Topological Charge in Lattice QCD and the Chiral Condensate

Andreas Athenodorou
The Cyprus Institute
\qquad
May 31, 2018
Gauge Topology 3, ECT*
Trento, Italy

ECT*

Topological Charge in Lattice QCD and the Chiral Condensate

- Based on the articles:
- Topological susceptibility from twisted mass fermions using spectral projectors and the gradient flow, [arXiv:1709.06596].
- Comparison of topological charge definitions in Lattice QCD, [arXiv:1708.00696].
- Topological charge using cooling and the gradient flow, [arXiv:1509.04259].
- Gluon Green functions free of Quantum fluctuation, [arXiv:1604.08887].
- Neutron electric dipole moment using $N_{f}=2+1+1$ twisted mass fermions, [arXiv:1510.05823].
- Work in progress with P. Boucaud, F. De Soto, J. Rodríguez-Quinterio and S. Zafeiropoulos

In collaboration with :

- Constantia Alexandrou (University of Cyprus, The Cyprus Institute)
- Philippe Boucaud (CNRS, Orsay)
- Krzysztof Cichy (Goethe-Universität Frankfurt am Main, Adam Mickiewicz University)
- Martha Constantinou (Temple University)
- Feliciano De Soto (University Pablo de Olavide)
- Arthur Dromard (Regensburg University)
- Derek P. Horkel (Temple University)
- Karl Jansen (NIC, DESY Zeuthen)
- Giannis Koutsou (The Cyprus Institute)
- José Rodríguez-Quinterio (Universidad de Huelva)
- Urs Wenger (University of Bern)
- Falk Zimmermann (Universität Bonn)
- Savvas Zafeiropoulos (University of Heidelberg)

Overview of Topics

- Why Studying Topological Charge
\longrightarrow The Neutron Electric Dipole Moment "depends" on the Topological Charge
\rightarrow Instanton dependence of $\alpha_{\mathrm{MOM}}(k)$ (Feliciano's presentation)
\longrightarrow Interested in the QCD Vaccuum
- There is not only one unique way of extracting the topological charge (corrections of $\mathcal{O}(a)$)
- Each different method on the Lattice is accompanied with pros and cons
- To better understand the different methods:
\rightarrow Comparison of Topological charge definitions which belong to the two categories
(g) Gluonic
(f) Fermionic
\longrightarrow Comparison of Topological Susceptibility: gluonic Vs. fermionic
$\longrightarrow \quad$ Pion mass dependence of the Top. Susceptibility provides The Chiral Condensate
$\longrightarrow \quad$ What we learn? - Is there Universality?

Investigation

- Several definitions of the topological charge:
(f) fermionic (Index, Spectral flow, Spectral Projectors).
(g) gluonic with UV fluctuations removed via smoothing (gradient flow, cooling, smearing,...).
? How are these definitions numerically related?
- Gradient Flow is a well defined smoothing scheme with good renormalizability properties. M. Lüscher [arXiv:1006.4518]
! Gradient Flow is numerically equivalent to cooling!
C. Bonati and M. D'Elia [arXiv:1401.2441] and C. Alexandrou, AA and K. Jansen, [arXiv:1509.0425]
? Can this be applied to other smoothing schemes?
C. Alexandrou, el al, [arXiv:1708.00696]
- Comparison of different definitions presented by Krzysztof Cichy et. al...
K. Cichy et. al, [arXiv:1411.1205]
! Most definitions are highly correlated.
! The topological susceptibilities are in the same region.
$\rightarrow \quad$ Not meaningfull comparison.

Gluonic Definition of the Topological Charge

(g) Topological charge can be defined as:

$$
\mathcal{Q}=\int d^{4} x q(x), \quad \text { with } \quad q(x)=\frac{1}{32 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} \operatorname{Tr}\left\{F_{\mu \nu} F_{\rho \sigma}\right\}
$$

(g) Discretizations of $q(x)$ on the lattice:

- Plaquette (leading correction term of $\mathcal{O}\left(a^{2}\right)$)

$$
q_{L}^{\mathrm{plaq}}(x)=\frac{1}{32 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} \operatorname{Tr}\left(C_{\mu \nu}^{\mathrm{plaq}} C_{\rho \sigma}^{\mathrm{plaq}}\right), \quad \text { with } \quad C_{\mu \nu}^{\mathrm{plaq}}(x)=\operatorname{Im}(\square) .
$$

- Clover (leading correction term of $\mathcal{O}\left(a^{2}\right)$)

$$
q_{L}^{\text {clov }}(x)=\frac{1}{32 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} \operatorname{Tr}\left(C_{\mu \nu}^{\text {clov }} C_{\rho \sigma}^{\text {clov }}\right), \quad \text { with } \quad C_{\mu \nu}^{\text {clov }}(x)=\frac{1}{4} \operatorname{Im}(\square)
$$

- Improved (leading correction term of $\mathcal{O}\left(a^{4}\right)$)

$$
q_{L}^{\mathrm{imp}}(x)=b_{0} q_{L}^{\mathrm{clov}}(x)+b_{1} 2 q_{L}^{\mathrm{rect}}(x), \quad \text { with } \quad C_{\mu \nu}^{\mathrm{rect}}(x)=\frac{1}{8} \operatorname{Im}(\square+\square)
$$

Gluonic Definition of the Topological Charge

(g) Topological charge can be defined as:

$$
\mathcal{Q}=\int d^{4} x q(x), \quad \text { with } \quad q(x)=\frac{1}{32 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} \operatorname{Tr}\left\{F_{\mu \nu} F_{\rho \sigma}\right\}
$$

(g) Discretizations of $q(x)$ on the lattice:

