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Role of CPN−1 in non-perturbative QCD

The 2d CPN−1 models share many fundamental properties with
QCD: confinement, asymptotic freedom, topologically-stable
instantons, θ-vacua...

These theories admit an analytic solution in the large-N limit.
They have been employed as a theoretical laboratory for the
study of non-perturbative features of QCD (e. g. Witten, 1979).

The CPN−1 have been also extensively studied numerically
through Monte Carlo simulations:

lattice CPN−1 simulations need low numerical effort,
CPN−1 models are ideal test-bed for new algorithms to
solve LQCD non-trivial computational problems,
possibility of a comparison between numerical and analytic
large-N results.
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Topology and θ-dependence

In the CPN−1 models one can introduce a topological charge Q
and a corresponding θ-term in the action.

This work focuses on the study of the θ-dependence of the
vacuum energy (density):

f(θ) ≡ − 1

V
logZ(θ) =

1

2
χθ2

(
1 +
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n=1

b2nθ
2n

)
.

The coefficients of the θ-expansion are related to the cumulants
km of the probability distribution of Q:
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θ-dependence and phenomenology

The study of f(θ) is of particular relevance in QCD and in
SU(N) gauge theories:

θ-dependence of pure Yang-Mills enters η′ physics,
fQCD(θ) enters axion phenomenology and, thus, the
resolution of the strong-CP problem.

In QCD and Yang-Mills, numerical MC simulations on the
lattice are one of the most reliable tools to measure χ and the
b2n coefficients.

This constitutes a strong motivation to perform a similar
numerical study for the lattice CPN−1 models.
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Analytic predictions for f(θ) for CPN−1

Unlike in QCD, the θ-dependence of the vacuum energy can be
calculated analytically in the large-N limit.

Some quantitative predictions obtained for the CPN−1 models
are:

ξ2χ =
1

2π
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N
− 0.0606

N2
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(
1
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)
(Campostrini and Rossi; 1992)
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b4 = −25338

175

1

N4
+O

(
1

N5

)
(Bonati, D’Elia, Rossi and Vicari; 2016)

b2n = b̄2n
1

N2n
+O

(
1

N2n+1

)

Claudio Bonanno Gauge Topology 3: from Lattice to Colliders - 30/05/2018 4 / 24



Numerical study of f(θ) for CPN−1

Lattice measures of f(θ) for the CPN−1 are quite limited
compared to the one of QCD and SU(N) gauge theories.

The susceptibility has been measured and its large-N limit
has been checked, but large uncertainties exist about the
sign of the first non-trivial 1/N correction,
b2 has never been measured for CPN−1, contrary to the
case of Yang-Mills and QCD,
determinations of b4 and higher coefficients have never been
reported, neither for CPN−1 nor for Yang-Mills/QCD.

The goals of this work are:

extension of the lattice measure of the vacuum energy f(θ)
to higher orders in θ;
extension of the study of the large-N limit of f(θ) and
comparison with analytic predictions.
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Lattice action

The chosen continuum Euclidean action is:

S = Nβ

∫
d2x D̄µz̄(x)Dµz(x), |z|2 = 1, β ≡ 1/g.

We discretized it adopting the O(a) Symanzik-improved lattice
action:

SL = −8

3
NβL

∑
x,µ

<[Ūµ(x)z̄(x+ µ̂)z(x)]

+
1

6
NβL

∑
x,µ

<[Ūµ(x+ µ̂)Ūµ(x)z̄(x+ 2µ̂)z(x)]

≡ βLEL.

x x+ µ̂
Uµ(x)

z(x)
Uµ(x) ∼ exp{iaAµ(x)}
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Lattice topological charge

The definition of topological charge we chose is:

Q =
1

4π
εµν

∫
d2xFµν(x) =

1

2π

∫
d2xF12(x)

Several discretizations are possible, for example:

QL =
1

2π

∑
x

=
{

Π12(x)
}
, (Non-geometric)

Qgeo =
1

2π

∑
x

=
[
log

(
Π12(x)

)]
. (Geometric)

Πµν(x) ≡ Uµ(x)Uν(x+ µ̂)Ūµ(x+ ν̂)Ūν(x)
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Cooling
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Computational problems

This set-up suffers from two computational problems:

Critical Slowing Down (CSD) of topological modes,
difficulties in measuring high-order cumulants of Q.

1) When approaching the continuum limit (ξL →∞) and the
large-N limit, the machine time needed to change the charge of
a configuration exponentially grows with ξL and N .

This is due to the impossibility of changing the winding number
of a configuration with a continuum deformation.

2) The measure of high-order cumulants of Q becomes very
noisy for large lattice sizes.

This happens because the Gaussian behaviour is dominant in
the thermodynamic limit for the central limit theorem.
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Numerical strategies

To obtain a precise measure of f(θ) we need to adopt numerical
strategies to improve the measure of topological observables.

In this work we applied:

imaginary-θ method to improve measure accuracy of
cumulants; (Panagopoulos and Vicari, 2011)
simulated tempering algorithm to dampen the CSD of
topological modes. (Marinari and Parisi, 1992; Vicari, 1993)
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Analytic continuation

Being the θ-dependence of the theory analytic around θ = 0, one
can continue the path integral to imaginary angles:

θ ≡ −iθI =⇒ Stop = −iθQ = −θIQ ∈ R.

