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Lattice regularization and quark confinement.

Only a truly non-perturbative approach such as lattice regularization can describe the
deconfinement transition and the confined phase of non-abelian gauge theories.
For SU(N) pure gauge theories on the lattice the dynamics are described by the standard
Wilson action

SW = β
∑

p=sp,tp

(1− 1

N
ReTrUp)

where UP is the product of four Uµ SU(N) variables on the space-like or time-like
plaquette P and β = 2N

g2 .

The partition function is

Z =

∫ ∏
x,µ

dUµ(x)e−SW

the expectation value of an observable A

〈A〉 =
1

Z

∫ ∏
n,µ

dUµ(n)A(Uµ(n)) e−SW
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Lattice determination of the interquark potential.

In pure lattice gauge theories the interquark potential is usually extracted from two
(almost) equivalent observables

Wilson loop expectation values <W (R,T ) > (”zero temperature potential”)

V (R) = lim
T→∞

− 1

T
log<W (R,T ) >

Polyakov loop correlators < P(0)P(R)† > (”finite temperature potential”)

< P(0)P(R)† > ∼
∞∑

n=0

cn e−LEn

where L is the inverse temperature, i.e. the length of the lattice in the compactified
imaginary time direction

E0 = V (R) = − lim
L→∞

1

L
log< P(0)P(R)† >

Michele Caselle (UniTo) Effective String Theory ECT* 31/05/2018 4 / 94



Wilson Loop.

A Wilson loop of size R × T

 

V (R) = lim
T→∞

− 1

T
log<W (R,T ) >
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Polyakov loop correlator.

Expectation value of two Polyakov loops at distance R and Temperature T = 1/L

 

 

 

 R 

L 

V (R) = − lim
L→∞

1

L
log< P(0)P(R)† >
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Wilson Loops.

In the Wilson loop framework confinement is equivalent to the well known
area-perimeter-constant law:

<W (R,T ) >= e−(σRL+c(R+T )+k)

which implies
V (R) = σR + c .

Confinement is usually associated to the creation of a thin flux tube joining the quark
antiquark pair. (Nielsen-Olesen, ’t Hooft, Wilson, Polyakov, Nambu ....) In this
framework the ”area law” represents the classical contribution to the interquark potential
on top of which we expect to have quantum corrections. The theory which describes
these quantum fluctuations is known as ”effective string theory”.
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Effective string action

The simplest choice for the effective string action is to describe the quantum fluctuations
of the flux tube as free massless bosonic degrees of freedom

S = Scl +
σ

2

∫
d2ξ [∂αX · ∂αX ] ,

where:

Scl describes the usual (”classical”) area-perimeter term.

Xi (ξ0, ξ1) (i = 1, . . . , d − 2) parametrize the displacements orthogonal to the surface
of minimal area representing the configuration around which we expand

ξ0, ξ1 are the world-sheet coordinates.
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The Lüscher term.

The first quantum correction to the interquark potential is obtained summing over
all the possible string configurations compatible with the Wilson loop (i.e. with
Dirichlet boundary conditions along the Wilson loop).

This is equivalent to the sum over all the possible surfaces borderd by the Wilson
loop i.e. to the partition function

<W (R,T ) >=

∫
e−σRT−σ

2

∫
d2ξX i (−∂2)X i

The functional integration is a trivial gaussian integral, the result is

V (R) = σR − (d − 2)π

24R
+ c

This quantum correction is known as ”Lüscher term” and is universal i.e. it does not
depend on the ultraviolet details of the gauge theory but only on the geometric
properties of the flux tube.
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The Lüscher term.

This correction is in remarkable agreement with numerical simulations. First high
precision test in d=4 SU(3) LGT more than ten years ago. 1

Figure : The static potential. The dashed line represents the bosonic string model and the solid line the
prediction of perturbation theory.

1S. Necco and R. Sommer, Nucl.Phys. B622 (2002) 328
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The Lüscher term.
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Figure : The force in the continuum limit and for finite resolution, where the discretization errors are
estimated to be smaller than the statistical errors. The full line is the perturbative prediction. The dashed
curve corresponds to the bosonic string model normalized by r 2

0 F (r0) = 1.65.
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The Nambu-Goto action.

Evaluation of higher order quantum corrections requires further hypothesis on the
nature of the flux tube. The simplest choice is the Nambu-Goto string in which
quantum corrections are evaluated summing over all the possible surfaces bordered
by the Wilson loop with a weight proportional to their area.

S = σ

∫
d2ξ
√

det(ηαβ + ∂αX · ∂βX )

∼ σRT +
σ

2

∫
d2ξ

[
∂αX · ∂αX +

1

8
(∂αX · ∂αX )2 − 1

4
(∂αX · ∂βX )2 + . . .

]
,
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Interquark potential for the Nambu-Goto action.

In the framework of the Nambu-Goto action one can evaluate exactly the energy of
all the excited states of the flux tube:

En(R) =

√
σ2R2 + 2πσ

(
n − D − 2

24

)
In particular E0(R) corresponds to the interquark potential

V (R) = E0(R) =

√
σ2R2 − 2πσ

D − 2

24
,

V (R) ∼ σR − π(D − 2)

24R
− 1

2σR3

(
π(D − 2)

24

)2

+ O(1/R5) ,
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The Nambu-Goto action.
High precision fit in the SU(2) case in 2+1 dimensions (A. Athenodorou, B. Bringoltz,
M. Teper JHEP 1105:042 (2011) )
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Figure 6: Energy of absolute ground state for SU(2) at β = 5.6. Compared to full Nambu-Goto
(solid curve) and just the Lüscher correction (dashed curve).
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The Nambu-Goto action.
High precision fit in the 2+1 dimensional Ising gauge model (M. Caselle, M. Hasenbusch,
M. Panero JHEP 0301 (2003) 057)
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Interquark potential via Polyakov Loop correlators and the deconfinement
transition.

In this case we have different boundary conditions in the two directions (space R
and inverse temperature L).

The novel feature of this observable is that by exchanging R and L (the so called
”open-closed string transformation”) we can study the finite temperature behaviour
of the string tension.

V (R) = σ(T )R, σ(T ) = σ0

√
1− (d − 2)πT 2

3σ0

where T is now the temperature and σ0 the zero temperature string tension

From this expression we may deduce a ”Nambu-Goto” prediction for the critical
temperature:

Tc√
σ0

=

√
3

(d − 2)π

which turns out to be in remarkable agreement with LGT results both in d=3 and
d=4.
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Why the Nambu-Goto action works so well?

