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Introductory comments

• Often quantum field theories are formulated in terms of fundamental fields which are
different from the physical degrees of freedom that are observable.

• Which degrees of freedom are relevant is usually a scale/energy dependent question.

• Here we show that one can exactly rewrite the QCD path integral such that the system
can choose between different forms of degrees of freedom.

• Part of the motivation: For a efficient lattice Monte Carlo simulation, a good represen-
tation must capture the physically relevant degrees of freedom.

• The baryon bag picture I discuss here is part of a larger program of exactly mapping
lattice field theories to dual representations in terms of worldlines and worldsheets.



What has been achieved with dual representations?

Dual representations were found for several interesting classes of models. Dual simulations
have helped to understand finite density physics in quantum field theory non-perturbatively.

• Effective Polyakov loop models with chemical potential. PRL 2011, NPB 2011, CPC 2012, NPB 2012

• Charged φ4 field at finite density (relativistic Bose gas). NPB 2013, PLB 2013

• Z3 and U(1) gauge-Higgs models with chemical potential. PRD 2012, PRL 2013, CPC 2013

• Scalar QED2 and Schwinger model with θ and µ. NPB 2015, PRD 2015, NPB 2017

• O(N) and CP(N-1) models with chemical potential. PLB 2015, PRD 2016

• Heavy dense QCD at Nc = 2 and 3. NPB 2017, PRD 2018

• Principal chiral model with chemical potential. PLB 2018

• Relation between low temperature condensation and scattering data. PRL 2015, PRL 2018

Falk Bruckmann, Philippe de Forcrand, Ydalia Delgado Mercado, Mario Giuliani, Daniel Göschl, Thomas Kloiber,
Carlotta Marchis, Oliver Orasch, Michael Müller Preussker, Alexander Schmidt, Tin Sulejmanpasic.

Further work by: Shailesh Chandrasekharan, Ulli Wolff, Urs Wenger, Owe Philipsen ....

An important step would be combining sets of fermion worldlines
into groups with real and positive weight. Maybe use Baryon Bags?



What are Baryon Bags?

• Baryon bags have nothing to do with the QCD bag model !!

• Fermion bags are domains in space-time where the degrees of freedom are free fermions.
Shailesh Chandrasekharan, PRD 82 (2010) ....

• Outside fermion bags the dynamics is described by interaction terms.

• So far fermion bag formulations only for theories with 4-fermi interactions,
but also lattice QCD allows for the introduction of fermion bags.

• Inside the fermion bags of lattice QCD three quarks propagate coherently like a free
fermion ⇒ ”Baryon Bags” with free fermion determinants for baryons inside the bag.

• Outside the baryon bags the relevant degrees of freedom are quarks and diquarks inter-
acting with the gauge degrees of freedom.

• Baryon bags are an interesting tool for dual/worldline descriptions.



Framework

Lattice QCD with one flavor of staggered fermions:

Z =

∫
D[U ] eSG[U ] ZF [U ] , ZF [U ] =

∫
D[ψ, ψ] eSF [ψ,ψ,U ]

Action:

SF [ψ, ψ, U ] =
∑
x

[
2mψxψx +

∑
ν

γx,ν

[
eµδν4 ψxUx,νψx+ν̂ − e−µδν4 ψx+ν̂U †x,νψx

]]

Factorization of the Boltzmann factor:

eSF [ψ,ψ,U ] =
∏
x

e 2mψxψx
∏
x,ν

e γx,ν e
µδν4 ψx Ux,ν ψx+ν̂ e−γx,ν e

−µδν4 ψx+ν̂ U
†
x,ν ψx



Expansion of hopping terms

Taylor series:

e γ e
µ ψ Uψ = 1 + γ eµ (ψUψ) +

e2µ

2!
(ψUψ)2 +

γ e3µ

3!
(ψUψ)3

=

[
1 +

γ e3µ

3!
(ψUψ)3

] [
1 + γ eµ (ψUψ) +

e2µ

2!
(ψUψ)2

]
= e

γ e3µ

3!
(ψUψ)3

2∑
k=0

(γ eµ ψUψ)k

k!

