

Topological charge density and Wilson flow

Wilson flow

$$\partial_{ au} A_{\mu}(au,t,x) = -rac{\partial S}{\partial A_{\mu}}$$

Wilson flow

$$\partial_{ au} A_{\mu}(au,t,x) = -rac{\partial S}{\partial A_{\mu}}$$

•
$$\partial_{\tau} q^{\tau} = \partial_{\rho} \omega_{\rho}^{\tau}, \ \partial_{\tau} Q^{\tau} = 0$$

•
$$\langle q^{\tau}(x)q^{\tau}(0)\rangle = \langle q^{\tau=0}(x)q^{\tau=0}(0)\rangle + O_{\tau}(a^2) + O(\tau)$$

• GF gives renormalized q(x)

M. Ce, G. P. Engel, L. Giusti, *Non-Gaussianities in the topological charge distribution of the SU(3) Yang–Mills theory* Phys.Rev. D92 (2015) no.7, 074502, arXiv:1506.06052

Lattice details

- SU(3) Gluodynamics + Gradient flow
- No multilevel algorithm
- Clover gluonic discretization of $F\tilde{F}$
- Continuum extrapolation
- Scale setting using GF (reference scale ω₀): M.Kitazawa, T.Iritani, M.Asakawa, T. Hatsuda, H.Suzuki, Equation of State for SU(3) Gauge Theory via the Energy-Momentum Tensor under Gradient Flow
 Phys Pay. D04 (2016) pp 11, 114512, arXiv:1610.07810

Phys.Rev. D94 (2016) no.11, 114512, arXiv:1610.07810

$T/T_{c} = 1.24$	N _{conf}	β	$T/T_{c} = 1.70$	N _{conf}	β
$12 imes 36^3$	5474	6.4934	12×36^3	6663	6.7269
$16 imes 48^3$	8081	6.7084	$16 imes 48^3$	9207	6.9494
$20 imes 64^3$	4732	6.88	$20 imes 64^3$	2897	7.1265
$24 imes70^3$	1765	7.0232	$24 imes 70^3$	1757	7.2738
$16 imes 32^3$	9108	6.7084			

- Generate configurations for one temperature and various lattice steps
- Perform GF on each configuration
- 3 Measure $G_q(t, \tau, a)$
- Extrapolate $G_q(t, \tau) = \lim_{a \to 0} G_q(t, \tau, a)$
- Extrapolate $G_q(t) = \lim_{\tau \to 0} G_q(t, \tau)$
- Spline interpolation, if needed
- Use $G_q(t)$ to invert integral relation and extract Γ_{CS}

How does the correlator $G_q(t, \tau, a)$ look like?

 24×70^3 , $T/T_c = 1.24$

How does the correlator $G_q(t, \tau, a)$ look like?

 24×70^3 , $T/T_c = 1.24$

One should use points $a^2 \lessapprox \tau \lessapprox t^2/8$

a-extrapolation, $T/T_c = 1.24$

 $\tau/a_{24}^2 = 2.0$

τ -extrapolation, $T/T_c = 1.24$

12

Extrapolated correlator

Asymptotic freedom

$$\rho_q(\omega) = -\frac{d_A \alpha_s^2}{256\pi^4} \omega^4 \qquad \qquad G_E(t) = \int_0^\infty \rho(\omega) \frac{\cosh \omega(\beta/2 - t)}{\sinh \omega \beta/2} d\omega$$

N. Iqbal, H. B. Meyer, 0911 (2009) 029, arXiv:0909.0582

UV part seems to be small!

Problem: find $\rho(\omega)$ from the integral equation

$$C(x_i) = \int_0^\infty d\omega
ho(\omega) K(x_i, \omega), \quad K(x_i, \omega) = rac{\cosh\left(rac{\omega}{2T} - \omega x_i
ight)}{\sinh\left(rac{\omega}{2T}
ight)}$$

Problem: find $\rho(\omega)$ from the integral equation

$$\mathcal{C}(x_i) = \int_0^\infty d\omega
ho(\omega) \mathcal{K}(x_i, \omega), \quad \mathcal{K}(x_i, \omega) = rac{\cosh\left(rac{\omega}{2T} - \omega x_i
ight)}{\sinh\left(rac{\omega}{2T}
ight)}$$

Let $b_i(\omega)$ be arbitrary functions. Define $\tilde{\rho}(\bar{\omega})$:

$$\tilde{\rho}(\bar{\omega}) = \sum_i b_i(\bar{\omega}) C(x_i)$$

Problem: find $\rho(\omega)$ from the integral equation

$$\mathcal{C}(x_i) = \int_0^\infty d\omega
ho(\omega) \mathcal{K}(x_i, \omega), \quad \mathcal{K}(x_i, \omega) = rac{\cosh\left(rac{\omega}{2T} - \omega x_i
ight)}{\sinh\left(rac{\omega}{2T}
ight)}$$

Let $b_i(\omega)$ be arbitrary functions. Define $\tilde{\rho}(\bar{\omega})$:

$$\tilde{\rho}(\bar{\omega}) = \sum_i b_i(\bar{\omega}) C(x_i)$$

Then

$$\begin{split} \tilde{\rho}(\bar{\omega}) &= \int_0^\infty d\omega \hat{\delta}(\bar{\omega}, \omega) \rho(\omega) \\ \hat{\delta}(\bar{\omega}, \omega) &= \sum_i b_i(\bar{\omega}) \mathcal{K}(\mathsf{x}_i, \omega) \end{split}$$