These results look nice, but they depend on a set of ad hoc assumptions on the
behaviour of the flux tube. Why should we prefer the Nambu-Goto action to other
possible choices for the flux tube action?

They are ”too universal” and show no dependence on the gauge group.

It is somehow surprising that the Nambu-Goto model which looks so complex can be
solved exactly at the quantum level (to all orders!!). How is it possible?

Is there a ”boundary” contribution due to the quarks at the flux tube boundaries?

In the past few years two important results changed our understanding of effective string
theories and allowed us to answer to the above questions
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Universality of effective string corrections.

The Effective String action is strongly constrained by Lorentz invariance. The first
few orders of the action are universal and coincide with those of the Nambu-Goto
action. This explains why N.-G. describes so well the infrared regime of Wilson loops
or Polyakov Loop correlators.1 2 3

The Nambu-Goto effective theory can be described as a free 2d bosonic theory
perturbed by the irrelevant operator TT̄ (where T and T̄ are the two chiral
components of the energy momentum tensor). This perturbation turns out to be
quantum integrable and yields, using the Thermodynamic Bethe Ansatz (TBA), a
spectrum which, in a suitable limit, coincides with the Nambu-Goto one. 4

1M. Luscher and P. Weisz JHEP07(2004)014
2H. B. Meyer JHEP05(2006)066
3O. Aharony and M. Field JHEP01(2011)065
4M. Caselle, D. Fioravanti, F. Gliozzi, R. Tateo JHEP07(2013)071
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Effective string action

The most general action for the effective string can be written as a low energy expansion
in the number of derivatives of the transverse fields (”physical gauge”).

S = Scl +
σ

2

∫
d2ξ

[
∂αX · ∂αX + c2(∂αX · ∂αX )2 + c3(∂αX · ∂βX )2 + . . .

]
+ Sb ,

where:

Scl describes the usual (”classical”) perimeter-area term.

Sb is the boundary contribution characterizing the open string

Xi (ξ0, ξ1) (i = 1, . . . , d − 2) parametrize the displacements orthogonal to the surface
of minimal area representing the configuration around which we expand

ξ0, ξ1 are the world-sheet coordinates.

In the Nambu-Goto case c2 = 1
8

and c3 = − 1
4
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Effective string and spacetime symmetries.

Symmetries of the action must hold in the low
energy regime.

String vacuum is not Poincaré invariant.

=⇒ Poincaré symmetry is broken
spontaneously.

ISO(D − 1, 1)→ SO(D − 2)⊗ ISO(1, 1). =⇒ 3(D − 2) Goldstone bosons?

Only D − 2 tranverse fluctuations of the string, where are the remaining Goldstone
bosons?

Goldstone’s theorem states that there is a massless mode for each broken symmetry
generator, but this counting cannot be naively extended to the case of spontaneously
broken spacetime symmetries1 .

1I. Low and A.V. Manohar, ”Spontaneously broken spacetime symmetries and Goldstone’s theorem”
Phys.Rev.Lett. 88 (2002) 101602
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Effective string and spacetime symmetries.

The remaining 2(D − 2) Lorentz transformations are realized non-linearly and induce
a set of recurrence relations among different terms in the action.! 1

δbj
ε Xi = ε (−δijξb − Xj∂bXi )

1I. Low and A.V. Manohar, ”Spontaneously broken spacetime symmetries and Goldstone’s theorem”
Phys.Rev.Lett. 88 (2002) 101602
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Non-linear realization and long-string expansion.

A few rules to construct the most general effective string action:

Broken translations:
X i → X i + ai . =⇒ Only field derivatives in the effective action.

Broken rotation in the plane (1, 2):

δbj
ε Xi = ε (−δijξb − Xj∂bXi )

Number of derivatives minus number of fields (weight) preserved.

Fields and coordinates rescaling =⇒ Derivative expansion:

∂aX
i −→ 1√

σR
∂aX

i .

Variations by broken rotation mix orders =⇒ Recurrence relations.

ISO(1, 1) and SO(D − 2) invariance =⇒ Contraction of indices.

Michele Caselle (UniTo) Effective String Theory ECT* 31/05/2018 22 / 94



Effective string action is strongly constrained! 1 2 3

the terms with only first derivatives coincide with the Nambu-Goto action to all
orders in the derivative expansion.

In three dimensions the first allowed correction to the Nambu-Goto action turns out
to be an eight derivatives term which gives a contribution to the interquark potential
of the order 1/R7

The fact that the first deviations from the Nambu-Goto string are of high order,
especially in d = 3, explains why in early Monte Carlo calculations a good
agreement with the Nambu-Goto string was observed.

The effective string action is much more predictive than typical effective models in
particle physics!

1M. Luscher and P. Weisz JHEP07(2004)014
2H. B. Meyer JHEP05(2006)066
3O. Aharony and M. Field JHEP01(2011)065
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Beyond Nambu-Goto.

In order to find features associated to a particular LGT we must go beyond the
Nambu-Goto approximation.

This effort was pursued mainly in four directions and led in the past few years some of
most interesting and new results in the effective theory framework

Boundary terms 1 2

Interface free energy in the 3d Ising model3: Torus geometry, no boundary
corrections

Excited string states of SU(N) Yang-Mills theories4

”Rigid string” and the interquark potential of the 3d U(1) gauge model 5

1M. Billo, M. Caselle, F. Gliozzi, M. Meineri and R. Pellegrini JHEP05 130 (2012), arXiv:1202.1984
2B. Brandt JHEP07 008 (2017), arXiv:1705.03828
3M. Caselle, G. Costagliola, A.Nada, M. Panero and A. Toniato Phys. Rev. D94 034503 (2016),

arXiv:1604.05544
4A. Athenodorou, B. Bringoltz and M. Teper, JHEP 02, 030 (2011), arXiv:1007.4720 .
5D. Vadacchino, M. Caselle, R. Pellegrini and M. Panero, arXiv:1311.4071 .
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Example 1: The boundary term .

Expectation value of two Polyakov loops at distance R and Temperature T = 1/L

 

 

 

 R 

L 

V (R) = − lim
L→∞

1

L
log< P(0)P(R)† >

Michele Caselle (UniTo) Effective String Theory ECT* 31/05/2018 25 / 94



The boundary term of the effective action:
Constraints imposed by the Lorentz invariance

If the boundary is a Polyakov line in the ξ0 direction placed at ξ1 = 0, on which we
assume Dirichlet boundary conditions Xi (ξ0, 0) = 0, the most general boundary action
should be of this type

Sb =

∫
dξ0

[
b1∂1X · ∂1X + b2∂1∂0X · ∂1∂0X + b3(∂1X · ∂1X )2 + . . .