Cubic term is independent of gauge fields:

(ψUψ)3 = (ψaUabψb)
3 = ψa ψb ψa′ ψb′ ψa′′ ψb′′ Uab Ua′b′ Ua′′b′′

= −ψa ψa′ ψa′′ ψb ψb′ ψb′′ Uab Ua′b′ Ua′′b′′

= ψ3 ψ2 ψ1 ψ1 ψ2 ψ3 εa a′a′′ Uab Ua′b′ Ua′′b′′ εb b′b′′

= ψ3 ψ2 ψ1 ψ1 ψ2 ψ3 εa a′a′′ εa a′a′′ detU = 3! ψ3 ψ2 ψ1 ψ1 ψ2 ψ3



Separation of baryon terms

Definition of baryon fields:

Bx = ψx,3 ψx,2 ψx,1 , Bx = ψx,1 ψx,2 ψx,3 ( = εabc ψx,a ψx,b ψx,c / 3! )

Hopping term with all indices:

e γx,ν e
µδν4 ψx Ux,ν ψx+ν̂ = e γx,ν e

3µδν4 BxBx+ν̂

2∑
kx,ν=0

(
γx,ν e

µ δν4 ψx Ux,ν ψx+ν̂

)kx,ν
kx,ν !

Same for mass term:

e2mψxψx = e 2M BxBx

2∑
sx=0

(
2mψxψx

)sx
sx!

M = 4m3



Factorized fermion integrand

Boltzmann factor:

eSF [ψ,ψ,U ] = eSB [B,B]
∑
{s,k,k}

∏
x

(
2mψxψx

)sx
sx!

×
∏
x,ν

[
γx,ν e

µ δν4 ψx Ux,ν ψx+ν̂

]kx,ν
kx,ν !

[
−γx,ν e−µ δν4 ψx+ν̂ U †x,ν ψx

]kx,ν
kx,ν !

Free staggered fermion action for baryon contributions:

SB[B,B] =
∑
x

[
2M BxBx +

∑
ν

γx,ν

[
e3µδν4 BxBx+ν̂ − e−3µδν4 Bx+ν̂ Bx

]]

Chirally symmetric for m = 0, since M = 4m3.



Partition sum with factorized baryon contributions

Partition sum:

Z =

∫
D[ψ, ψ] eSB [B,B]

∫
D[U ] eSG[U ]WQD[ψ, ψ, U ]

Non-baryonic terms:

WQD[ψ, ψ, U ] =
∑
{s,k,l}

∏
x

[
2mψxψx

]sx
sx!

∏
x,ν

(γx,ν)
kx,ν+lx,ν eµ δν4 (kx,ν−lx,ν)

kx,ν ! lx,ν !

×
[
ψx Ux,ν ψx+ν̂

]kx,ν [
− ψx+ν̂ U †x,ν ψx

]lx,ν

Sums over configurations of monomers quark- and diquark hops:

∑
{s,k,l}

=

[∏
x

2∑
sx=0

]∏
x,ν

2∑
kx,ν=0

2∑
lx,ν=0





Evaluation in the strong coupling limit

Strong coupling ⇒ SG[U ] = 0

∫
D[U ]WQD[ψ, ψ, U ] =

∑
{s,k,l}

∏
x

[
2mψxψx

]sx
sx!

∏
x,ν

(γx,ν)
kx,ν+lx,ν eµ δν4 (kx,ν−lx,ν)

kx,ν ! lx,ν !

