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Magnetic Scenario of QCD

Dual Superconductivity Model of the QCD Vacuum
Nambu (1974), Mandelstam (1976), ‘t Hooft (1981)

• Electric quasiparticles (quarks and gluons) and magnetic
quasiparticles (monopoles, etc.)

• Confinement is due to the Bose-Einstein condensation (BEC)
of magnetic quasiparticles

• Lattice studies have identified electric flux-tubes, monopole
currents, and gauge-invariant magnetic field correlated with
monopoles
Koma, et al. (2003), Bornyakov, et al. (2003), etc.
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Magnetic Scenario of QCD

• Condition for making Dirac strings invisible: eg
4π = integer

Dirac (1931)

• αs = e2/4π in QCD runs with T and µ

• αm = g2/4π runs oppositely

• Classical studies of electric-magnetic plasma have seen this
behavior of the coupling Liao and Shuryak (2007)
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Monopoles on the Lattice: SU(2)

D’Alessandro and D’Elia (2007)
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Monopoles on the Lattice

Density: ρm/T
3 ∼ log(T )−3 → Monopoles important near Tc

SU(2)

D’Alessandro and D’Elia (2007)
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Goals

• Classical monopoles → Quantum monopoles (BEC)

• Reproduce behavior of lattice monopoles without other degrees
of freedom

• Identify thermodynamic contribution of monopoles to QCD
around Tc

• Quantify BEC critical temperature behavior of one- and
two-component quantum Coulomb systems
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Path-Integral Monte Carlo

• Density matrix at finite temperature from path integrals:
Feynman (1953), Matsubara (1951)

ρ(xi, xj , β) =

∫ β

0
Dx(τ) exp{−SE [x(τ)]}

• Partition function: Z = Tr[ρ] → periodic paths

• Discretize paths and sample configurations using Markov
chain Monte Carlo (MCMC)

• The configuration weight is given by the Euclidean action,

π({~x}) = e−SE({~x})

• Sample the partition function → thermodynamics

Adith Ramamurti (Stony Brook) Gauge Topology 3 Workshop
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Path-Integral Monte Carlo

• The imaginary-time paths of bosons can be permuted
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Finding Tc: Permutation Cycles

• Measure nk(T ), the probability of finding a particle in a
k-permutation cycle as a function of temperature

• Densities of k-cycles go as

ρk(T ) ≡ nk(T )/k = exp(−µ̂(T )k)× f(k) ,

where f(k) is some decreasing function ∼ 1/kα

• Critical temperature is where permutation cycles are no longer
exponentially suppressed, i.e. µ̂(T ) = 0

D’Alessandro, D’Elia, and Shuryak (2010)
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Finding Tc: Superfluid Fraction

• The superfluid fraction of a condensate is related to the
spatial winding number distribution

ρs
ρ

=
〈W 2〉
2λβN

• Thermodynamic limit → expect the superfluid fraction to go
from 0 (above Tc) to 1 (below Tc)

• Study finite-size scaling of this quantity → determine critical
point by the intersection of the superfluid fraction lines

Pollock and Ceperley (1987)
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Finding Tc: Examples
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Study of Quantum Coulomb Systems

• Find the dependence of Tc on α, the coupling, with
interaction potential

Vint(rij) = α
qiqj
rij

• Critical temperature of an ideal Bose gas

T0 =

(
2π~
mkb

)(
n

ζ
(
3
2

))2/3

• |q| = m = n = 1→ scale is fixed by the temperature T

• Ideal gas BEC temperature in these units T0 = 3.3125
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One-Component Coulomb Bose Gas: Tc
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Two-Component Coulomb Bose Gas: Tc
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Matching Radial Distribution Functions
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Fixing Parameters

• Scaling relation for α, the simulation coupling, to match
lattice results:

α(T/Tc) ≈ Tc × ρ1/3(T/Tc)

• ρm(T ) is the monopole density (in fm−3)

• One unit of length in our simulations is ρ−1/3(T ) (in fm)

• Tc ≈ 3.45 in our units of temperature

Adith Ramamurti (Stony Brook) Gauge Topology 3 Workshop
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Equation of State

• Studies on the lattice found a large entropy density and trace
anomaly at 170-250 MeV

• May not all be from quarks and gluons → other contributions
to the thermodynamics of QCD-like theories at Tc (hadrons,
instantons, etc.)

• What portion of thermodynamics comes from monopoles?