]
.

Imposing Lorentz invariance one finds that b1 = 0 and that the b2 term is only the first
term of a Lorentz invariant expression1 :

b2

∫
dξ0

[
∂0∂1X · ∂0∂1X

1 + ∂1X · ∂1X
− (∂0∂1X · ∂1X )2

(1 + ∂1X · ∂1X )2

]
.

which is the analogous in the case of the boundary action of the Nambu-Goto action for
the ”bulk” effective action.

1M. Billo, M. Caselle, F. Gliozzi, M. Meineri, R. Pellegrini JHEP05(2012)130
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The boundary contribution to the interquark potential

Following the above discussion, the leading correction coming from the boundary turns
out to be:

S
(1)
b,2 =

∫
dξ0 [b2∂1∂0X · ∂1∂0X ] .

Its contribution to the interquark potential can be evaluated performing a simple
gaussian functional integration1

〈S (1)
b,2〉 = −b2

π3L

60R4
E4(i

L

2R
) .

where the Eisenstein function E4, is defined as

E4(τ) = 1 + 240
∞∑

n=1

σ3(n)qn ,

where q = e 2πiτ and σp(n) is the sum of the p-th powers of the divisors of n:

σp(n) =
∑
m|n

mp .

1O. Aharony and M. Field JHEP01(2011)065
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The boundary contribution to the interquark potential

We end up with the following expression for the interquark potential

V (R) = σR − π(D − 2)

24R
− 1

2σR3

(
π(D − 2)

24

)2

− b2
π3(D − 2)

60R4
+ O(1/R5) ,

where b2 is a new physical parameter, similar to the string tension σ, which depends
on the theory that we study and should be determined by simulations and
comparison with experiments.

To test this picture we performed a set of high precision simulations in the case of
the 3d gauge Ising model, which is the simplest possible confining gauge theory.
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Simulation I: Polyakov loops

In order to eliminate the non-universal perimeter and constant terms from the
expectation value of Polyakov loop correlators P(R, L) (where L is the length of the
two loops and R their distance) we measured the following ratio:

RP (R, L) =
P(R + 1, L)

P(R, L)
.

Due to the peculiar nature of our algorithm, based on the dual transformation to the
3d spin Ising model, this ratio can be evaluated for large values of R and L with very
high precision.
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Simulation settings

We performed our simulations in the 3d gauge Ising model, using a dual algorithm

data set β L σ 1/Tc

1 0.743543 68 0.0228068(15) 5
2 0.751805 100 0.0105255(11) 8
3 0.754700 125 0.0067269(17) 10

Table : Some information on the data sample
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Results

The values of b2 extracted from the data show the expected scaling behaviour
b2 ∼ 1√

σ3

data set b2 b2
√
σ

3
χ2

1 7.25(15) - 0.0250(5) 1.2
2 26.8(8) - 0.0289(9) 1.8
3 57.9(12) - 0.0319(7) 1.3

Table : Values of b2 as a function of β
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Wilson loops

As a check of our analysis we performed the same simulation for the Wilson loops fixing
the value of b2 obtained above. In this case there is no more parameter to fit and we can
directly compare our predictions with the results of the simulations. To eliminate all the
non-universal parameters we constructed the following combination:

R
′
W (L, Lu) =

W (L,R)

W (L + 1,R − 1)
− exp{−σ(1 + L(1− u))} , u = R/L
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Wilson loops

Figure : R
′
W (L, L 4

3
) at β = 0.754700.
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SU(2) and SU(3) in 2+1 dimensions

Recently B. Brandt performed the same analysis in the SU(2) and SU(3) LGTs1 in three
dimensions. He found the following values for the non-universal parameter b2

b2

√
σ

3
= −0.0257(3)(38)(17)(3) for SU(2)

and

b2

√
σ

3
= −0.0187(2)(13)(4)(2) for SU(3)

1B. Brandt JHEP07 008 (2017), arXiv:1705.03828
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Example 2: The interface free energy in the 3d Ising model.

To identify terms beyond the Nambu-Goto action in the ”bulk” effective string one
must somehow screen the boundary term. A perfect choice is to study the interface
free energy in the 3d Ising spin model. Due to the periodic boundary conditions in
both longitudinal directions there are no boundary corrections in this observable 1.

Evaluating the interface free energy amounts to evaluate the ratio Za/Zp of the
partition function with antiperiodic boundary conditions in the transverse direction
Za with respect to the standard partition function Zp

Evaluating these partition functions with Montecarlo methods is highly non trivial,
we proposed for this task a new ”non equilibrium” algorithm based on the Jarzynski
identity.

1M. Caselle, G. Costagliola, A.Nada, M. Panero and A. Toniato Phys. Rev. D94 034503 (2016),
arXiv:1604.05544
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The interface free energy

The Nambu-Goto effective action for the interface free energy can be calculated
analytically1 : for a system in D spacetime dimensions one find:

Za

Zp

= 2
( σ

2π

) D−2
2

VT

√
σL1L2u

∞∑
k=0

∞∑
k′=0

ckck′

(
Ek,k′

u

) D−1
2

K D−1
2

(σL1L2Ek,k′) ,

where u = L2/L1, VT denotes the “volume” of the system along the dimensions
transverse to the interface (so VT = L0 in our case), Kν(z) denotes the modified Bessel
function of the second kind of order ν and argument z , while ck and ck′ are coefficients
appearing in the expansion of an inverse power of Dedekind’s η function:

1

η (iu)D−2
=
∞∑

k=0

ckq
k− D−2

24 , with q = exp (−2πu)

(so that, for the D = 3, ck equals the number of partitions of k) and

Ek,k′ =

√
1 +

4π u

σL1L2

(
k + k ′ − D − 2

12

)
+

[
2πu(k − k ′)

σL1L2

]2

.