- Plaquette (leading correction term of $\mathcal{O}\left(a^{2}\right)$)

$$
q_{L}^{\mathrm{plaq}}(x)=\frac{1}{32 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} \operatorname{Tr}\left(C_{\mu \nu}^{\mathrm{plaq}} C_{\rho \sigma}^{\mathrm{plaq}}\right), \quad \text { with } \quad C_{\mu \nu}^{\mathrm{plaq}}(x)=\operatorname{Im}(, .)
$$

- Clover (leading correction term of $\mathcal{O}\left(a^{2}\right)$)

$$
q_{L}^{\text {clov }}(x)=\frac{1}{32 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} \operatorname{Tr}\left(C_{\mu \nu}^{\text {clov }} C_{\rho \sigma}^{\text {clov }}\right), \quad \text { with } \quad C_{\mu \nu}^{\text {clov }}(x)=\frac{1}{4} \operatorname{Im}(\square)
$$

- Improved (leading correction term of $\mathcal{O}\left(a^{4}\right)$)

$$
q_{L}^{\mathrm{imp}}(x)=b_{0} q_{L}^{\mathrm{clov}}(x)+b_{1} 2 q_{L}^{\mathrm{rect}}(x), \quad \text { with } \quad C_{\mu \nu}^{\mathrm{rect}}(x)=\frac{1}{8} \operatorname{Im}(\square+\square)
$$

Smoothing \rightarrow Remove the ultraviolet fluctuations

Smoothing Schemes for Gluonic Topological Charge

(g) The Gradient Flow
M. Lüscher, JHEP 1008 (2010) 071
(g) Cooling.
M. Teper, Phys. Lett. B 162 (1985) 357.APE smearing.
M. Albanese et al. [APE Coll.], Phys. Lett. B 192 (1987) 163.
(g) Stout smearing.
C. Morningstar and M. J. Peardon, Phys. Rev. D69 (2004) 05450
(g) HYP smearing.
A. Hasenfratz and F. Knechtli, Phys. Rev. D64 (2001) 034504
(g) Several other modified versions of smearing.

Smoothing Schemes for Gluonic Topological Charge

(g) The Gradient Flow
M. Lüscher, JHEP 1008 (2010) 071
(g) Cooling.
M. Teper, Phys. Lett. B 162 (1985) 357.
(g) APE smearing.
M. Albanese et al. [APE Coll.], Phys. Lett. B 192 (1987) 163.
(g) Stout smearing.
C. Morningstar and M. J. Peardon, Phys. Rev. D69 (2004) 054501
(g) HYP smearing.
A. Hasenfratz and F. Knechtli, Phys. Rev. D64 (2001) 034504
(g) Several other modified versions of smearing.

The Flagship smoother: The Gradient Flow

- Defined by a local diffusion equation that evolves the Gauge field as a function of the flow time
- Gauge field generated by the gradient flow does not require renormalization
- Solution of the evolution equations:

$$
\begin{aligned}
\dot{V}_{\mu}(x, \tau) & =-g_{0}^{2}\left[\partial_{x, \mu} S_{G}(V(\tau))\right] V_{\mu}(x, \tau) \\
V_{\mu}(x, 0) & =U_{\mu}(x)
\end{aligned}
$$

- With link derivative defined as:

$$
\partial_{x, \mu} S_{G}(U)=\left.i \sum_{a} T^{a} \frac{\mathrm{~d}}{\mathrm{~d} s} S_{G}\left(e^{i s Y^{a}} U\right)\right|_{s=0} \equiv i \sum_{a} T^{a} \partial_{x, \mu}^{(a)} S_{G}(U)
$$

- The flown fields are given by:

$$
B_{\mu}(\tau, x)=\int d^{4} y \frac{e^{-\frac{(x-y)^{2}}{4 \tau}}}{(4 \pi \tau)^{2}} A_{\mu}(x) \quad \text { smoothing radius }: \sqrt{8 \tau}
$$

- Iterative process for gradient flow time τ
- One can define a reference flow time t_{0} such that

$$
\left.t^{2}\langle E(t)\rangle\right|_{t=t_{0}}=0.3
$$

with $t=a^{2} \tau$ and

$$
E(t)=-\frac{1}{2 V} \sum_{x} \operatorname{Tr}\left\{F_{\mu \nu}(x, t) F_{\mu \nu}(x, t)\right\}
$$

The Flagship smoother: The Gradient Flow

- Gradient flow depends on the detais of the Smoothing Action $\left(c_{0}+8 c_{1}=1\right)$:

$$
S_{g}=\frac{\beta}{N} \sum_{x}\left(c_{0} \sum_{\substack{\mu, \nu=1 \\ 1 \leq \mu<\nu}}^{4}\left\{1-\operatorname{Re} \operatorname{Tr}\left(U_{x, \mu, \nu}^{1 \times 1}\right)\right\}+c_{1} \sum_{\substack{\mu, \nu=1 \\ \mu \neq \nu}}^{4}\left\{1-\operatorname{Re} \operatorname{Tr}\left(U_{x, \mu, \nu}^{1 \times 2}\right)\right\}\right),
$$

- Wilson: $c_{1}=0$,
- Symanzik tree-level improved: $c_{1}=-1 / 12$,
- Iwasaki: $c_{1}=-0.331$,
- Different Actions are expected to lead to different Instanton (with scale λ) behaviour

$$
S_{\mathrm{Lat}}(a, \lambda)=S_{\mathrm{cont}}\left\{1+(a / \lambda)^{2} a_{2}+(a / \lambda)^{4} a_{4}+\mathcal{O}(a / \lambda)^{6}\right\}
$$

- Wilson: $a_{2}=-1 / 5$
- Symanzik tree-level improved: $a_{2}=0, a_{4}=-17 / 210$
- Iwasaki: $a_{2}=+2.972 / 5$
- Stable instanton solutions require a lattice action which increases by decreasing the scale parameter λ
- Only for Iwasaki we expect stable solutions
- However, the most-frequently used action for smoothing is the Wilson

The Flagship smoother: The Gradient Flow

- Gradient Flow provides a concrete theoretical framework for smoothing
- The evolution of the fields is processing in gradient flow time steps ϵ (typically $\epsilon \leq 0.1$)
- This means that it requires many iterations to reach a given gradient flow time ($\left.\tau=n_{\text {int }} \epsilon\right)$
- Other "theoretically weaker" smoothing techniques
- provide similar results?
- how fast are they?