Problem: find $\rho(\omega)$ from the integral equation

$$\mathcal{C}(x_i) = \int_0^\infty d\omega
ho(\omega) \mathcal{K}(x_i, \omega), \quad \mathcal{K}(x_i, \omega) = rac{\cosh\left(rac{\omega}{2T} - \omega x_i
ight)}{\sinh\left(rac{\omega}{2T}
ight)}$$

Let $b_i(\omega)$ be arbitrary functions. Define $\tilde{\rho}(\bar{\omega})$:

$$\tilde{\rho}(\bar{\omega}) = \sum_i b_i(\bar{\omega}) C(x_i)$$

Then

$$\begin{split} \tilde{\rho}(\bar{\omega}) &= \int_0^\infty d\omega \hat{\delta}(\bar{\omega}, \omega) \rho(\omega) \\ \hat{\delta}(\bar{\omega}, \omega) &= \sum_i b_i(\bar{\omega}) \mathcal{K}(\mathsf{x}_i, \omega) \end{split}$$

How should we choose $b_i(\omega)$?

Minimize the width of the resolution function $\hat{\delta}(\bar{\omega}, \omega)$:

$$b_i(\bar{\omega}) = \frac{\sum_j W_{ij}^{-1} R_j}{\sum_{ij} R_i W_{ij}^{-1} R_j},$$
$$W_{ij} = \int d\omega K(x_i, \omega) (\omega - \bar{\omega})^2 K(x_j, \omega), R_i = \int d\omega K(x_i, \omega)$$

Problem: find $\rho(\omega)$ from the integral equation

$$\mathcal{C}(x_i) = \int_0^\infty d\omega
ho(\omega) \mathcal{K}(x_i, \omega), \quad \mathcal{K}(x_i, \omega) = rac{\cosh\left(rac{\omega}{2T} - \omega x_i
ight)}{\sinh\left(rac{\omega}{2T}
ight)}$$

Let $b_i(\omega)$ be arbitrary functions. Define $\tilde{\rho}(\bar{\omega})$:

$$\tilde{\rho}(\bar{\omega}) = \sum_i b_i(\bar{\omega}) C(x_i)$$

Then

$$\begin{split} \tilde{\rho}(\bar{\omega}) &= \int_0^\infty d\omega \hat{\delta}(\bar{\omega}, \omega) \rho(\omega) \\ \hat{\delta}(\bar{\omega}, \omega) &= \sum_i b_i(\bar{\omega}) \mathcal{K}(\mathsf{x}_i, \omega) \end{split}$$

How should we choose $b_i(\omega)$?

Minimize the width of the resolution function $\hat{\delta}(\bar{\omega}, \omega)$:

$$b_i(\bar{\omega}) = \frac{\sum_j W_{ij}^{-1} R_j}{\sum_{ij} R_i W_{ij}^{-1} R_j},$$
$$W_{ij} = \int d\omega K(x_i, \omega) (\omega - \bar{\omega})^2 K(x_j, \omega), R_i = \int d\omega K(x_i, \omega)$$

Regularization by the parameter $\lambda:$ numerically more stable, but wider resolution function

$$W_{ij}
ightarrow \lambda W_{ij} + (1-\lambda)S_{ij}, \quad 0 < \lambda < 1$$

Backus-Gilbert method. $T/T_c = 1.24$

Backus-Gilbert method. $T/T_c = 1.70$

Backus-Gilbert. λ -dependence.

We can estimate the systematic error of the method.

Backus-Gilbert. λ -dependence.

We can estimate the systematic error of the method. $\Gamma/\,T^4 =$

- 0.13 ± 0.05 , $T/T_c = 1.24$
- 0.085 ± 0.030 , $T/T_c = 1.70$

 $\Gamma_{CS}/T^4 =$

- 0.13 \pm 0.05, $T/T_c = 1.24$, $\alpha_s((1-4)\pi T) \approx 0.15 0.27$
- 0.085 ± 0.030 , $T/T_c = 1.70$, $\alpha_s((1-4)\pi T) \approx 0.14 0.22$

"Desperate extrapolation" to finite α (semiclassical field theory)

$$\Gamma_{CS}/T^4 \sim 30\alpha_s^4 =$$

 $0.016 - 0.16, \quad T/T_c = 1.24$
 $0.012 - 0.08, \quad T/T_c = 1.70$

G.D. Moore and M.Tassler, The Sphaleron Rate in SU(N) Gauge Theory, JHEP 1102 (2011) 105, arXiv:1011.1167

- Estimation of sphaleron diffusion rate in lattice gluodynamics
- Data is extrapolated to continuum
- $\Gamma_{CS}/T^4 =$
 - 0.13 \pm 0.05, $T/T_c = 1.24$
 - 0.085 \pm 0.030, $T/T_c = 1.70$
- The results are in agreement with

G.D. Moore and M.Tassler, The Sphaleron Rate in SU(N) Gauge Theory, JHEP 1102 (2011) 105, arXiv:1011.1167