 $U_A(1)$ breaking from the lattice and its topological origin

Sayantan Sharma

The Institute of Mathematical Sciences, Chennai

May 30, 2018

Sayantan Sharma [Gauge Topology 3, ECT* Trento](#page-50-0) Slide 1 of 29

イロト イ押 トイヨ トイヨ トー

 2990

Outline

1 The $U_A(1)$ [puzzle in QCD](#page-2-0)

3 [Topological structures and](#page-35-0) $U_A(1)$ breaking

イロメ イ何メ イヨメ イヨメー

 299

目

Outline

1 The $U_A(1)$ [puzzle in QCD](#page-2-0)

[Our results](#page-20-0)

[Topological structures and](#page-35-0) $U_A(1)$ breaking

[Summary and outlook](#page-45-0)

Sayantan Sharma [Gauge Topology 3, ECT* Trento](#page-0-0) Slide 3 of 29

メロメ メ御 メメ きょうぼきょう

 299

G

Origin:

Anomalous $U_A(1)$ not an exact symmetry of QCD yet may affect the order of phase transition for $N_f = 2$ [Pisarski & Wilczek, 83].

- In model QFT with same symmetries as QCD, it is not possible to
- Need lattice studies with fermions having exact chiral/flavour

イロト イ押 トイヨ トイヨ トー

Origin:

Anomalous $U_A(1)$ not an exact symmetry of QCD yet may affect the order of phase transition for $N_f = 2$ [Pisarski & Wilczek, 83].

- In model QFT with same symmetries as QCD, it is not possible to quantify the $U_A(1)$ effects in observables.
- Need lattice studies with fermions having exact chiral/flavour

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\langle \begin{array}{ccc} \square & \vee & \vee & \vee \end{array} \right\rangle & \rightarrow & \mathbb{R} \rightarrow & \mathbb{R} \rightarrow & \mathbb{R} \end{array} \right.$

Origin:

Anomalous $U_A(1)$ not an exact symmetry of QCD yet may affect the order of phase transition for $N_f = 2$ [Pisarski & Wilczek, 83].

- In model QFT with same symmetries as QCD, it is not possible to quantify the $U_A(1)$ effects in observables.
- Need lattice studies with fermions having exact chiral/flavour symmetry $+$ reproduce exactly anomaly on the lattice.

 Ω

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\langle \begin{array}{ccc} \square & \vee & \vee & \vee \end{array} \right\rangle & \rightarrow & \mathbb{R} \rightarrow & \mathbb{R} \rightarrow & \mathbb{R} \end{array} \right.$

Why is it important?

- \bullet $m_{u,d} \ll \Lambda_{QCD}$, chiral symmetry drives phase transition at $\mu_B \to 0$
- The singular part of free energy should show critical scaling \rightarrow hints of criticality from lattice studies [BI-BNL collaboration, 09].

a mills \overline{a} \sim

Why is it important?

- Criticality at $\mu = 0$ changes on whether $U_A(1)$ is effectively restored [Pelissetto & Vicari, 13, Nakayama & Ohtsuki, 14].
	- $O(4)$ critical exponents for $U_A(1)$ broken
	- $U(2) \times U(2)$ if $U_A(1)$ effectively restored
- Effects should be visible in higher order fluctuations measured in the experiments [Karsch & Redlich, 11, Bielefeld-BNL-CCNU collaboration, 1701.04325]

Sayantan Sharma [Gauge Topology 3, ECT* Trento](#page-0-0) Slide 5 of 29

 QQ

- **•** Could affect the EoS relevant for anomalous hydrodynamics with chiral imbalance?
-
-
-
-

∢ロト (何) (ヨ) (ヨ)

- Could affect the EoS relevant for anomalous hydrodynamics with chiral imbalance?
- Softening of η' mass near freezeout? [Grahl & Rischke, 14,15]
-
-
-

K ロ ▶ K 何 ▶ K 手

ALCOHOL:

- **•** Could affect the EoS relevant for anomalous hydrodynamics with chiral imbalance?
- Softening of η' mass near freezeout? [Grahl & Rischke, 14,15]
- Consequences for the critical end-point at finite μ_B ?
-
- The microscopic constituents responsible for it may also be