×
∫

SU(3)

dUx,ν

[
ψx Ux,ν ψx+ν̂

]kx,ν [
− ψx+ν̂ U †x,ν ψx

]lx,ν

Integrating the center group ⇒ kx,ν = lx,ν

Two SU(3) group integrals∫
SU(3)

dU Uab U
†
cd =

1

3
δad δbc∫

SU(3)

dU Uab Ucd U
†
ef U

†
gh =

1

8
[δaf δbe δch δdg + δah δbg δcf δde]−

1

24
[δaf δbg δch δde + δah δbe δcf δdg]



Fully factorized strong coupling partition sum

At strong coupling the partition sum factorizes into baryon, quark- and diquark contributions:

Z =

∫
D[ψ, ψ] eSB [B,B]

∑
{s,k}

∏
x

[
2mψxψx

]sx
sx!

∏
x,ν

(3− kx,ν)!
6 kx,ν !

[ψxψx ψx+ν̂ψx+ν̂ ]
kx,ν

Baryon action:

SB[B,B] =
∑
x

[
2M BxBx +

∑
ν

γx,ν

[
e3µδν4 BxBx+ν̂ − e−3µδν4 Bx+ν̂ Bx

]]

Bx = ψx,3 ψx,2 ψx,1 , Bx = ψx,1 ψx,2 ψx,3



Saturating the Grassmann integral with baryon terms

Baryon action:

SB[B,B] =
∑
x

[
2M BxBx +

∑
ν

γx,ν

[
e3µδν4 BxBx+ν̂ − e−3µδν4 Bx+ν̂ Bx

]]

Bx = ψx,3 ψx,2 ψx,1 , Bx = ψx,1 ψx,2 ψx,3

Expanding eSB [B,B] we may saturate the

Grassmann integral in arbitrary subsets Bi
of space-time with the monomer, dimer and

loop terms of the staggered action. Since

Bx and Bx are products of all three

color components this completely saturates

the Grassmann integral inside our chosen

”Baryon Bags” Bi.



Saturating the Grassmann integral in the complementary domain

Baryon bags: Bi

Configuration of all baryon bags: B = ∪i Bi (union of all bags)

Complementary domain: B = Λ/B

In the complementary domain we use the non-baryonic terms:

∑
{s,k}

∏
x

[
2mψx ψx

]sx
sx!

∏
x,ν

2∑
kx,ν=0

(3− kx,ν)!
6 kx,ν !

[ψxψx ψx+ν̂ψx+ν̂ ]
kx,ν

Quark monomers: ψx,a ψx,a

Diquark monomers: ψx,a ψx,a ψx,b ψx,b

Quark dimers: ψx,a ψx,a ψx+ν̂,a′ ψx+ν̂,a′

Diquark dimers: ψx,a ψx,a ψx,b ψx,bψx+ν̂,a′ψx+ν̂,a′ψx+ν̂,b′ψ
′
x+ν̂,b
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Baryon bag decomposition of the Grassmann measure

Theorem: Grassmann terms in the complementary domain B
do not mix with the terms in the baryon bags Bi.

⇒ The Grassmann measure can be factorized into baryon bag terms
and terms in the complementary domain:

∫
D[ψ, ψ] =

∏
i

∫
DBi [ψ, ψ] ×

∫
DB[ψ, ψ] with

∫
DBi [ψ, ψ] =

∏
x∈Bi

∫ ∏
a

dψx,a dψx,a ,

∫
DB[ψ, ψ] =

∫ ∏
x∈B

∫ ∏
a

dψx,a dψx,a

⇒ Sum over quark and diquark terms is restricted to B:

∑
{s,k ‖B}

=
∏
x∈B

2∑
sx=0

∏
(x,ν)∈B

2∑
kx,ν=0



Quarks and diquarks in the complementary domain

Grassmann integral in the complementary domain

ZB =

∫
DB[ψ, ψ]

∑
{s,k ‖B}

∏
x

[
2mψx ψx

]sx
sx!

∏
x,ν

2∑
kx,ν=0

(3− kx,ν)!
6 kx,ν !