Wuppertal-Budapest Collab. (2013)

HotQCD Collab. (2014)

etc.
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Equation of State
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Goals

• Monopoles are related to instanton-dyons, which are known to
play a role in chiral symmetry breaking
(see E. Shuryak’s earlier talk)

• Analytic solution for QCD monopole unknown → use a model
for which we have analytic solutions to study role in chiral
symmetry breaking

• Find the Dirac eigenvalue spectrum from fermionic zero
modes of BPS monopoles in the Georgi-Glashow model as a
proof of concept

Adith Ramamurti (Stony Brook) Gauge Topology 3 Workshop
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Georgi-Glashow Model with Fermions

• Lagrangian of the Georgi-Glashow model

L = −1

4
Fµνa Faµν +

1

2
(Dµφ)a(D

µφ)a −
1

4
λ(φaφa − v2)

Fµνa = ∂µAνa − ∂νAµa + gεabcA
µ
bA

ν
c

(Dµφ)a = ∂µφa + gεabcA
µ
b φc

• Fermion part of the Lagrangian

LF = iψ̄nγ
µ(Dµψ)n −Ggψ̄nτanmψmφa

with G a constant, τa = σa/2, and

(Dµψ)n = ∂µψn − igτanmAµaψm

Adith Ramamurti (Stony Brook) Gauge Topology 3 Workshop
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Monopole Solution/Ansatz

The ’t Hooft-Polyakov monopole solution has the form

A0
a = 0 ,

Aia = εaij r̂j
A(r)

g

φa = r̂a
φ(r)

g

Adith Ramamurti (Stony Brook) Gauge Topology 3 Workshop
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Monopole Solution/Ansatz

The equations of motion from the pure-gauge Lagrangian are

0 =
2

r2
d

dr

(
r2

dA

dr

)
− 2

r

dA

dr
+

2

r2
d

dr
(rA)

− 6

r2
A− 6g

r
A2 − 2g2A3 − φ

(
2g

r
+ 2g2A

)

0 =
1

r2
d

dr

(
r2

dφ

dr

)
− 2

r2
φ− 4g

r
Aφ

− 2g2A2φ− 2U ′(|φ|2)φ
with boundary conditions(

r2
dA

dr
+ 2rA

) ∣∣∣∣∣
r=0

= 0

(
r2

dφ

dr

) ∣∣∣∣∣
r=0

= 0
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Zero Modes of Monopoles

• Dirac equation for the fermion field[
− i~α · ~∂δnm +

1

2
A(r)σanm(~α× ~̂r)a

+
Gφ(r)

2
σanmr̂aβ

]
ψm = Eψn

n,m = 1, 2 are the isospin indices, σa are the Pauli matrices,

αi =

(
0 σi
σi 0

)
, β = −i

(
0 1

−1 0

)
Jackiw and Rebbi (1976)

Adith Ramamurti (Stony Brook) Gauge Topology 3 Workshop
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Zero Modes of Monopoles

• Wavefunctions decomposed into upper and lower components

ψ =

(
ψ+

ψ−

)
• Using the ’t Hooft - Polyakov anzatz and the resulting

equations of motion, the zero-energy solutions are

ψ−lm = 0 ,

ψ+
lm =N exp

(∫ r

0
dr′
[
A(r′)− 1

2
Gφ(r′)

])
× (s+l s

−
m − s−l s+m)

Jackiw and Rebbi (1976)
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Quark Hopping Matrix and Chiral Symmetry Breaking

• Chiral “hopping matrix”

T =

(
0 iTij
iTji 0

)
Schäfer and Shuryak (1998)

• Tijs defined as the matrix element

Tij ≡ 〈i| − i /D |j〉

• Density of zero eigenvalues is proportional to the magnitude
of the chiral condensate
Banks and Casher (1980)

Adith Ramamurti (Stony Brook) Gauge Topology 3 Workshop
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Evaluating Tij

• Using the Dirac operator and the zero modes, we can evaluate
the matrix elements

Tij = 〈ψi|x〉 〈x| − i /D |y〉 〈y|ψj〉

=

∫
d3xψ†kn(x− xi)(−i /D)ψlm(x− xj)

=

∫ ∑
m

d3xψ†km(x− xi)[−i~α · ~∂]klψlm(x− xj)

• The operator is block off-diagonal, so the equation can be
separated into two

Tij =

∫
d3xξ†(x− xi)[−i~σ · ~∂]ψ(x− xj)

Tji =

∫
d3xψ†(x− xi)[−i~σ · ~∂]ξ(x− xj)

Adith Ramamurti (Stony Brook) Gauge Topology 3 Workshop
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Evaluating Tij