メロメ メ押メ メミメメミメ

- **•** Could affect the EoS relevant for anomalous hydrodynamics with chiral imbalance?
- Softening of η' mass near freezeout? [Grahl & Rischke, 14,15]
- Consequences for the critical end-point at finite μ_B ?
- Lattice QCD can answer such questions from first principles.
- The microscopic constituents responsible for it may also be

イロト イ母 ト イヨ ト イヨ トー

- Could affect the EoS relevant for anomalous hydrodynamics with chiral imbalance?
- Softening of η' mass near freezeout? [Grahl & Rischke, 14,15]
- Consequences for the critical end-point at finite μ_B ?
- Lattice QCD can answer such questions from first principles.
- The microscopic constituents responsible for it may also be responsible for characteristic T dependence of topological susceptibility.

イロト イ母 ト イヨ ト イヨ トー

- Finite volume effects \rightarrow ensure presence of topological objects in a box.
- Most studies done with lattice fermions with reasonably good remnant
- Studies done with chiral fermions are in a fixed topological sector+
-

オロメ オタメ オモメ オモメー

- Finite volume effects \rightarrow ensure presence of topological objects in a box.
- Most studies done with lattice fermions with reasonably good remnant of continuum chiral symmetry + explicitly broken $U_A(1)$ which is restored in the continuum limit [S. Chandrasekharan, 96, H. Ohno et. al 12, V. Dick et. al., 15].
- Studies done with chiral fermions are in a fixed topological sector+
- Lattice cut-off effects need careful consideration [G. Cossu et. al. 14]

イロト イ押 トイヨ トイヨ トー

- Finite volume effects \rightarrow ensure presence of topological objects in a box.
- Most studies done with lattice fermions with reasonably good remnant of continuum chiral symmetry + explicitly broken $U_A(1)$ which is restored in the continuum limit [S. Chandrasekharan, 96, H. Ohno et. al 12, V. Dick et. al., 15].
- \bullet Studies done with chiral fermions are in a fixed topological sector+ small volume [JLQCD collaboration, 13].
- Lattice cut-off effects need careful consideration [G. Cossu et. al. 14]

イロト イ押 トイヨ トイヨ トー

- Finite volume effects \rightarrow ensure presence of topological objects in a box.
- Most studies done with lattice fermions with reasonably good remnant of continuum chiral symmetry + explicitly broken $U_A(1)$ which is restored in the continuum limit [S. Chandrasekharan, 96, H. Ohno et. al 12, V. Dick et. al., 15].
- \bullet Studies done with chiral fermions are in a fixed topological sector+ small volume [JLQCD collaboration, 13].
- Lattice cut-off effects need careful consideration [G. Cossu et. al. 14]

 $\mathbf{A} \cap \mathbf{D} \rightarrow \mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B}$

 2990

Observables sensitive to $U_A(1)$ breaking..

- Not an exact symmetry \rightarrow no order-parameter \rightarrow
- **Important to look at all point correlation functions between axial**
- Atleast for the integrated 2 point correlators [Shuryak, 94]

$$
\chi_{\pi}-\chi_{\delta}=\int d^4x\ [\langle i\pi^+(x)i\pi^-(0)\rangle-\langle \delta^+(x)\delta^-(0)\rangle]
$$

Equivalently study $\rho(\lambda, m_f)$ of the Dirac operator [Cohen, 95, Hatsuda & Lee, 95]

$$
\chi_{\pi}-\chi_{\delta}\stackrel{V\to\infty}{\to}\int_0^{\infty}d\lambda\frac{4m_f^2 \rho(\lambda,m_f)}{(\lambda^2+m_f^2)^2},\,\,\langle\bar{\psi}\psi\rangle\stackrel{V\to\infty}{\to}\int_0^{\infty}d\lambda\frac{2m_f \rho(\lambda,m_f)}{(\lambda^2+m_f^2)}
$$

- Chiral symmetry restored: $\lim_{m_f \to 0} \lim_{V \to \infty} \rho(0, m_f) \to 0 \Rightarrow U_A(1)$ restored.
- Chiral symmetry restored $+U_A(1)$ broken if

$$
\lim_{\lambda\to 0}\rho(\lambda,m_f)\to \delta(\lambda)m_f^\alpha\ , 1<\alpha<2.
$$

 $\mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{B} \otimes \mathbf{B}$

 η an

Spectral density of Dirac operator at finite T : Analytics

• Very little known. Only recently there are interesting results [Aoki, Fukaya & Taniguchi, 12].

