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Role of CPN~! in non-perturbative QCD

The 2d CPN~! models share many fundamental properties with
QCD: confinement, asymptotic freedom, topologically-stable
instantons, f-vacua...

These theories admit an analytic solution in the large-N limit.
They have been employed as a theoretical laboratory for the
study of non-perturbative features of QCD (e. g. Witten, 1979).

The CPN~! have been also extensively studied numerically
through Monte Carlo simulations:

e lattice C PN~ simulations need low numerical effort,

o CPN=1 models are ideal test-bed for new algorithms to
solve LQCD non-trivial computational problems,

@ possibility of a comparison between numerical and analytic
large-N results.

Claudio Bonanno Gauge Topology 3: from Lattice to Colliders - 30/05/2018 1/ 24



Topology and #-dependence

In the CPN~! models one can introduce a topological charge Q
and a corresponding 6-term in the action.

This work focuses on the study of the #-dependence of the
vacuum energy (density):

n=1

£(6) = f% log Z(6) = %XGQ (1 + i b2n02"> . I

The coefficients of the #-expansion are related to the cumulants
k., of the probability distribution of Q):
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f-dependence and phenomenology

The study of f(6) is of particular relevance in QCD and in
SU(N) gauge theories:

e f-dependence of pure Yang-Mills enters 7’ physics,

o focp(f) enters axion phenomenology and, thus, the
resolution of the strong-C'P problem.

In QCD and Yang-Mills, numerical MC simulations on the
lattice are one of the most reliable tools to measure x and the
bo,, coefficients.

This constitutes a strong motivation to perform a similar
numerical study for the lattice CPV~1 models.
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Analytic predictions for f(6) for C PV~!

Unlike in QCD, the 6-dependence of the vacuum energy can be
calculated analytically in the large-N limit.

Some quantitative predictions obtained for the CPN~! models

are:
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Numerical study of f(#) for CPN~!

Lattice measures of f(6) for the CPY~! are quite limited
compared to the one of QCD and SU(N) gauge theories.

@ The susceptibility has been measured and its large-/N limit
has been checked, but large uncertainties exist about the
sign of the first non-trivial 1/N correction,

@ by has never been measured for CPV~!, contrary to the
case of Yang-Mills and QCD,

o determinations of b4 and higher coefficients have never been
reported, neither for C PN~! nor for Yang-Mills/QCD.

The goals of this work are:

e extension of the lattice measure of the vacuum energy f(6)
to higher orders in 6;

e extension of the study of the large-N limit of f(#) and

comparison with analytic predictions.
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Lattice action

The chosen continuum Euclidean action is:

S = Nﬁ/d2mDﬂé($)Duz(x), |z2=1, B=1/g. \

We discretized it adopting the O(a) Symanzik-improved lattice

action:
Sp= 3Ny > ROue)e(e + (el
+ENBL S RIT, (@ + )0, (2)2(a + 20)2(2)]
- = BLEL. ]
. N 2+ i Uy(2) ~ expliad,(z)}

z(x)
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Lattice topological charge

The definition of topological charge we chose is:

1 1
Q= 47Tg,w/oz%cﬂw( ) = 27T/d?chu( )

Several discretizations are possible, for example:

e Q= % Z ${Mi2(z)}, (Non-geometric)

0 Queo = 72 {bg (le ))] . (Geometric)

() = Up(2)Uy (z + ﬂ)Uu@ +0)U, (2)
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Computational problems

This set-up suffers from two computational problems:

e Critical Slowing Down (CSD) of topological modes,
o difficulties in measuring high-order cumulants of Q). J

1) When approaching the continuum limit (7, — oco) and the
large- N limit, the machine time needed to change the charge of
a configuration exponentially grows with &7, and N.

This is due to the impossibility of changing the winding number
of a configuration with a continuum deformation.

2) The measure of high-order cumulants of () becomes very
noisy for large lattice sizes.

This happens because the Gaussian behaviour is dominant in
the thermodynamic limit for the central limit theorem.
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Numerical strategies

To obtain a precise measure of f(6) we need to adopt numerical
strategies to improve the measure of topological observables.

In this work we applied:

e imaginary-0 method to improve measure accuracy of
cumulants; (Panagopoulos and Vicari, 2011)

e simulated tempering algorithm to dampen the CSD of
topological modes. (Marinari and Parisi, 1992; Vicari, 1993)
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Analytic continuation

Being the #-dependence of the theory analytic around 6 = 0, one
can continue the path integral to imaginary angles:

0=—i0 = Siop = —i0Q = —0,Q € R. J

The topological term was discretized using the non-geometric
definition.