The topological term was discretized using the non-geometric
definition.

The continuation of the vacuum energy is:

f(θI) = f(θ = −iθI) = −1

2
χθ2

I

(
1 +

∞∑
n=1

(−1)nb2nθ
2n
I

)
.

=⇒ The measure of χ and of the b2n coefficients can be
extracted from f(θI).
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Imaginary-θ fit

The θI -dependence of the cumulants of Q is related to f(θI):

dmf(θI)

dθmI
= − 1

V
km(θI),

A global fit of the θI -dependence of the cumulants, which can be
measured on the lattice, leads to an improved measure of χ and
the b2n:

k1(θI)

V
= χθI

[
1− 2b2θ

2
I + 3b4θ

4
I +O(θ5

I )
]
,

k2(θI)

V
= χ

[
1− 6b2θ

2
I + 15b4θ

4
I +O(θ5

I )
]
,

k3(θI)

V
= χ

[
− 12b2θI + 60b4θ

3
I +O(θ4

I )
]
...

On the lattice: θI = ZθθL.
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Imaginary-θ fit results

O(β = 0.66, N = 21) Standard method Imaginary-θ Gain
χ · 104 4.401(11) 4.3908(58) ∼ 2
b2 · 103 −5.36(40) −4.958(76) ∼ 5
b4 · 105 −11± 21 −1.27(20) ∼ 100
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The simulated tempering algorithm

The simulated tempering
consists in promoting the

temperature T as a
dynamical variable.

The system heats up during its evolution and can escape from
the local minima in which it is trapped.

In the case of the CPN−1 models, one can promote both β and
θI to dynamical variables:

P ∝ exp{−SL + θLQL} = exp{−βLEL + θLQL}.

When β decreases, the algorithm changes Q more easily.

When θI increases, higher-charge configurations are more
probable to realize.
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Simulated tempering set-up

To obtain an ergodic algorithm, the β interval needs to be
chosen properly.

βmin → local
algorithm
decorrelates fast,
βmax → close to the
continuum limit,
δβ → reasonable
acceptance of change
of β.
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Local vs simulated tempering

Simulated tempering provides an improving in the
autocorrelation time at equal machine time.
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Continuum limit

Linear corrections in the lattice spacing (∼ ξ−1
L ) are killed by

the Symanzik action.
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Large-N limit of topological susceptibility

(Nξ2χ)theo ' 0.1592− 0.0606/N +O(1/N2),

(Nξ2χ)MC = 0.1600(8) + e2/N + e3/N
2,

Fit: |e2| . 10−1, e3 = O(1), χ2
red = 17/7.
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N − 2: ansatz

The CP 1 model is equivalent to the O(3) σ model.
Many theoretical works (e. g. Richard et al., 1983), supported by
numerical evidence (e. g. D’Elia et al., 1997), show that the latter

has divergent topological susceptibility.

=⇒ Ansatz:

ξ2χ =
1

2π

1

N − 2
+ e′2

1

(N − 2)2
+O

[
1

(N − 2)3

]
,

(e′2)theo = (e2)theo −
1

π
' −0.379...

It can be seen as a partial resummation of the 1/N series:

1

N − 2
=

1

N

(
1− 2

N

)−1

=
1

N

[
1 +

2

N
+O

(
1

N2

)]
.
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N − 2: results

[(N − 2)ξ2χ]theo ' 0.1592− 0.379/(N − 2) +O[1/(N − 2)2],

[(N − 2)ξ2χ]MC = 0.160(1) + e′2/(N − 2) + e′3/(N − 2)3,

Fit: e′2 = −0.35(2) (e2 = −0.03(2)), e′3 = O(1), χ2
red = 7.5/7
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Large-N limit of b2

(N2b2)theo = −5.4 +O(1/N)
(N2b2)MC = −2.4(3) +O(1/N), χ2

red = 6/3
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Large-N limit of b2

N2b2 = −27/5 + a/N + b/N2 + c/N3, χ2
red = 4/2

This suggests that the apparent discrepancy is due to large
corrections to the predicted asymptotic limit.
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Results for b4
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Summary and future perspective

Summarizing, this work consists in:

application of imaginary-θ method and of simulated
tempering algorithm to lattice CPN−1 models to improve
measure accuracy of topological observables,
lattice determination of χ, b2 and b4 for N ∈ [9, 31],
numerical study of the large-N limit of χ and b2 and
comparison with analytic predictions.

In the next future it would be interesting to:

improve the study of the large-N limit of χ and b2
including larger Ns and improving measure accuracy,
further investigation of the N − 2 ansatz for the
susceptibility,
try other proposed algorithm to improve this analysis.
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Thank you for your attention!



Topological Charge Freezing
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Estimation of the free energy

To obtain an ergodic algorithm, it is of utmost importance that
the (βL, θL) exploration is uniform.

P [φ, βL, θL]→ P ′[φ, βL, θL] = e−βLEL[φ]+θLQL[φ]+FL(βL,θL)

The Metropolis probability of changing parameter is:

P(βold → βnew ) = e−∆βEL+∆FL , P(θold → θnew ) = e∆θQL+∆FL .

The free energy as a function of (βL, θL) can be estimated on
the lattice with a numerical integration:

∂FL
∂βL

= 〈EL〉 ,
∂FL
∂θL

= −〈QL〉 .
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