Assuming $\rho(\lambda,m)$ to be analytic in m^2,λ , look at chiral Ward identities of *n*-point function of scalar & pseudo-scalar currents.

- $\rho(\lambda,m\rightarrow 0)\sim \lambda^3 \Rightarrow U_{\cal A}(1)$ breaking effects invisible in these sectors for upto 6-point functions.
- \bullet Look for non-analyticities $+$ analytic rise in the infrared QCD Dirac

 $\mathbf{C} = \{ \mathbf{C} \in \mathbb{R} \mid \mathbf{C} \in \mathbb{R} \mid \mathbf{C} \in \mathbb{R} \text{ and } \mathbf{C} \in$

 2990

Spectral density of Dirac operator at finite T : Analytics

• Very little known. Only recently there are interesting results [Aoki, Fukaya & Taniguchi, 12].

Assuming $\rho(\lambda,m)$ to be analytic in m^2,λ , look at chiral Ward identities of *n*-point function of scalar & pseudo-scalar currents.

- $\rho(\lambda,m\rightarrow 0)\sim \lambda^3 \Rightarrow U_{\cal A}(1)$ breaking effects invisible in these sectors for upto 6-point functions.
- \bullet Look for non-analyticities $+$ analytic rise in the infrared QCD Dirac spectrum

KORK EXTERNS ORA

Outline

The $U_A(1)$ [puzzle in QCD](#page-2-0)

3 [Topological structures and](#page-35-0) $U_A(1)$ breaking

[Summary and outlook](#page-45-0)

Sayantan Sharma [Gauge Topology 3, ECT* Trento](#page-0-0) Slide 10 of 29

メロメ メ御 メメ きょうぼきょう

 299

G

Results for QCD with staggered quarks

- \bullet $D_{\alpha\nu}$ has an exact index theorem like in the continuum \Rightarrow the zero modes of D_{ov} related to topological structures of the underlying gauge field. [Hasenfratz, Laliena & Niedermeyer, 98].
- Used overlap as valence operator to probe the infrared spectrum of Highly Improved Staggered Quarks(HISQ).
- \bullet $U_A(1)$ broken near T_c and near-zero modes primarily responsible for it.

QCD medium at 1.5 T_c

 \bullet HYP smearing $Hasen$ f Knechtli, 02] expected to eliminate dislocations

• Smearing does not eliminate the near zero modes.

• At 1.5 T_c , QCD medium is a dilute gas of small instantons $r = 0.23$ fm, $\rho = 0.15$ fm⁻⁴

メロメ メ母メ メミメ メミメ

Numerical details

- Möbius domain wall fermions on 5D hypercube with $N = 32$ sites along each spatial 4-dim, $N_5 = 16$ and $N_\tau = 8$ sites along temporal dim. We also have results with staggered (HISQ) fermions.
- Volumes, $V=N^3 a^3$, Temperature, $\mathcal{T}=\frac{1}{N_\tau a},\;$ a is the lattice spacing.
- Box size: $m_{\pi} V^{1/3} > 4$
- \bullet 2 light $+1$ heavy flavour
- Input m_s physical ≈ 100 MeV and $m_s/m_l = 27, 12$ \Rightarrow $m_{\pi} = 135,200$ MeV. [Columbia-BNL-LLNL, 13,14].
- The sign function and chiral symmetry maintained as precise as 10^{-10} .

KORK EXTERNS ORA

QCD Dirac spectrum at finite T

- \bullet General features: Near zero mode peak +bulk.
- No gap observed upto 1.2 T_c for physical quark mass

[V. Dick et. al. in prep, also 1602.02197].

つへへ

General Characteristics

- We fit to the ansatz: $\rho(\lambda) = \frac{A\epsilon}{\lambda^2 + A} + B\lambda^{\gamma}$.
- Bulk rises linearly as λ near T_c .
- No gap even when quark mass reduced!

つへへ

General Characteristics

- The rise of the bulk is $\gamma \sim 2 \ \rightarrow$ Still not consistent with $\lambda^3.$
- **Infrared modes becomes rarer with a small peak.**

a mi

 QQ

A closer look at the near-zero modes

- The near-zero modes sensitive to the sea quark mass \rightarrow sparse when m_{π} heavier but the peak survives!
- Falls by more than a third at $1.2T_c$.