1M.Billo’, M. Caselle and L. Ferro JHEP 0602 (2006) 070, arXiv:hep-th/0601191
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Let us define
y(L1, L2) = Fint − FNG

and let us study the regime L2 >> L1. We tried to fit y with different powers of 1/L1.
We could obtain good values of the reduced χ2 only with the following combination:

y =
1

(L1
√
σ)

7

[
k−7 +

k−9

(L1
√
σ)

2

]
,

N2 k−7 k−9 χ2
r

48 0.389(1) 0.03(3) 1.09
64 0.432(2) 0.22(3) 1.06
80 0.593(2) 0.25(3) 1.47
96 0.650(5) 0.410(7) 0.07

Table : Results of the fits of the difference between numerical results for the interface free energy
and the corresponding Nambu-Goto prediction
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Example 3: Rigid String.

Another imortant path to go beyond the Nambu-Goto approximation is to add to the
effective string a term proportional to the square of the extrinsic curvature 1

Thus, the effective string action up to term proportional to 1/R4 is

S = SNG + S2,K + Sb

with:

SNG ' Scl +
σ

2

∫
d2ξ

[
∂αX · ∂αX −

1

4
(∂αX · ∂αX )2

]
,

S2,K ' α
∫

d2ξ(∆X )2,

Sb ' b2

∫
dξ0 [∂1∂0X · ∂1∂0X ] .

Thus we are left with three free parameters (σ, α and b2) which will be fitted comparing
with the numerical data.

1M. Caselle, M.Panero, R. Pellegrini, D. Vadacchino, JHEP 1501 (2015) 105
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Zeta-function regularization of the extrinsic curvature action

the Gaussian part of the action is

S = σ

Nt∫
0

dt

R∫
0

dr

[
1 +

1

2
∂αX · ∂αX

]
+ α

Nt∫
0

dt

R∫
0

dr (∆X )2,

where R denotes the interquark distance, Nt is the system size in the Euclidean time
direction and ∆ is the two-dimensional Laplace operator ∆ = ∂2/∂t2 + ∂2/∂r 2.
The interquark potential is defined as

V (R) = − lim
Nt→∞

1

Nt
ln

{∫
[DX ]e−S[X ]

}
,
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Zeta-function regularization

The Gaussian part of the action can be rewritten as

S = σ

Nt∫
0

dt

R∫
0

dr

[
1 +

1

2
X

(
1− 2α

σ
∆

)
(−∆)X

]
.

Carrying out the Gaussian integration, one obtains

V (R) = lim
Nt→∞

{
σR +

1

2Nt
Tr ln(−∆) +

1

2Nt
Tr ln

(
1− 1

m2
∆

)}
,

The parameter m = σ
2α

, which has dimensions of a mass, encodes the contribution due
to the extrinsic curvature.
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Zeta-function regularization

The operator traces are singular but can be evaluated using the zeta-function
regularization:

V (R) = σR + VNG(R) + Vext(R,m),

where VNG(R) and Vext(R,m) are the Gaussian limit of the Nambu-Goto and of the
extrinsic curvature contributions respectively:

VNG(R) ≡ lim
Nt→∞

1

2Nt
Tr ln(−∆) = − π

24R
,

Vext(R,m) ≡ lim
Nt→∞

1

2Nt
Tr ln

(
1− 1

m
∆

)
= − m

2π

∞∑
n=1

K1 (2nmR)

n
,

where Kα(z) denotes a modified Bessel function of the second kind.
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Analytical properties of Vext(R,m)

Vext(R,m) has a logarithmic branching point at R = 0 and a set of square-root
singularities for negative values of (mR)2. The first is located at (mR)2 = −π2, and
defines the radius of convergence of the small mR expansion.

Vext(R,m) = − π

24R
+

m

4
+

m2R

4π

(
ln

mR

2π
+ γE −

1

2

)
+

m2R

2π

∞∑
n=1

Γ
(

3
2

)
ζ(2n + 1)

Γ(n + 2)Γ
(
n − 1

2

) (mR

π

)2n

,

where γE = 0.5772156649 . . . is the Euler-Mascheroni constant and ζ(x) denotes the
Riemann zeta function.
In the large-R limit Vext(R,m) decreases exponentially. Its behavior is dominated by the
lowest-index Bessel function appearing in the sum:

Vext(R,m) ' −
√

m

16πR
e−2mR for R � 1

m
.

This is the typical behavior expected for a massive perturbation of a 2d CFT,
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Analytical properties of Vext(R,m)

Vext(R,m) can be understood as a massive perturbation of the c = 1 free bosonic
theory. In fact, the combination

c0(mR) = −24R

π
Vext(R,m)

coincides with the ground state scaling function c0(mR) describing this
perturbation.

c0(mR) is a monotonically decreasing function of its argument and interpolates
between 1 for mR = 0 and 0 for mR →∞.

Notice the analogy with the Nambu-Goto case: while the Nambu-Goto model can be
described as an irrelevant massless perturbation of the c = 1 free bosonic 2d CFT,
the rigid string is described by a relevant massive perturbation of the same CFT.

In the mR → 0 limit, the free bosonic theory is recovered: thus we find a second
“Lüscher” term, in addition to the one from VNG(R).
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Main differences between the NG and rigid strings

The field density profile around the string is gaussian in the case of the Nambu-Goto
string, while it decreases exponentially in the rigid string case.

This exponential defines a new scale, knwon as London penetration length in
condensed matter and as intrinsic width in confining gauge theories.

While in NG the string width increases logarithmically with the interquark distance,
the intrinsic width of the rigid string is constant

At very short distances the Lüscher term is doubled

Michele Caselle (UniTo) Effective String Theory ECT* 31/05/2018 45 / 94



3d U(1) model

The contribution due to rigidity turns out to be very small in typical confining gauge
theories except the 3d U(1) gauge model in which it has dramatic effects on all the
observables from the interquark potential to the flux tube width.

A possible reason is that in the 3d U(1) model the glueball mass has a non trivial
scaling and the ratio m0/

√
σ vanishes in the continuum limit.

From Polyakov’s semiclassical solution1 we know that

m0√
σ

= C(2πβ)3/4e−π
2v(0)β/2

with C and v(0) constants whose value can be evaluated exactly in the
semiclassical approximation.

1A. Polyakov, Nucl. Phys. B120 (1977) 429
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3d U(1) model and the rigid string

The identification of the rigidity parameter with the glueball mass is supported also by
another proposal of Polyakov1 who gave a heuristic dual string description for the 3d
U(1) model in terms of a rigid string.
Polyakov was also able to compute the dependence of their coupling constants on the
electric charge and the glueball mass of the original U(1) theory

SPol = c1e
2m0

∫
d2ξ
√
g + c2

e2

m0

∫
d2ξ
√
gK 2

where c1 and c2 are two undetermined constants. If we identify these coupling constants
with σ and α defined above we find (apart from an undetermined constant)

√
σ/α ∼ m0.