The Wilson flow Vs. Cooling

Gradient Flow

- Solution of the evolution equations:

$$
\begin{aligned}
\dot{V}_{\mu}(x, \tau) & =-g_{0}^{2}\left[\partial_{x, \mu} S_{G}(V(\tau))\right] V_{\mu}(x, \tau) \\
V_{\mu}(x, 0) & =U_{\mu}(x)
\end{aligned}
$$

- With link derivative defined as:

$$
\begin{aligned}
\partial_{x, \mu} S_{G}(U) & =\left.i \sum_{a} T^{a} \frac{\mathrm{~d}}{\mathrm{~d} s} S_{G}\left(e^{i s Y^{a}} U\right)\right|_{s=0} \\
& \equiv i \sum_{a} T^{a} \partial_{x, \mu}^{(a)} S_{G}(U)
\end{aligned}
$$

- Total gradient flow time: τ

Cooling

- Cooling $U_{\mu}(x) \in S U(N): U_{\mu}^{\text {old }}(x) \rightarrow U_{\mu}^{\text {new }}(x)$ with

$$
P(U) \propto e^{\left(\lim _{\beta \rightarrow \infty} \beta \frac{1}{N} \operatorname{Re} \operatorname{Tr} X_{\mu}^{\dagger} U_{\mu}\right)}
$$

- Choose a $U_{\mu}^{\text {new }}(x)$ that maximizes:

$$
\operatorname{Re} \operatorname{Tr}\left\{U_{\mu}^{\text {new }}(x) X_{\mu}^{\dagger}(x)\right\}
$$

- One full cooling iteration $n_{c}=1$

Perturbative expansion of links

- A link variable which has been smoothed can been written as:

$$
U_{\mu}\left(x, j_{\mathrm{sm}}\right) \simeq \mathbb{1}+i \sum_{a} u_{\mu}^{a}\left(x, j_{\mathrm{sm}}\right) T^{a}
$$

- Simple staples are written as:

per space-time slice, thus:

$$
X_{\mu}\left(x, j_{\mathrm{sm}}\right) \simeq 6 \cdot \mathbb{1}+i \sum_{a} w_{\mu}^{a}\left(x, j_{\mathrm{sm}}\right) T^{a}
$$

- For the Wilson flow with $\Omega_{\mu}(x)=U_{\mu}(x) X_{\mu}^{\dagger}(x)$

$$
g_{0}^{2} \partial_{x, \mu} S_{G}(U)(x)=\frac{1}{2}\left(\Omega_{\mu}(x)-\Omega_{\mu}^{\dagger}(x)\right)-\frac{1}{6} \operatorname{Tr}\left(\Omega_{\mu}(x)-\Omega_{\mu}^{\dagger}(x)\right)
$$

where

$$
g_{0}^{2} \partial_{x, \mu} S_{G}(U) \simeq i \sum_{a}\left[6 u_{\mu}^{a}(x, \tau)-w_{\mu}^{a}(x, \tau)\right] T^{a}
$$

Wilson flow Vs. Cooling

- Evolution of the Wilson flow by an infinitesimally small flow time ϵ :

$$
u_{\mu}^{a}(x, \tau+\epsilon) \simeq u_{\mu}^{a}(x, \tau)-\epsilon\left[6 u_{\mu}^{a}(x, \tau)-w_{\mu}^{a}(x, \tau)\right]
$$

where $U_{\mu}(x, \tau+\epsilon) \simeq \mathbb{1}+i \sum_{a} u_{\mu}^{a}(x, \tau+\epsilon) T^{a}$

- After a cooling step:

$$
u_{\mu}^{a}\left(x, n_{c}+1\right) \simeq \frac{w_{\mu}^{a}\left(x, n_{c}\right)}{6}
$$

- Wilson flow would evolve the same as cooling if $\epsilon=1 / 6$.
+ Cooling has an additional speed up of two.
! As we saw before, cooling has the same effect as the Wilson flow if:

$$
\tau \simeq \frac{n_{c}}{3}
$$

C. Bonati and M. D'Elia, Phys. Rev. D89 (2014), 105005 [arXiv:1401.2441]

- We generalized of this result for smoothing actions with rectangular terms $\left(b_{1}\right)$:

$$
\tau \simeq \frac{n_{c}}{3-15 b_{1}}
$$

C. Alexandrou, AA and K. Jansen, Phys. Rev. D92 (2015), 125014 [arXiv:1509.0425]

- What happens for other smoothing schemes??