• Contracting indices,

Tij = 2i

∫
d3~xξ̃(~x− ~xi)∂xψ̃(~x− ~xj)

Tji = 2i

∫
d3~xψ̃(~x− ~xi)∂xξ̃(~x− ~xj)

where ψ̃ and ξ̃ are the radial part of the wavefunctions

Adith Ramamurti (Stony Brook) Gauge Topology 3 Workshop
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BPS Monopoles

• The only analytic monopole solution is the
Bogomolnyi-Sommerfeld-Prasad (BPS) solution for λ = 0 in
the Lagrangian

A0
a = 0

Aia = εaij
rj
gr2

(1−K(ζ))

φa =
ra
gr2

H(ζ)

where
H(ζ) = ζ coth(ζ)− 1

K(ζ) =
ζ

sinh(ζ)

ζ = gvr

Adith Ramamurti (Stony Brook) Gauge Topology 3 Workshop
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BPS Monopoles and the Hopping Matrix

• The monopole zero mode, up to normalization,

ψ̃ =
1

2
(gvr)

G
2
+1 coth

(gvr
2

)
sinh−

G
2 (gvr)

• The hopping matrix element equation for
monopole-to-antimonopole:

Tij(r0) =2i

∫
d3~xξ̃(|r − r0|)∂xψ̃(r)

=2iN2

∫
d3~x

(
− x

8r2

)
(gv)G+2r

G+2
2 |r − r0|

G+2
2

× coth

(
1

2
gvr

)
sinh−

G
2
−1 (gvr)

× coth

(
1

2
gv|r − r0|

)
sinh−

G
2 (gv|r − r0|)

× (−(G+ 2) sinh (gvr) + gGvr cosh (gvr) + 2gvr)

Adith Ramamurti (Stony Brook) Gauge Topology 3 Workshop
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Finding the Dirac Eigenvalues

1 Take monopole mass from D’Alessandro, D’Elia and Shuryak (2010)

to numerically evaluate Tij for temperature T

2 Evaluate the evolution operator U , defined as time-ordered
integral of the hopping matrix over the Matsubara circle, for
configurations of monopoles from path-integral study at
temperature T

3 Apply appropriate boundary conditions

U =

∮
β
dτeiHτ = −1

to find the Dirac eigenvalues

ωi,n =

(
n+

1

2

)
2π

β
− λi

where λis are the eigenvalues of the hopping matrix T

Adith Ramamurti (Stony Brook) Gauge Topology 3 Workshop
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Evaluation of Im(Tij(r0)) for r0 in the xy plane for different
temperatures.
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Dirac Eigenvalue Spectra

−6 −4 −2 0 2 4 6
ω

0.00

0.05

0.10

0.15

0.20

0.25

ρ
(ω

)
T = 1Tc

(a) T = 1Tc

−6 −4 −2 0 2 4 6
ω

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ρ
(ω

)

T = 1.05Tc

(b) T = 1.05Tc

−6 −4 −2 0 2 4 6
ω

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ρ
(ω

)

T = 1.1Tc

(c) T = 1.1Tc

−6 −4 −2 0 2 4 6
ω

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

ρ
(ω

)

T = 1.2Tc

(d) T = 1.2Tc

Adith Ramamurti (Stony Brook) Gauge Topology 3 Workshop



Motivation Effective Model of Monopoles Chiral Symmetry Breaking Jet Quenching Summary

Critical Scaling of Eigenvalue Gap
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〈ω

m
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πT
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− T c

)
ν

ν = 0.60, roughly consistent with Ising model
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Preliminaries: Jet Observables

We focus on two observables of heavy-ion collisions:

• The nuclear modification factor

RAA(p⊥) =
dNAA/dp⊥

〈Ncoll〉dNpp/dp⊥

• The azimuthal anisotropy, v2, from

dN

dp⊥dφ
=

1

2π

dN

dp⊥

(
1 + 2

∑
n

vn cos(n(φ−Ψn))

)
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RAA ⊕ v2 “puzzle”

• First RHIC data on the nuclear modification factor and
azimuthal anisotropy in early/mid 2000s

• Jet quenching models of the time under-predicted azimuthal
anisotropy by approximately a factor of 2

• Improvements on jet quenching models to try to fix this
discrepancy

• Coupling of jets to flow Betz, Gyulassy (2014)

• Event-by-event fluctuations Noronha-Hostler, Betz, Noronha, Gyulassy (2016)

• Non-perturbative effects Liao, Shuryak (2008), Xu, Liao, Gyulassy (2015, 2016)