1A. Polyakov, Nucl. Phys. B486 (1997) 23
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3d U(1) model and the rigid string

We tesetd this conjecture performing a set of simulations for different values of β in the
3d U(1) gauge model, measuring Polyakov loop correlators for different values of the
interquark distance and fitting them with the rigid string prediction, using σ, b2 and m as
free parameters. Including in the fits also the rigidity term dramatically improves the
quality of the fits, moreover the rigidity parameter scales exactly as predicted by
Polyakov. Here are the best-fit results for m

β ma m0a m/m0

1.7 0.28(9) 0.88(1) 0.32(10)
1.9 0.25(4) 0.56(1) 0.45(7)
2.0 0.17(2) 0.44(1) 0.39(4)
2.2 0.11(1) 0.27(1) 0.41(4)
2.4 0.06(2) 0.20(1) 0.30(10)
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√
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Take home message for this part

In the case of the 3d U(1) model, including also a rigidity term allows to perfectly fit
the data.

While the NG action was shown to be described by a massless perturbation of the
c = 1 free field theory (perturbed by the irrelevant operator TT̄ ), the rigid string
correction can be described as a massive perturbation of the c = 1 free field theory.

The 3d U(1) lattice model turns out to be a perfect laboratory to study the
cross-over from a purely Nambu-Goto string at low β to a purely rigid string at large
β.

The main differences between the NG and rigid strings are:
I The field density profile around the string is (almost) a Gaussian in the case of a

Nambu-Goto string, while it decreases exponentially in the rigid string case. This
exponential defines a new scale, known as the London penetration length in condensed
matter theory, and as intrinsic width in confining gauge theories

I While in the Nambu-Goto case the string width increases logarithmically with the
interquark distance at zero temperature and linearly at high temperature, the intrinsic
width of the rigid string is constant

I At very short distances the coefficient of the Lüscher term is doubled.
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Example 4: Thermodynamics of pure LGTs and the closed string spectrum

One of the main features of SU(N) non-abelian gauge theories is the existence of a
deconfinement phase transition, i.e. a temperature above which gluons are
“deconfined”, like the quark-gluon plasma (QGP) in Quantum Chromodynamics.

If the confining theory is described by string-like objects, we should expect stronger
and stronger string effects, due to string excitations, as the temperature increases.
To identify these signatures we must study the the thermodynamics of gauge theories
still in the confining phase but as near as possible to the deconfinement transition.

Since we study pure gauge theories in the confining phase the only degrees of
freedom are the so-called “glueballs”. Looking at the thermodynamics of the theory
in the confining phase we have a tool to explore the glueball spectrum of the theory
and, possibly, its string-like features.
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Thermodynamic quantities

On a Nt ×N3
s lattice the volume is V = (aNs )3 (where a is the lattice spacing), while the

temperature is determined by the inverse of the temporal extent (with periodic boundary
conditions): T = (aNt)−1.

The thermodynamic quantities taken into account will be:

the pressure p, that in the thermodynamic limit (i.e. for large and homogenous
systems) can be written as

p ' T

V
logZ(T ,V )

the trace of the energy-momentum tensor ∆, that in units of T 4 is

∆

T 4
=
ε− 3p

T 4
= T

∂

∂T

( p

T 4

)
Energy density ε = ∆ + 3p and entropy density s = ε+p

T
= ∆+4p

T
can be easily calculated.
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Ideal glueball gas

The behaviour of the system is supposed to be dominated by a gas of non-interacting
glueballs.
The prediction of an ideal relativistic Bose gas can be used to describe the
thermodynamics of such gas. Its partition function for 3 spatial dimensions is

logZ = (2J + 1)
2V

T

(
m2

2π

)2 ∞∑
k=1

(
T

km

)2

K2

(
k
m

T

)
where m is the mass of the glueball, J is its spin and K2 is the modified Bessel function
of the second kind of index 2.
Observables such as ∆ and p thus can be easily derived:

p =
T

V
logZ = 2(2J + 1)

(
m2

2π

)2 ∞∑
k=1

(
T

km

)2

K2

(
k
m

T

)

∆ = ε− 3p = 2(2J + 1)

(
m2

2π

)2 ∞∑
k=1

(
T

km

)
K1

(
k
m

T

)
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Test with the SU(2) model

The SU(2) model is a perfect laboratory to test these results.

It is easy to simulate: very precise results may be obtained with a reasonable
amount of computing power

The deconfinement transition is of second order and thus it is expected to coincide
with the Hagedorn temperature

The masses of several states of the glueball spectrum are known with remarkable
accuracy

The infrared physics of the model is very similar to that of the SU(3) theory, with
one important difference: the gauge group is real and thus only C=1 glueball exist.
The glueball spectrum contains only half of the states with respect to SU(3).
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Lattice setup

N4
s at T = 0 N3

s × Nt at T 6= 0 nβ β-range nconf

324 603 × 5 17 [2.25, 2.3725] 1.5× 105

404 723 × 6 25 [2.3059, 2.431] 1.5× 105

404 723 × 8 12 [2.439, 2.5124] 105

Table : *

Setup of our simulations. The first two columns show the lattice sizes (in units of the
lattice spacing a) for the T = 0 and finite-temperature simulations, respectively. In the

third column, nβ denotes the number of β-values simulated within the β-range indicated
in the fourth column. Finally, in the fifth column we report the cardinality nconf of the

configuration set for the T = 0 and finite-T simulations.
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SU(2): trace of energy-momentum tensor
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Despite the small values of Nt the data scale reasonably well.
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Plot of the contribution of lowest glueball state m0++ compared with the data .
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SU(2): trace of energy-momentum tensor
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The contribution of all glueball states with mass m < 2m0++ .
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A few important observations

Usually the thermodynamics of the system is saturated by the first state (or, in some
cases, the few lowest states) of the spectrum due to the exponential dependence on the
mass.

The large gap between the m0++ and the m < 2m0++ curves and those between them and
the data show that the spectrum must be of the Hagedorn type, i.e. that the number of
states increases exponentially with the mass.

A Hagedorn spectrum is typically the signature of a string like origin of the spectrum.

The thermal behaviour of the model in the confining phase is thus a perfect laboratory to
study the nature of this spectrum and of the underlying string model.