[ψxψx ψx+ν̂ψx+ν̂ ]
kx,ν

=
∑

{m,d ‖B}

(2m)N (m1)+N (m2)

(
1

3

)N (d1)+N (d2)

# quark monomers = N (m1)

# diquark monomers = N (m2)

# quark dimers = N (d1)

# diquark hops = N (d2)
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Fermion determinants for baryon bags

Contribution of a baryon bag Bi :

ZBi =

∫
DBi [ψ, ψ] e S

(i)
B [B,B] =

∫
DBi [ψ, ψ] e

∑
x,y BxD

(i)
x,y By

Grassmann measure:

DBi [ψ, ψ] =
∏
x∈Bi

∫ ∏
a

dψx,a dψx,a =
∏
x∈Bi

∫
dψx,3 dψx,2 dψx,1 dψx,1 dψx,2 dψx,3

Anticommuting baryon variables and measures form a new Grassmann algebra:

Bx = ψx,3 ψx,2 ψx,1 , Bx = ψx,1 ψx,2 ψx,3

dBx ≡ dψx,1 dψx,2 dψx,3 , dBx ≡ dψx,3 dψx,2 dψx,1

⇒ Gaussian integral gives rise to bag determinants:

ZBi = det D(i)



Symmetries of the bag Dirac operator

Structure of the bag Dirac operators D(i) at µ = 0:

D(i) = 2M 1 + A(i) with A(i) anti-hermitian

Staggered chiral transformation:

Γ
(i)
5 x,y = θ(i)x (−1)x1+x2+x3+x4 δx,y

Transformation of A(i):

Γ
(i)
5 A(i) Γ

(i)
5 = −A(i)

Eigenvalues come in complex conjugate pairs:

2M ± iλ ⇒ det D(i) > 0

Bag determinants sum up large sets of contributions
in the old Rossi/Wolff/Karsch/Mütter representation.



Final form of partition sum with baryon bags

Bag-factorized partition sum

Z =
∑
{B}

∏
i

det D(i) × ZB

• The partition function is a sum over configurations of baryon bags and the path integral
is decomposed into baryon bag contributions and terms in the complementary domain.

• Inside the baryon bags Bi the system chooses a description with freely propagating
baryons as degrees of freedom.

• For µ = 0 the bag determinants det D(i) are real and positive.

• In the complementary domain B the relevant degrees of freedom are monomers and
dimers for quarks and diquarks.

• The dynamics and scale of the fermion bags depends on the couplings. ⇒ MC update



Toy model for development: 2 fermion flavors coupled to U(1) gauge fields

(work together with Carlotta Marchis)

Bag-factorized partition sum

Z =
∑
{B}

∏
i

permH(i) × ZB

• Again the partition function is a sum over configurations of bags and the path integral
is decomposed into bag contributions and terms in the complementary domain.

• Inside the bags Bi the system chooses a description with freely propagating composed
bosons as degrees of freedom.

• However, the bosons are nilpotent and instead of bag determinants one obtains the
permanent of a Helmholtz operator H(i) restricted to the corresponding bag Bi.

• In the complementary domain B the relevant degrees of freedom are monomers and
dimers, as well as ”filled fermion loops” that couple to the gauge dynamics.



Summary

• Baryon bags are a new way to organize the lattice path integral of QCD.

• The partition function is a sum over configurations of baryon bags and the path integral
is decomposed into baryon bag contributions and terms in the complementary domain.

• Inside the baryon bags Bi the system chooses a description with freely propagating
baryons as degrees of freedom.

• In the complementary domain B the relevant fermionic degrees of freedom are quarks
and diquarks.

• Density, average size and other properties of the baryon bags Bi are expected to depend
on the couplings. ⇒ MC update

• Baryon bags might be a key ingredient for a full dualization of QCD, e.g., based on the
ACF approach. (C. Gattringer, C. Marchis, NPB 916, 2017 and PRD 97, 2018)