Comparing with earlier results

 \bullet The renormalized spectra of dynamical Domain wall fermions [Columbia-BNL-LLNL, 13] agrees very well with what we measured with the overlap.

 QQ

Comparing eigenspectra for different lattice fermions

- Exponent characterizing the bulk spectra of staggered quarks(HISQ) consistent with domain wall fermions. [HotQCD collab. in prep.]
- **•** The near-zero peak start appearing for finest lattice spacings even with staggered quarks \rightarrow non-perturbative characteristic of QCD eigenvalue spectrum
- \bullet Suffer from strong finite volume effects [G. Cossu et. al, 13, A. Tomiya et. al, 15,16] due to which there has been serious debate on it!

Summary of eigenvalue spectrum at finite T

The bulk spectrum has level spacings characteristic from GUE in Random matrix theory

 \Box

 QQ

Summary of eigenvalue spectrum at finite T

4.0.3

 $\left\{ \left\{ \bigoplus \bullet \right\} \right\}$ $\left\{ \left\{ \right\} \right\}$

 \sim \Rightarrow \rightarrow

 299

Summary of eigenvalue spectrum at finite T

[V. Dick, et. al, 1502.06190, 1602.02197].

4.0.3

 \rightarrow \oplus \rightarrow \rightarrow \oplus \rightarrow

 \rightarrow \equiv **D**

 299

Fate of $U_A(1)$ near T_c

- Contribution to $U_A(1)$ breaking in 2-point correlation functions mainly come from small eigenvalues.
- First 50 eigenvalues produce most of the breaking obtained from inversion of the Domain wall Dirac operator with good chiral properties. [V. Dick, et. al, 1602.02197, Columbia-BNL-LLNL, 13,14].

Summary of independent lattice results from JLQCD

Reference: Y. Aoki, XQCD 2018

←ロ ▶ ← イ 同 →

4 重 \sim \mathcal{A} 目 299

∍

Outline

The $U_A(1)$ [puzzle in QCD](#page-2-0)

3 [Topological structures and](#page-35-0) $U_A(1)$ breaking

[Summary and outlook](#page-45-0)

Sayantan Sharma [Gauge Topology 3, ECT* Trento](#page-0-0) Slide 22 of 29

メロメ メ御う メミメ メミメー

 299

目

What are the constituents of the hot QCD medium?

- \bullet At $T = 0$, anomaly effects related to instantons [t'Hooft, 76].
- Near chiral crossover transition T_c , a medium consisting of interacting instantons can explain chiral symmetry breaking ⇒ Instanton Liquid Model [Shuryak, 82].
- \bullet At $T >> T_c$, medium like a dilute gas of instantons [Gross, Pisarski & Yaffe, 81]. How high is the T ?
- What is the medium made up of for $T_c < T < 2T_c$?

 $\mathbf{A} \cap \mathbf{D} \rightarrow \mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B}$

Independent confirmation: Topological susceptibility

- \bullet Topological susceptibility measurement at high T on the lattice suffers from rare topological tunneling, lattice artifacts.
- **•** Going towards continuum limit difficult due to freezing of topology.

Independent confirmation: Topological susceptibility

 \bullet $T > 300$ MeV: Continuum extrapolated $b = 1.85(15)$. Agreement with dilute instanton

gas.

Confirmed also in an independent study with reweighting techniques.

[Borsanyi et. al, 1606.07494]

Wilson type quarks with m rescaling agrees quite well

[F. Burger et. al, 1705.01847, Y. Taniguchi et. al., 1611.02413]

- Fit ansatz: $\chi_t^{1/4} = AT^{-b}$.
- $b = 0.9 1.2$ for $T < 250$ MeV from continuum extrapolated results with HISQ.

[P. Petreczky, H-P Schadler, SS, 1606.03145]. Agrees well with an independent study [Bonati et. al, 1512.06746] and with results with chiral fermions 1602.02197.

Dilute gas prediction: $b=2 11M$ $2N_c$

$$
0=2-\frac{11N_c}{12}-\frac{2N_f}{12}.
$$

More Diagnostics!

Since θ is tiny, $F(\theta) = \frac{1}{2}\chi_t \theta^2 (1 + b_2 \theta^2 + ...)$.