• ...
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RAA ⊕ v2 “puzzle”

Shuryak (2007), Liao and Shuryak (2008)

Near Tc enhancement of jet quenching could explain large v2
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Goals

Introduce monopoles into the BDMPS jet quenching framework
→ jet observables

• Study the effects of different monopole density
parameterizations

• Study the effects of different background evolutions

• Study the energy dependence of jet quenching
parameters/observables
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BDMPS Jet Energy Loss

Baier, Dokshitzer, Mueller, Peigne, Schiff (1997, 1998)

• Energy loss:

−dE
dz
∝ q̂z

q̂(z) ≈ ρ(z)

∫ 1/b2

0
d2~q⊥~q

2
⊥

dσ

d~q2⊥
(~q2⊥, z) ,

where ρ(z) is the density of scatterers.

• Screened Coulomb scattering centers:

V (q2⊥) =
1

σ

dσ

d2~q⊥
(~q⊥) =

µ2

π(q2⊥ + µ2(z))2
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Cross Sections

Generic form of dσ/dq2⊥ is

dσ

dq2⊥
=

C

(q2⊥ + µ2)2
.

dσqq
dq2⊥

=
(4/3)2πα2

s(q
2
⊥)

(q2⊥ + µ2E)2

dσqg
dq2⊥

=
4πα2

s(q
2
⊥)

(q2⊥ + µ2E)2

dσgg
dq2⊥

=
9πα2

s(q
2)

(q2 + µ2E)2

dσqm
dq2⊥

=
(4/3)π

(q2⊥ + µ2M )2

dσgm
dq2⊥

=
3π

(q2⊥ + µ2M )2
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Screening Masses
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Adith Ramamurti (Stony Brook) Gauge Topology 3 Workshop



Motivation Effective Model of Monopoles Chiral Symmetry Breaking Jet Quenching Summary

Monopole Density

• Two forms of monopole density

• Direct lattice measurement: Bonati, D’Elia (2013)

ρm
T 3

=
3.66

log((1/0.163)T/Tc)
3

• Polyakov line with EoS: Xu, Liao, Gyulassy (2015)

ρE(T ) ∝ cqL(T ) + cgL
2(T )

ρM (T ) ∝ 1− ρE(T )
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Monopole Density

• Two forms of monopole density
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Background Medium

• Focus on 20-30% centrality AA collisions

• Different expanding-medium backgrounds:

• Glauber-like smooth initial conditions with Bjorken (1+1)D
expansion

• Glauber-like smooth initial conditions with (2+1)D expansion
with and without bulk viscosity

• IP-Glasma initial conditions with (2+1)D expansion with and
without bulk viscosity
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Background Medium

Example of the hydrodynamic evolution
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Numerical Simulation

1 Jets created at τ = 0 in the medium with probability
proportional to energy density

2 Randomly oriented in azimuthal angle φ

3 Initial energy is sampled from power law spectra for quarks
and gluons

4 Jet parton then traverses the (evolving) medium and loses
energy

5 Fragmentation into pions / charged hadrons
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Numerical Simulation

Energy loss given by

−dE = zdz
αsNc

12
q̂(z, E)

= zdz
αsNcπCp

12

(
ρq(z)

∫ q2max

0
dq2

(4/3)α2
s(q

2)

(q2 + µ2E(z))2

+ρg(z)

∫ q2max

0
dq2

3α2
s(q

2)

(q2 + µ2E(z))2

+ρm(z)Ccorr

∫ q2max

0
dq2

1

(q2 + µ2M (z))2

)
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Nuclear Modification Factor RAA
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Azimuthal Anisotropy v2
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Predictions for the Beam Energy Scan

62.4 GeV Au-Au collisions, optical Glauber initial conditions
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Summary I

• Found parameters of a two-component Coulomb quantum
Bose gas that give an effective model of QCD monopoles

• Identified the contribution of monopoles to QCD equation of
state

• Found the effect of coupling on the critical temperature of
Coulomb quantum Bose gases
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Summary II

• Evaluated Dirac eigenvalue spectra for configurations of BPS
monopoles in the Georgi-Glashow model

• Non-zero eigenvalue density appears for configurations at Tc

• The critical scaling of the eigenvalue gap is consistent with
the Ising model
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Summary III

• BDMPS framework with monopoles can reproduce correct
trends for experimental observables

• Needs realistic hydrodynamic background, but event-by-event
fluctuations not necessary

• Lower energy collisions should see similar v2 and RAA to
higher energy collisions → monopole dominated

• Can be probed in Beam Energy Scan
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