Effective string theory suggests that, with a very good approximation, this model should
be a Nambu-Goto string. Let us see the consequences of this assumption.
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Glueballs as rings of glue

A closed string model for the full glueball spectrum that follows the original work of Isgur
and Paton12 can be introduced to account for the values of thermodynamic quantities
near the transition. In the closed-string approach glueballs are described in the limit of
large masses as “rings of glue”, that is closed tubes of flux modelled by closed bosonic
string states.

The mass spectrum of a closed strings gas in D spacetime dimensions is given by

m2 = 4πσ

(
nL + nR −

D − 2

12

)
where nL = nR = n are the total contribution of left- and right-moving phonons on the
string.

Every glueball state corresponds to a given phonon configuration, but associated to each
fixed n there are multiple different states whose number is given by π(n), i.e. the
partitions of n.

1N. Isgur and J. Paton, A Flux Tube Model for Hadrons in QCD, 1985
2R. Johnson and M. Teper, String models of glueballs and the spectrum of SU(N) gauge theories in

(2+1)-dimensions, 2002
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The density of states ρ(n) is expressed through the square of π(n):

ρ(n) = π(nL)π(nR ) = π(n)2 ' 12 (D − 2)
D−1

2

(
1

24n

) D+1
2

exp

(
2π

√
2(D − 2)n

3

)
in D spacetime dimensions.
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Spectral density

The Hagedorn temperature1 is defined as

TH =

√
3σ

π(D − 2)

The spectral density as a function of the mass (i.e. ρ̂(m)dm = ρ(n)dn) can be expressed
as

ρ̂(m) =
(D − 2)D−1

m

(
πTH

3m

)D−1

em/TH

where the characteristic Hagedorn-like exponential spectrum appears and can be used to
describe the glueball spectrum above an arbitrary mass threshold.

The trace of the energy-stress tensor can be integrated on masses bigger than 2m0++

with the degeneracy ρ̂(m) and summed to the contribution of the mass states computed
on the lattice.

∆ =
∑

m<2m0++

(2J + 1)∆(m,T ) +

∫ ∞
2m0++

dm ρ̂(m) ∆(m,T )

1R. Hagedorn, Nuovo Cim. Suppl. 3, 147 (1965)
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SU(2): trace of energy-momentum tensor
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SU(2) vs. SU(3)

The SU(3) case was studied for the first time in 2009 in the pioneering work of Meyer1.
Now, using the high precision lattice data for SU(3) of 2 we are in the position to test the
Hagedorn behaviour in a very stringent way.
There are two main diffeences between SU(2) and SU(3):

SU(3) has a first order deconfining transition, so Tc < TH .

SU(3) has complex representations, thus glueballs have an additional quantum
number C and the glueball spectrum contains twice the number of glueballs than in
the SU(2) case

In principle we could consider in this case TH as a free parameter, but in the effective
string framework we may safely fix it at the expected Nambu-Goto value
TH =

√
3σ/2π = 0.691..

√
σ. Lorentz invariance of the effective string tells us that this

should be a very good approximation of the exact result and that we should expect only
small deviations from this value.
The relation between TH and Tc is:

TH

Tc
= 1.098

1H. Meyer, High-Precision Thermodynamics and Hagedorn Density of States, 2009
2Sz. Borsanyi et al., Precision SU(3) lattice thermodynamics for a large temperature range, 2012
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SU(3): trace of energy-momentum tensor
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Also in this case the m < 2m0++ sector of the glueball spectrum is not enough to fit the
behaviour of ∆/T 4 .
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SU(3): trace of energy-momentum tensor

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.65  0.7  0.75  0.8  0.85  0.9  0.95  1

∆
/T

4

T/Tc

lightest SU(3) glueball
all SU(3) glueballs below the two-particle threshold

closed string model
SU(3) - Borsanyi et al.

While including the whole Hagedorn spectrum we find again a remarkable agreement
with no free parameter!
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SU(2) vs. SU(3)

It is instructive to compare the SU(2) and SU(3) data

For N = 3 the closed flux tube has two possible orientations that account for the
C = +1/− 1 sectors. Thus a further twofold degeneracy must be introduced in the string
spectrum.

This doubling of the Hagedorn spectrum is clearly visible in the data
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SU(2) vs. SU(3): results for trace of energy-momentum tensor

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
T / T

H

0

0.1

0.2

0.3

0.4

0.5
∆

 /
 T

 4

SU(2), N
t
 = 6

SU(2), N
t
 = 8

string model for SU(2)

continuum SU(3) results from JHEP 07 (2012) 056

string model for SU(3)

Michele Caselle (UniTo) Effective String Theory ECT* 31/05/2018 68 / 94



SU(N) Yang-Mills theories in (2 + 1) dimensions

The same picture is confirmed by a study we performed a few years ago1 in (2+1)
dimensional SU(N) Yang-Mills theories for N = 2, 3, 4, 6.
Also in (2+1) dimensions we found that:

a Hagedorn spectrum was mandatory to fit the thermodynamic data

there was a jump between the SU(2) and the SU(N > 2) case due to the doubling
of the spectrum

we had to fix the Hagedorn temperature to the Nambu-Goto value which, due to the
different number of trensverse degrees of freedom is different from the (3+1)
dimensional one: TH =

√
3σ/π = 0.977..

√
σ

Moreover we found that in the vicinity of the critical point there was an excess of ∆/T 4

with respect to our predictions for N = 4, 5 and 6 and that this excess increases with N.
This could be understood as due to the k-string glueballs

1M. Caselle et al., Thermodynamics of SU(N) Yang-Mills theories in 2+1 dimensions I - The confining
phase, 2011
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SU(N) Yang-Mills theories in (2 + 1) dimensions
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Take home message:

The thermodynamics of SU(2) and SU(3) Yang-Mills theories in d = (3 + 1) is well
described by a gas of non-interacting glueballs

The agreement is obtained only assuming a Hagedorn spectrum for the glueballs

The fine details of the spectrum, in particular the Hagedorn temperature, agree well
with the predictions of the Nambu-Goto effective string.