The continuation of the vacuum energy is:

7(61) = £(0 = ~ify) = — X6} (1 " Z 12,63 ) .

— The measure of x and of the by, coefficients can be
extracted from f(6r).
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Imaginary-6 fit

The 0;-dependence of the cumulants of @ is related to f(6;):

d™f(0r) 1
— k. (0)),
a7 7 km (61)

A global fit of the 8;-dependence of the cumulants, which can be
measured on the lattice, leads to an improved measure of y and

the bo,:

k(0
1§/1) = x0r[1 — 202607 + 304607 + O(63)],

ko (6
2‘(/1) = x[1 — 66267 + 15b407 + O(67)],
k3§/9]) = X[ = 12529[ + 60b49§ + 0(9}1)]

On the lattice: 0; = Zy0y,. )
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Imaginary-6 fit results

N =21, B, = 0.66
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The simulated tempering algorithm

The simulated tempering
consists in promoting the \ o ][ )
temperature T" as a I

dynamical variable. N/l ______

The system heats up during its evolution and can escape from
the local minima in which it is trapped.

In the case of the CPN~! models, one can promote both 8 and
fr to dynamical variables:

P ocexp{—SL +0.Qr} = exp{—-BLEL +0.QL}. J

o When [ decreases, the algorithm changes () more easily.

o When 67 increases, higher-charge configurations are more
probable to realize.
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Simulated tempering set-up

To obtain an ergodic algorithm, the 3 interval needs to be
chosen properly.

066 g
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algorithm
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Local vs simulated tempering

Simulated tempering provides an improving in the
autocorrelation time at equal machine time.

N = 26- £ = 397(7) N =26 - £ = 3.974(7)
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Continuum limit

Linear corrections in the lattice spacing (~ 5;1) are killed by
the Symanzik action.

Continuum limit for ¢2y, N = 21
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Large-N limit of &%y
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i
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(NE2X) theo = 0.1592 — 0.0606/N + O(1/N?),
(NExx) me = 0.1600(8) + e2/N + e3 /N2,
Fit: |eg| <1071, e3=0(1), x%4=17/7.
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N — 2: ansatz

The C'P! model is equivalent to the O(3) o model.
Many theoretical works (e. g. Richard et al., 1983), supported by
numerical evidence (e. g. D’Elia et al., 1997), show that the latter

has divergent topological susceptibility.

— Ansatz:
1 1 1 1
2 /
_— - O -
SX= N TN oge [(N—2)3}’

1
(6/2)th60 = (62)theo - ; ~ —0.379...

It can be seen as a partial resummation of the 1/ series:

vhon(8) oaledeo(w)l |
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N — 2: results

Large-N limit of ¢%y
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Large-N limit of by

Large-N limit of b,

8
—3f —— best fit
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(N%bg) e = —2.4(3) + O(1/N), x>, =06/3
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Large-N limit of by

Large-N limit of b,

—2t

—3t

—4r

s — fit

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ---- asymptotic result —27/5 | |
{  this work
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1N
N2by = —27/5+a/N +b/N% + ¢/N3, X%, =4/2 |

This suggests that the apparent discrepancy is due to large

corrections to the predicted asymptotic limit.
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Results for by
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Summary and future perspective

Summarizing, this work consists in:

e application of imaginary-0 method and of simulated
tempering algorithm to lattice C PN ~! models to improve
measure accuracy of topological observables,

o lattice determination of x, ba and by for N € [9, 31],

o numerical study of the large-N limit of x and by and
comparison with analytic predictions.

In the next future it would be interesting to:

@ improve the study of the large-INV limit of y and by
including larger Ns and improving measure accuracy,

o further investigation of the N — 2 ansatz for the
susceptibility,

o try other proposed algorithm to improve this analysis.
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Thank you for your attention! |




Topological Charge Freezing
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Estimation of the free energy

To obtain an ergodic algorithm, it is of utmost importance that
the (Br,0r) exploration is uniform.

P(6,B1,61) > P'[g, B, 0] — e~ PrELIoH0Quio+ Lo o) |

The Metropolis probability of changing parameter is:

P(Botd — Brew) = g AT POoig = Onew) = €A0QL+AFL'J

The free energy as a function of (81, 60r) can be estimated on
the lattice with a numerical integration:

oFy,

%:<EL>7 7L:_<QL>' ’
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