Gradient flow Vs. Cooling

Test the matching conditions for

- $\quad N_{f}=2$ twisted mass fermions
- Produced with the Iwasaki Gluonic Action
- Lattice spacing $a \simeq 0.085 \mathrm{fm}\left(r_{0} / a=5.35(4)\right)$
- Pion Mass $m_{\pi} \simeq 340 \mathrm{MeV}$
- Lattice size $L / a=16$
- $\quad N_{f}=2+1+1$ twisted mass fermions,
- Produced with the Iwasaki Gluonic Action
- Lattice spacing $a=0.0823(10) \mathrm{fm}\left(r_{0} / a=5.710(41)\right)$
- Pion Mass $m_{\pi} \simeq 370 \mathrm{MeV}$
- Lattice size $L / a=32$
- $N_{f}=0$ Pure Gauge,
- Produced with the Symanzik tree-level improved
- Lattice spacing $a=0.285$ (10) fm
- Lattice size $L / a=32$

Gradient flow Vs. Cooling

Matching condition: $\tau \simeq \frac{n_{c}}{3}$.

Define function $\tau\left(n_{c}\right)$ such as τ and n_{c} change the action by the same amount.

Topological Charge: Wilson flow Vs. Cooling

- For smoothing actions with rectangular terms:

$$
\tau \simeq \frac{n_{c}}{3-15 b_{1}}
$$

Symanzik tree-level: $n_{c}=4.25 \tau$

Wilson flow Vs. APE

- According to the APE operation:

$$
U_{\mu}^{\left(n_{\mathrm{APE}}+1\right)}(x)=\operatorname{Proj}_{S U(3)}\left[\left(1-\alpha_{\mathrm{APE}}\right) U_{\mu}^{\left(n_{\mathrm{APE}}\right)}(x)+\frac{\alpha_{\mathrm{APE}}}{6} X_{\mu}^{\left(n_{\mathrm{APE}}\right)}(x)\right]
$$

- Evolution of the Wilson flow by an infinitesimally small flow time ϵ is expressed as:

$$
u_{\mu}^{a}(x, \tau+\epsilon) \simeq u_{\mu}^{a}(x, \tau)-\epsilon\left[6 u_{\mu}^{a}(x, \tau)-w_{\mu}^{a}(x, \tau)\right]
$$

- Evolution of the APE smearing with parameter $\alpha_{\text {APE }}$ is expressed as:

$$
u_{\mu}^{a}\left(x, n_{\mathrm{APE}}+1\right) \simeq u_{\mu}^{a}\left(x, n_{\mathrm{APE}}\right)-\frac{\alpha_{\mathrm{APE}}}{6}\left[6 u_{\mu}^{a}\left(x, n_{\mathrm{APE}}\right)-w_{\mu}^{a}\left(x, n_{\mathrm{APE}}\right)\right]
$$

- Hence, APE has the same effect as the Wilson flow if:

$$
\tau \simeq \frac{\alpha_{\mathrm{APE}}}{6} n_{\mathrm{APE}}
$$

Wilson flow Vs. APE

Matching condition: $\tau \simeq \frac{\alpha_{\mathrm{APE}}}{6} n_{\mathrm{APE}}$.

Define function $\tau\left(\alpha_{\mathrm{APE}}, n_{\mathrm{APE}}\right)$ such as τ and n_{APE} changes action by the same amount

Wilson flow Vs. stout

- According to the stout smearing operation:

$$
U_{\mu}^{\left(n_{\mathrm{st}}+1\right)}(x)=\exp \left(i Q_{\mu}^{n_{\mathrm{st}}}(x)\right) U_{\mu}^{\left(n_{\mathrm{st}}\right)}(x)
$$

with

$$
Q_{\mu}(x)=\frac{i}{2}\left(\Xi_{\mu}^{\dagger}(x)-\Xi_{\mu}(x)\right)-\frac{i}{6} \operatorname{Tr}\left(\Xi_{\mu}^{\dagger}(x)-\Xi_{\mu}(x)\right), \quad \text { with } \quad \Xi_{\mu}(x)=\rho_{\mathrm{st}} X_{\mu}(x) U_{\mu}^{\dagger}(x)
$$

- Evolution of the Wilson flow by an infinitesimally small flow time ϵ is expressed as:

$$
u_{\mu}^{a}(x, \tau+\epsilon) \simeq u_{\mu}^{a}(x, \tau)-\epsilon\left[6 u_{\mu}^{a}(x, \tau)-w_{\mu}^{a}(x, \tau)\right]
$$

- Evolution of the stout smearing with parameter $\rho_{\text {st }}$ is expressed as:

$$
u_{\mu}^{a}\left(x, n_{\mathrm{st}}+1\right) \simeq u_{\mu}^{a}\left(x, n_{\mathrm{st}}\right)-\rho_{\mathrm{st}}\left[6 u_{\mu}^{a}\left(x, n_{\mathrm{st}}\right)-w_{\mu}^{a}\left(x, n_{\mathrm{st}}\right)\right]
$$

- Hence, stout smearing has the same effect as the Wilson flow if

$$
\tau \simeq \rho_{\mathrm{st}} n_{\mathrm{st}}
$$

Wilson flow Vs. stout

Matching condition: $\tau \simeq \rho_{\mathrm{st}} n_{\mathrm{st}}$.

Define function $\tau\left(\rho_{\mathrm{st}}, n_{\mathrm{st}}\right)$ such as τ and n_{st} changes action by the same amount

Wilson flow Vs. HYP

- We considered HYP smearing with parameters:

$$
\alpha_{\mathrm{HYP} 1}=0.75, \quad \alpha_{\mathrm{HYP} 2}=0.6 \quad \alpha_{\mathrm{HYP} 3}=0.3
$$

- HYP staples not the same as $X_{\mu}(x)$ (A. Hasenfratz and F. Knechtli, Phys. Rev. D64 (2001) 034504).