[L. D. Debbio, H. Panagopoulos, E. Vicari, 0407068]

• Strong non-Gaussianity in higher order expansions. Hints about existence of

More Diagnostics!

Since θ is tiny, $F(\theta) = \frac{1}{2}\chi_t \theta^2 (1 + b_2 \theta^2 + ...)$.

[L. D. Debbio, H. Panagopoulos, E. Vicari, 0407068]

• Strong non-Gaussianity in higher order expansions. Hints about existence of instanton-dyons? Hints observed in lattice studies

[M. Ilgenfritz, M-Mueller Pruessker, et. al. 14, 15].

More Diagnostics!

Since θ is tiny, $F(\theta) = \frac{1}{2}\chi_t \theta^2 (1 + b_2 \theta^2 + ...)$.

[L. D. Debbio, H. Panagopoulos, E. Vicari, 0407068]

• Strong non-Gaussianity in higher order expansions. Hints about existence of instanton-dyons? Hints observed in lattice studies

[M. Ilgenfritz, M-Mueller Pruessker, et. al. 14, 15].

Evident also from the T-dependence of χ_t [P. Petreczky, H-P Schadler, SS, 1606.03145]. New lattice techniques are being discussed to explore them.

[R. Larsen, E. Shuryak, 1703.02434].

Near-zero modes at ∼ 200 MeV

Near-zero modes of QCD Dirac operator at 1.5 T_c due to a weakly interacting instanton-antiinstanton pair!

同

 QQ

Zero modes at 1.1 T_c

- We use twisted b.c. for the overlap on the thermal Domain wall fermion ensembles \rightarrow detects the different instanton-dyons.
- The shape of the zero mode strongly depends on the separation between the instanton-dyons [R. Larsen, SS,Shuryak, in prep., More in Lattice 2018].

Zero modes at 1.1 T_c

- We use twisted b.c. for the overlap on the thermal Domain wall fermion ensembles \rightarrow detects the different instanton-dyons.
- The shape of the zero mode strongly depends on the separation between the instanton-dyons [R. Larsen, SS,Shuryak, in prep., More in Lattice 2018].

K ロ ▶ K 何 ▶ K 手

 QQ

Outline

The $U_A(1)$ [puzzle in QCD](#page-2-0)

[Our results](#page-20-0)

[Topological structures and](#page-35-0) $U_A(1)$ breaking

4 [Summary and outlook](#page-45-0)

メロメ メ御 メメ きょうぼきょう

 QQ

G

On large volume lattice we found that $U_A(1)$ broken upto $T \leq 1.5T_c$.

- Infrared eigenvalues contribute dominantly to its breaking.
- Consists of near-zero+tail of the bulk modes. The latter quite robust
-
-

イロメ イ何メ イヨメ イヨメー

- On large volume lattice we found that $U_A(1)$ broken upto $T \leq 1.5 T_c$.
- Infrared eigenvalues contribute dominantly to its breaking. \bullet
- Consists of near-zero+tail of the bulk modes. The latter quite robust
- Near-zero modes require a careful study.
-

イロメ イ何メ イヨメ イヨメー

- On large volume lattice we found that $U_A(1)$ broken upto $T \leq 1.5T_c$.
- **Infrared eigenvalues contribute dominantly to its breaking.**
- Consists of near-zero+tail of the bulk modes. The latter quite robust insensitive to lattice cut-off effects.
- Near-zero modes require a careful study.
-

イロト イ押 トイヨ トイヨ トー

- On large volume lattice we found that $U_A(1)$ broken upto $T \leq 1.5 T_c$.
- **Infrared eigenvalues contribute dominantly to its breaking.**
- Consists of near-zero+tail of the bulk modes. The latter quite robust insensitive to lattice cut-off effects.
- Near-zero modes require a careful study.
- One needs to go towards the chiral regime to make a final conclusive

イロト イ押 トイヨ トイヨ トー

- ● On large volume lattice we found that $U_A(1)$ broken upto $T \leq 1.5 T_c$.
- **Infrared eigenvalues contribute dominantly to its breaking.**
- Consists of near-zero+tail of the bulk modes. The latter quite robust insensitive to lattice cut-off effects.
- Near-zero modes require a careful study.
- One needs to go towards the chiral regime to make a final conclusive statement on the Columbia plot.

イロメ イ何 ト イヨ ト イヨ トー