The results agree with previous findings in d = (2 + 1) SU(N) Yang Mills theories
with N = 2, 3, 4, 5, 6

As N increases the data suggest the presence of extra states in the spectrum which
could be k-glueballs states, which could be described by a k-string spectrum
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Conclusions

Effective string theories are a powerful tools to describe the infrared begaviour of
confining gauge theories

They are strongly constrained by Lorentz invariance

The simplest option: the Nambu-Goto action plays the role of a mean field
approximation

Higher order terms are now accessible to modern Montecarlo simulations and will
open a window to distinguish the different ”confining habits” of different gauge
models

For instance the rigidity term has relevant consequences in the confining string:
I The field density profile around the string is (almost) a Gaussian in the case of a

Nambu-Goto string, while it decreases exponentially in the rigid string case. This
exponential defines a new scale, known as the London penetration length in condensed
matter theory, and as intrinsic width in confining gauge theories

I While in the Nambu-Goto case the string width increases logarithmically with the
interquark distance at zero temperature and linearly at high temperature, the intrinsic
width of the rigid string is constant

I At very short distances the coefficient of the Lüscher term is doubled.

Starting from these ideas lot of interesting applications are possible, for instance it is
possible to show the ”Hagedorn nature” of the deconfinement transition
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Backup Slides
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Evaluation of the Lüscher term.

The gaussain integration gives:∫
e−

σ
2

∫
d2ξX i (−∂2)X i

∝
[
det(−∂2)

]− d−2
2

.

The determinant must be evaluated with Dirichlet boundary conditions. The
spectrum of −∂2 with Dirichlet boundary conditions is:

λmn = π2

(
m2

T 2
+

n2

R2

)
corresponding to the normalized eigenfunctions

ψmn(ξ) =
2√
RT

sin
mπτ

T
sin

nπς

R
.
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Evaluation of the Lüscher term.

The determinant can be regularized with the ζ-function technique: defining

ζ−∂2 (s) ≡
∞∑

mn=1

λ−s
mn

the regularized determinant is defined through the analytic continuation of ζ′−∂2 (s)
to s = 0:

det(−∂2) = exp
[
−ζ′−∂2 (0)

]
.

The result is [
det(−∂2)

]− d−2
2

=

[
η(τ)√

R

]− d−2
2

.

where η(τ) is the Dedekind function

η(τ) = q1/24Π∞n=1(1− qn)

with q ≡ e2πiτ and τ = iT/R.
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Derivation of the Nambu-Goto action.

The Nambu-Goto action is given by the area of the world–sheet:

S = σ

∫ T

0

dτ

∫ R

0

dς
√
g ,

where g is the determinant of the two–dimensional metric induced on the
world–sheet by the embedding in Rd :

g = det(gαβ) = det ∂αX
µ∂βX

µ (α, β = τ, ς, µ = 1, . . . , d)

Choosing the ”physical gauge”

X 1 = τ X 2 = ς

g may be expressed as a function of the transverse degrees of freedom only:

g = 1 + ∂τX
i∂τX

i + ∂ςX
i∂ςX

i

+∂τX
i∂τX

i∂ςX
j∂ςX

j − (∂τX
i∂ςX

i )2 (i = 3, . . . , d) .

Expanding we find:

S ∼ σRT +
σ

2

∫
d2ξ

[
∂αX · ∂αX +

1

8
(∂αX · ∂αX )2 − 1

4
(∂αX · ∂βX )2 + . . .

]
,
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Application: the boundary term of the effective action:
Constraints imposed by the Lorentz invariance

If the boundary is a Polyakov line in the ξ0 direction placed at ξ1 = 0, on which we
assume Dirichlet boundary conditions Xi (ξ0, 0) = 0, the most general boundary action
should be of this type

Sb =

∫
dξ0

[
b1∂1X · ∂1X + b2∂1∂0X · ∂1∂0X + b3(∂1X · ∂1X )2 + . . .

]
.

Imposing Lorentz invariance one finds that b1 = 0 and that the b2 term is only the first
term of a Lorentz invariant expression1 :

b2

∫
dξ0

[
∂0∂1X · ∂0∂1X

1 + ∂1X · ∂1X
− (∂0∂1X · ∂1X )2

(1 + ∂1X · ∂1X )2

]
.

which is the analogous in the case of the boundary action of the Nambu-Goto action for
the ”bulk” effective action.

1M. Billo, M. Caselle, F. Gliozzi, M. Meineri, R. Pellegrini JHEP05(2012)130
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The boundary contribution to the interquark potential

Following the above discussion, the leading correction coming from the boundary turns
out to be:

S
(1)
b,2 =

∫
dξ0 [b2∂1∂0X · ∂1∂0X ] .

Its contribution to the interquark potential can be evaluated performing a simple
gaussian functional integration1

〈S (1)
b,2〉 = −b2

π3L

60R4
E4(i

L

2R
) .

where the Eisenstein function E4, is defined as

E4(τ) = 1 + 240
∞∑

n=1

σ3(n)qn ,

where q = e 2πiτ and σp(n) is the sum of the p-th powers of the divisors of n:

σp(n) =
∑
m|n

mp .

1O. Aharony and M. Field JHEP01(2011)065
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The boundary contribution to the interquark potential

We end up with the following expression for the interquark potential

V (R) = σR − π(D − 2)

24R
− 1

2σR3

(
π(D − 2)

24

)2

− b2
π3(D − 2)

60R4
+ O(1/R5) ,

where b2 is a new physical parameter, similar to the string tension σ, which depends
on the theory that we study and should be determined by simulations and
comparison with experiments.

To test this picture we performed a set of high precision simulations in the case of
the 3d gauge Ising model, which is the simplest possible confining gauge theory.
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Simulation I: Polyakov loops

In order to eliminate the non-universal perimeter and constant terms from the
expectation value of Polyakov loop correlators P(R, L) (where L is the length of the
two loops and R their distance) we measured the following ratio:

RP (R, L) =
P(R + 1, L)

P(R, L)
.

Due to the peculiar nature of our algorithm, based on the dual transformation to the
3d spin Ising model, this ratio can be evaluated for large values of R and L with very
high precision.
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Simulation settings

We performed our simulations in the 3d gauge Ising model, using a dual algorithm

data set β L σ 1/Tc

1 0.743543 68 0.0228068(15) 5
2 0.751805 100 0.0105255(11) 8
3 0.754700 125 0.0067269(17) 10

Table : Some information on the data sample
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Results

The values of b2 extracted from the data show the expected scaling behaviour
b2 ∼ 1√

σ3

data set b2 b2
√
σ

3
χ2

1 7.25(15) 0.0250(5) 1.2
2 26.8(8) 0.0289(9) 1.8
3 57.9(12) 0.0319(7) 1.3

Table : Values of b2 as a function of β
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Simulation II: Wilson loops

As a check of our analysis we performed the same simulation for the Wilson loops fixing
the value of b2 obtained above. In this case there is no more parameter to fit and we can
directly compare our predictions with the results of the simulations. To eliminate all the
non-universal parameters we constructed the following combination:

R
′
W (L, Lu) =

W (L,R)

W (L + 1,R − 1)
− exp{−σ(1 + L(1− u))} , u = R/L
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Simulation II: Wilson loops

Figure : R
′
W (L, L 4

3
) at β = 0.754700.
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Scale setting

The SU(2) scale setting is fixed by calculating the string tension via the computation of
Polyakov loop correlators with the multilevel algorithm.