- Define function $\tau_{\mathrm{HYP}}\left(n_{\mathrm{HYP}}\right)$ and fit using the ansatz:

$$
\tau_{\mathrm{HYP}}\left(n_{\mathrm{HYP}}\right)=A n_{\mathrm{HYP}}+B n_{\mathrm{HYP}}^{2}+C n_{\mathrm{HYP}}^{3}
$$

with $A=0.25447(32), B=-0.001312(90), C=1.217(91) \times 10^{-5}$

Wilson flow Vs. HYP

- We considered HYP smearing with parameters:

$$
\alpha_{\mathrm{HYP} 1}=0.75, \quad \alpha_{\mathrm{HYP} 2}=0.6 \quad \alpha_{\mathrm{HYP} 3}=0.3
$$

- HYP staples not the same as $X_{\mu}(x)$ (A. Hasenfratz and F. Knechtli, Phys. Rev. D64 (2001) 034504).

- Define function $\tau_{\text {HYP }}\left(n_{\text {HYP }}\right)$ and fit using the ansatz:

$$
\tau_{\mathrm{HYP}}\left(n_{\mathrm{HYP}}\right)=A n_{\mathrm{HYP}}+B n_{\mathrm{HYP}}^{2}+C n_{\mathrm{HYP}}^{3}
$$

with $A=0.25447(32), B=-0.001312(90), C=1.217(91) \times 10^{-5}$

- Hence, HYP smearing has the same effect as the Wilson flow if

$$
\tau \simeq \tau_{\mathrm{HYP}}\left(n_{\mathrm{HYP}}\right)
$$

Wilson flow Vs. HYP

Numerical matching condition: $\tau_{\mathrm{HYP}}\left(n_{\mathrm{HYP}}\right)=A n_{\mathrm{HYP}}+B n_{\mathrm{HYP}}^{2}+C n_{\mathrm{HYP}}^{3}$.

Define function $\tau\left(n_{\text {HYP }}\right)$ such as τ and $n_{\text {HYP }}$ changes action by the same amount

Topological Susceptibility - The Wilson flow

The Wilson flow time $t_{0} \simeq 2.5 a^{2}$

Topological Susceptibility - Cooling

The Wilson flow time $t_{0} \simeq 2.5 a^{2} \equiv n_{c}=7.5$ cooling steps

Topological Susceptibility - APE

The Wilson flow time $t_{0} \simeq 2.5 a^{2} \equiv n_{\mathrm{APE}}=37.5$ APE smearing steps for $\alpha_{\mathrm{APE}}=0.4$

Topological Susceptibility - APE

The Wilson flow time $t_{0} \simeq 2.5 a^{2} \equiv n_{\mathrm{APE}}=30$ APE smearing steps for $\alpha_{\mathrm{APE}}=0.5$

Topological Susceptibility - APE

The Wilson flow time $t_{0} \simeq 2.5 a^{2} \equiv n_{\mathrm{APE}}=25$ APE smearing steps for $\alpha_{\mathrm{APE}}=0.6$

Topological Susceptibility - stout

The Wilson flow time $t_{0} \simeq 2.5 a^{2} \equiv n_{\text {st }}=250$ stout smearing steps for $\rho_{\text {st }}=0.01$

Topological Susceptibility - stout

The Wilson flow time $t_{0} \simeq 2.5 a^{2} \equiv n_{\text {st }}=50$ stout smearing steps for $\rho_{\text {st }}=0.05$

Topological Susceptibility - stout

The Wilson flow time $t_{0} \simeq 2.5 a^{2} \equiv n_{\text {st }}=25$ stout smearing steps for $\rho_{\text {st }}=0.1$

Topological Susceptibility - HYP

The Wilson flow time $t_{0} \simeq 2.5 a^{2} \equiv n_{\text {st }}=10$ HYP smearing steps

Correlation between different smoothers

Let us have a look at the correlation coefficient

$$
c_{\mathcal{Q}_{1}, \mathcal{Q}_{2}}=\frac{\left\langle\left(\mathcal{Q}_{1}-\overline{\mathcal{Q}}_{1}\right)\left(\mathcal{Q}_{2}-\overline{\mathcal{Q}}_{2}\right)\right\rangle}{\sqrt{\left\langle\left(\mathcal{Q}_{1}-\overline{\mathcal{Q}}_{1}\right)^{2}\right\rangle\left\langle\left(\mathcal{Q}_{2}-\overline{\mathcal{Q}}_{2}\right)^{2}\right\rangle}}
$$

	WF, t_{0}	cool, t_{0}	APE, t_{0}	stout, t_{0}	HYP, t_{0}
WF, t_{0}	$1.00(0)$	$0.97(0)$	$1.00(0)$	$1.00(0)$	$0.97(0)$
cool, t_{0}	$0.97(0)$	$1.00(0)$	$0.97(0)$	$0.97(0)$	$0.94(0)$
APE, t_{0}	$1.00(0)$	$0.97(0)$	$1.00(0)$	$1.00(0)$	$0.97(0)$
stout, t_{0}	$1.00(0)$	$0.97(0)$	$1.00(0)$	$1.00(0)$	$0.97(0)$
HYP, t_{0}	$0.97(0)$	$0.94(0)$	$0.97(0)$	$0.97(0)$	$1.00(0)$

Topological charges are highly correlated!

In the continuum all numbers become 1.00

Fixing the smoothing scale

- One can fix a physical flow time:

$$
\lambda_{S} \simeq \sqrt{8 t} .
$$

- Similarly for cooling $\sim 120 \times$ faster than Gradient Flow:

$$
\lambda_{S} \simeq a \sqrt{\frac{8 n_{c}}{3}}
$$

- For the APE smearing $\sim 20 \times$ faster than Gradient Flow:

$$
\lambda_{S} \simeq a \sqrt{\frac{4 \alpha_{\mathrm{APE}} n_{\mathrm{APE}}}{3}}
$$

- For the stout smearing $\sim 30 \times$ faster than Gradient Flow

$$
\lambda_{S} \simeq a \sqrt{8 \rho_{\mathrm{st}} n_{\mathrm{st}}}
$$

- Similar procedure can be applied to t_{0}.

Level of agreement on the topological charge

- Why topological susceptibility has such a high level of agreement?

Fermionic Definitions of the Topological Charge

(f) Index definition with different steps of HYP smearing.
M. F. Atiyah and I. M. Singer, Annals Math. 93 (1971) 139149
(f) Spectral-flow with different steps of HYP smearing.
S. Itoh, Y. Iwasaki and T. Yoshie, Phys. Rev. D 36 (1987) 527Spectral projectors with different cutoffs M^{2}.
L. Giusti and M. Lüscher, JHEP 0903 (2009) 013 and M. Lüscher and F. Palombi, JHEP 1009 (2010) 110

Index definition

- Chiral Symmetry can be realized on the Lattice!
- Modified definition of chiral symmetry on the lattice
- Dirac operator satisfies the Ginsparg-Wilson relation is chirally symmetric

$$
\gamma_{5} D+D \gamma_{5}=a \gamma_{5} D \gamma_{5}
$$

- Overlap Dirac operator, introduced by Neuberger
H. Neuberger, Phys. Lett. B427 (1998) 353355, [hep-lat/9801031].
- Atiyah-Singer index theorem: relates the number of Zero modes to topological charge

$$
\mathcal{Q}=n_{-}-n_{+}
$$

- It gives integer values of \mathcal{Q}.
- Massless Overlap Operator

$$
D=\frac{1}{a}\left(1-\frac{A}{\sqrt{A^{\dagger} A}}\right), \quad A=1+s-a D_{W}
$$

$-s$ can be tuned to optimize the locality of the Overlap operator

- In the continuum limit the dependence on s vanishes
- Several orders of magnitude slower than Gradient Flow

Spectral Projectors

- L. Giusti and M. Lüscher, [arXiv:0812.3638] \& M. Lüscher and F. Palombi, [arXiv:1008.0732].
- Introduce the projector \mathbb{P}_{M} to the subspace of eigenmodes of the Hermitian Dirac operator $D^{\dagger} D$ with eigenvalues below M^{2}.
- \mathbb{P}_{M} can be calculated stochastically vs. explicit computation of eigenmodes pros. For explicit computation of eigenmodes, comp. cost drops from $\mathcal{O}\left(V^{2}\right)$ to $\mathcal{O}(V)$ cons. Introducing stochastic noise
- To avoid the stochastic noise we opted for an explicit computation of eigenmode.
$\longrightarrow \quad$ The bare topological charge is given by

$$
\mathcal{Q}_{0}=\sum_{i}^{\lambda_{i}<M_{0}^{2}} R_{i}, \quad R_{i}=u_{i}^{\dagger} \gamma_{5} u_{i}
$$

$\longrightarrow \quad$ The topological susceptibility

$$
\chi_{0}=\frac{\left\langle\mathcal{Q}_{0}^{2}\right\rangle}{V}
$$

$\longrightarrow \quad$ With renormalized quantities

$$
\mathcal{Q}=\left(\frac{Z_{S}}{Z_{P}}\right) \mathcal{Q}_{0}, \quad \chi=\left(\frac{Z_{S}}{Z_{P}}\right)^{2} \chi_{0}, \quad M=Z_{P}^{-1} M_{0}
$$

Spectral Projectors

- For chirally symmetric fermions $\mathcal{Q}=\operatorname{Tr}\left\{\gamma_{5} \mathbb{P}_{M}\right\}$.
$\longrightarrow \quad$ This definition is then equivalent to the index definition
- Wilson twisted mass fermions lead to a shift of $\mathcal{O}\left(a^{2}\right)$
- Results depend on the renormalized spectral threashold M^{2}
- The 400 lowest eigenmodes allow M up to 160 MeV for all the ensembles
- Investigate the dependence in M
$\rightarrow M$ should not be too small because of large cutoff effects
$\rightarrow \quad M$ should not be too large because of enhanced noise

Comparison of topological Susceptibility

- Comparison of results for the topological susceptibility.

- Using $N_{f}=2$ twisted mass configuration with:

$$
\beta=3.90, a \simeq 0.085 \mathrm{fm}, r_{0} / a=5.35(4), m_{\pi} \simeq 340 \mathrm{MeV}, m_{\pi} L=2.5, L / a=16
$$

Correlation Coefficient

Comparison of the correlation coefficient between fermionic and gluonic definitions.

Fermionic Vs. Gluonic - Continuum limit

- Correlation for a fermionic and gluonic definitions as we approach the continuum limit.

Comparison in Neutron Electric Dipole Moment

The Electric Dipole Moment is given by

$$
\left|\vec{d}_{N}\right|=\lim _{q \rightarrow 0} \theta \frac{F_{3}\left(q^{2}\right)}{2 m_{N}}
$$

From Nucleon-Nucleon matrix element of the electromagnetic current J_{μ}^{em} we obtain
$\rightarrow C P$-odd electromagnetic Form-Factor $F_{3}\left(Q^{2}\right)$:

$$
\left\langle N\left(\vec{p}_{f}, s_{f}\right)\right| J_{\mu}^{\mathrm{em}}\left|N\left(\overrightarrow{p_{i}}, s_{i}\right)\right\rangle=\bar{u}\left(\vec{p}_{f}, s_{f}\right)\left[\cdots+\theta \frac{F_{3}\left(Q^{2}\right)}{2 m_{N}} Q_{\nu} \sigma_{\mu \nu} \gamma_{5}+\cdots\right] u\left(\overrightarrow{p_{i}}, s_{i}\right)
$$

To extract the CP-odd Form Factor we need to calculate

$$
\left\langle J_{N}\left(\vec{p}_{f}, t_{f}\right) J_{\mu}^{\mathrm{em}}(\vec{q}, t) \bar{J}_{N}\left(\vec{p}_{i}, t_{i}\right) \mathcal{Q}\right\rangle .=f\left(F_{3}, \alpha^{1}\right)
$$

The phase α^{1} appears due to the $C P$-breaking in the θ-vacuum.