The range of the parameter β which has been considered (β ∈ [2.27, 2.6]) covers
approximately the temperature region analyzed in the finite temperature simulations.

The string tension is obtained with a two-parameter fit of potential

V = − 1

Nt
log〈PP〉

with the first order effective string prediction for the potential

V = σr + V0 −
π

12r

Higher order effective string corrections turned out to be negligible within the precision of
our data.
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Scale setting

β rmin/a σa2 aV0 χ2
red

2.27 2.889 0.157(8) 0.626(14) 0.6
2.30 2.889 0.131(4) 0.627(30) 0.1
2.32 3.922 0.115(6) 0.627(32) 2.3
2.35 3.922 0.095(3) 0.623(20) 0.2
2.37 3.922 0.083(3) 0.621(18) 1.0
2.40 4.942 0.068(1) 0.617(10) 1.4
2.42 4.942 0.0593(4) 0.613(5) 0.1
2.45 4.942 0.0482(2) 0.608(4) 0.4
2.47 4.942 0.0420(4) 0.604(5) 0.3
2.50 5.954 0.0341(2) 0.599(2) 0.1
2.55 6.963 0.0243(13) 0.587(11) 0.2
2.60 7.967 0.0175(16) 0.575(16) 0.3

Table : *

Results for the string tension in units of the inverse squared lattice spacing at different
values of the Wilson action parameter β (first column), calculated by fitting the potential
V as a function of the tree-level improved interquark distance r to the Cornell form. V
was extracted from Polyakov loop correlators on lattices of temporal extent Lt = 32a.
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Scale setting
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Scale setting
The values of the string tension are interpolated by a fit to

log(σa2) =

npar−1∑
j=0

aj (β − β0)j with β0 = 2.35

which yields a χ2
red of 0.01. It is presented below along with older data1.

2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65

β

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

σ
a

2

results from JHEP 0401 (2004) 061

this work
fit

1B. Lucini, M. Teper, U. Wenger, The high temperature phase transition in SU(N) gauge theories, 2003
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Thermodynamics on the lattice

The pressure can be estimated by the means of the so-called “integral method”1:

p(T ) ' T

V
logZ(T ,V ) =

1

a4

1

Nt N3
s

∫ β(T )

0

dβ′
∂ logZ

∂β′
.

It can be written (relative to its T = 0 vacuum contribution) as

p(T )

T 4
= −Nt

4

∫ β

0

dβ′ [3(Pσ + Pτ )− 6P0]

where Pσ and Pτ are the expectation values of spacelike and timelike plaquettes
respectively and P0 is the expectation value at zero T .
The trace of energy-momentum tensor is simply

∆(T )

T 4
= T

∂

∂T

( p

T 4

)
= −Nt

4T
∂β

∂T
[3(Pσ + Pτ )− 6P0] .

ε and s can be obtained indirectly as linear combinations.

1J. Engels et al., Nonperturbative thermodynamics of SU(N) gauge theories, 1990
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Geometrical description.

A more intuitive geometrical description of this result is obtained using the original string
action, without fixing the physical gauge.
The effective action is given by the most general mapping:

Xµ :M→ RD , µ = 0, · · · ,D − 1

M : two-dimensional surface describing the worldsheet of the string

RD : (flat) D dimensional target space RD of the gauge theory.

Main Result 1 :

The first few terms of the action compatible with Poincaré and parity invariance are
suitable combinations of geometric invariants constructed from the induced metric
gαβ = ∂αX

µ∂βXµ.

These terms can be classified according to their weight, i.e. the difference between
the number of derivatives minus the number of fields Xµ

1O. Aharony and Z. Komargodski, JHEP 1305 (2013) 118
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Geometrical description.

The only term of weight zero is the Nambu-Goto action

SNG = σ

∫
d2ξ
√
g ,

where g ≡ det(gαβ).

This term has a natural geometric interpretation: it measures the area swept out by
the worldsheet in space-time.

Fixing the physical gauge one finds (choosing an euclidean metric)

S = σ

∫
d2ξ
√

det(ηαβ + ∂αX · ∂βX )

∼ σRT +
σ

2

∫
d2ξ

[
∂αX · ∂αX +

1

8
(∂αX · ∂αX )2 − 1

4
(∂αX · ∂βX )2 + . . .

]
,
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Geometrical description.

At weight two, two new contributions appear:

S2,R = γ

∫
d2ξ
√
gR ,

S2,K = α

∫
d2ξ
√
gK 2,

where R denotes the Ricci scalar constructed from the induced metric, and
K ≡ ∆(g)X is the extrinsic curvature, where ∆(g) is the Laplacian in the space
with metric gαβ .

However both these terms can be neglected!

R is topological in two dimensions and, since in the long string limit in which we are
interested we do not expect topologically changing fluctuations, its contribution is
constant and can be neglected.

K 2 is proportional to the equation of motion of the Nambu-Goto Lagrangian and
can be eliminated by a suitable field redefinition.
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Geometrical description.

Thus the first non trivial terms appear at level four and contribute to the interquark
potential with terms proportional to 1/R7 in agreement with the derivation in the
physical gauge.

However something must be missing in the picture since high precision simulations of
various 3d gauge models show large deviations with respect to the Nambu-Goto
prediction, which turn out to be much stronger than the expected 1/R7 corrections!

Interface free energy in the 3d Ising model1: Torus geometry, no boundary
corrections

Excited string states of SU(N) Yang-Mills theories2

Interquark Potential in the 3d U(1) gauge model 3

1M. Caselle, M. Hasenbusch and M. Panero, JHEP 0709 (2007) 117, arXiv:0707.0055
2A. Athenodorou, B. Bringoltz and M. Teper, JHEP 02, 030 (2011), arXiv:1007.4720 .
3D. Vadacchino, M. Caselle, R. Pellegrini and M. Panero, arXiv:1311.4071 .
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