Comparison in Neutron Electric Dipole Moment

The phase α^{1} (blue: cooling, red: Gradient Flow):

The $C P$-odd form factor:

Comparison in $\alpha_{\text {mom }}(k)$ after smoothing
From Feliciano De Soto's presentation:

Wilson Flow

APE smearing

Cooling

What we learned?

- Topological susceptibilities are in the same ballpark: $a \chi^{1 / 4} \in[0.08,0.09]$.
- Correlation coefficient appears to increase towards to 1 as $a \rightarrow 0$.
- Different definitions influenced by different lattice artifacts.
- Most correlation coefficients are above 80%.
- Cooling, APE smearing, stout smearing are numerically equivalent if matched:

$$
\tau \simeq \frac{n_{c}}{3}, \quad \tau \simeq \alpha_{\mathrm{APE}} \frac{n_{\mathrm{APE}}}{6} \quad \tau \simeq \rho_{\mathrm{st}} n_{\mathrm{st}}
$$

What we learned?

- Topological susceptibilities are in the same ballpark: $a \chi^{1 / 4} \in[0.08,0.09]$.
- Correlation coefficient appears to increase towards to 1 as $a \rightarrow 0$.
- Different definitions influenced by different lattice artifacts.
- Most correlation coefficients are above 80%.
- Cooling, APE smearing, stout smearing are numerically equivalent if matched:

$$
\begin{array}{rlrl}
\tau \simeq \frac{n_{c}}{3}, & \tau \simeq \alpha_{\mathrm{APE}} \frac{n_{\mathrm{APE}}}{6} & & \tau \simeq \rho_{\mathrm{st}} n_{\mathrm{st}} \\
\sim 120 \times \text { faster }, & \sim 20 \times \text { faster } & \sim 30 \times \text { faster } .
\end{array}
$$

Topological Susceptibility - What we want to learn

- Topological susceptibilities are in the same ballpark: $a \chi^{1 / 4} \in[0.08,0.09]$.
\rightarrow Different definitions influenced by different lattice artifacts.
- Comparison between
- Fermionic Definition
- Gradient flow
- Do both approaches lead to compatible results?
$\longrightarrow \quad$ Pion mass dependence
\longrightarrow Universality of Topological Susceptibility
$\longrightarrow \quad$ Universality in Pure $S U(3)$ M. Lüscher and F. Palombi, JHEP 1009 (2010) 110
\longrightarrow This has never been demonstrated before for Full QCD.
$\longrightarrow \quad$ Work with $N_{f}=2+1+1$ twisted mass fermions with

β	$a[\mathrm{fm}]$	Z_{P}	Z_{P} / Z_{S}	r_{0} / a
1.90	$0.0885(36)$	$0.529(9)$	$0.699(13)$	$5.231(38)$
1.95	$0.0815(30)$	$0.504(5)$	$0.697(7)$	$5.710(41)$
2.10	$0.0619(18)$	$0.514(3)$	$0.740(5)$	$7.538(58)$

$\longrightarrow \quad$ This leads to the extraction of the Chiral Condensate

Topological Susceptibility - What we want to learn

- Topological susceptibilities are in the same ballpark: $a \chi^{1 / 4} \in[0.08,0.09]$.
\rightarrow Different definitions influenced by different lattice artifacts.
- Comparison between
- Fermionic Definition \rightarrow Spectral Projectors
- Gradient flow
- Do both approaches lead to compatible results?
$\longrightarrow \quad$ Pion mass dependence
\longrightarrow Universality of Topological Susceptibility
\longrightarrow Universality in Pure $S U(3)$ M. Lüscher and F. Palombi, JHEP 1009 (2010) 110
\rightarrow This has never been demonstrated before for Full QCD.
$\longrightarrow \quad$ Work with $N_{f}=2+1+1$ twisted mass fermions with

β	$a[\mathrm{fm}]$	Z_{P}	Z_{P} / Z_{S}	r_{0} / a
1.90	$0.0885(36)$	$0.529(9)$	$0.699(13)$	$5.231(38)$
1.95	$0.0815(30)$	$0.504(5)$	$0.697(7)$	$5.710(41)$
2.10	$0.0619(18)$	$0.514(3)$	$0.740(5)$	$7.538(58)$

\longrightarrow This leads to the extraction of the Chiral Condensate

Topological Susceptibility in Chiral Perturbation Theory

- We consider the partition function of QCD with non-zero θ (Mao and Chiu, 0903.2146):

$$
Z(\theta)=\sum_{\mathcal{Q}} \int \mathcal{D} A_{\mu} \mathcal{D} \psi \mathcal{D} \psi^{\dagger} e^{i S_{\{\mathrm{QCD}, \theta=0\}}-i \theta \mathcal{Q}[U]}
$$

- Topological Susceptibility is the second derivative of the energy density at $\theta=0$

$$
\chi=\left.\frac{\partial^{2} \varepsilon(\theta)}{\partial \theta^{2}}\right|_{\theta=0}=\frac{\left\langle\mathcal{Q}^{2}\right\rangle}{V}, \quad \varepsilon(\theta)=-\frac{\log (Z)}{V} .
$$

- The lowest order, two flavor $\chi P T$ Lagrangian can be written as:

$$
\mathcal{L}_{\chi P T}^{(2)}=\frac{f_{\pi}^{2}}{4} \operatorname{Tr}\left[\partial_{\mu} U(x) \partial^{\mu} U(x)^{\dagger}\right]+\Sigma \operatorname{Re}\left(\operatorname{Tr}\left[\mathcal{M} U(x)^{\dagger}\right]\right)
$$

- The partition function can be written in terms of $\mathcal{L}_{\chi P T}^{(2)}$:

$$
Z(\theta)=\int \mathcal{D} U e^{i \int d^{4} x \mathcal{L}^{(2)}(U(x), \theta)}
$$

- Topological susceptibility yields to:

$$
\chi=\left.\frac{\partial^{2} \varepsilon(\theta)}{\partial \theta^{2}}\right|_{\theta=0}=\Sigma \frac{\mu_{l}}{2}
$$

- 3-parameter fit (plus $\mathcal{O}\left(a^{2}\right)$)

$$
r_{0}^{4} \chi=\left[r_{0}^{3} \Sigma\right] \frac{r_{0} \mu_{l, R}}{2}+[c]\left(\frac{a}{r_{0}}\right)^{2}+\left[\frac{\alpha}{r_{0}}\right] r_{0} \mu_{l, R}\left(\frac{a}{r_{0}}\right)^{2}
$$

$$
r_{0}^{4} \chi=f\left(r_{0} \mu_{l, R}\right)
$$

- Cross sections for the three lattice spacings:

$$
r_{0}^{4} \chi=f\left(r_{0} \mu_{l, R}\right)
$$

- Global fits

Chiral Condensate: $\Sigma^{1 / 3}=f(M)$

- Comparison of $\Sigma^{1 / 3}$ for Gradient Flow and Spectral Projectors
- $\Sigma^{1 / 3}$ as a function of M
$\Sigma^{1 / 3}(\mathrm{MeV})$

Total discretization error

- From the 3-parameters fit:

$$
r_{0}^{4} \chi=\left[r_{0}^{3} \Sigma\right] \frac{r_{0} \mu_{l, R}}{2}+[c]\left(\frac{a}{r_{0}}\right)^{2}+\left[\frac{\alpha}{r_{0}}\right] r_{0} \mu_{l, R}\left(\frac{a}{r_{0}}\right)^{2}
$$

- Total discretisation error:

$$
[c]+\left[\frac{\alpha}{r_{0}}\right] r_{0} \mu_{l, R}
$$

- Global fits for gradient Flow

$$
\mu_{l, R}=12.6 \mathrm{MeV}
$$

$\mu_{l, R}=18.5 \mathrm{MeV}$

$$
\mu_{l, R}=26.0 \mathrm{MeV}
$$

Fit parameters

$M[\mathrm{MeV}]$	$\Sigma^{1 / 3}[\mathrm{MeV}]$	$r_{0} \Sigma^{1 / 3}$	c	α / r_{0}	$N_{\text {ens }}$	$\chi^{2} /$ d.o.f.
80	$316(18)$	$0.760(44)$	$0.121(32)$	$-4.7(1.4)$	9	0.281
120	$318(21)$	$0.764(50)$	$0.191(46)$	$-4.6(1.8)$	9	0.233
160	$318(23)$	$0.764(55)$	$0.249(54)$	$-4.3(2.0)$	9	0.198
200	$318(30)$	$0.764(73)$	$0.291(60)$	$-3.9(2.5)$	6	0.066
GF	$289(49)$	$0.69(12)$	$1.15(12)$	$0.7(3.8)$	9	0.261

- Spectral projector method has larger mass dependent discretization effects
- Spectral projector method has smaller mass independent discretization effects
- Value of Chiral Condensate agrees between Gradient Flow and Spectral Projectors
$\longrightarrow \quad$ Universality is confirmed

$\chi(a \rightarrow 0)$ LO Fit

- Alternative fit
- For each ensemble we fix the quark mass and extract χ
- We perform a linear fit of $r_{0}^{4} \chi$ as a function of $\left(a / r_{0}\right)^{2}$ using

$$
r_{0}^{4} \chi(a)=[K]\left(a / r_{0}\right)^{2}+\left[r_{0}^{4} \chi(a=0)\right]
$$

- To calculate the chiral condensate, we fit the continuum values of $r_{0}^{4} \chi(a=0)$ as a function of $r_{0} \mu_{l, R}$ using

$$
r_{0}^{4} \chi(a=0)=\left[r_{0}^{3} \Sigma\right] \frac{r_{0} \mu_{l}}{2}
$$

$$
r_{0}^{4} \chi=f\left(a^{2} / r_{0}^{2}\right)
$$

- Continuum extrapolations:

$\chi(a \rightarrow 0)$ LO Fit

- Alternative fit
- For each ensemble we fix the quark mass and extract χ
- We perform a linear fit of $r_{0}^{4} \chi$ as a function of $\left(a / r_{0}\right)^{2}$ using

$$
r_{0}^{4} \chi(a)=[K]\left(a / r_{0}\right)^{2}+\left[r_{0}^{4} \chi(a=0)\right]
$$

- To calculate the chiral condensate, we fit the continuum values of $r_{0}^{4} \chi(a=0)$ as a function of $r_{0} \mu_{l, R}$ using

$$
r_{0}^{4} \chi(a=0)=\left[r_{0}^{3} \Sigma\right] \frac{r_{0} \mu_{l}}{2}
$$

$$
r_{0}^{4} \chi=f\left(\mu_{l, R}\right)
$$

- Continuum fit to the lowest order $\chi \mathrm{PT}$ expression for topological susceptibility.

$$
\chi(a \rightarrow 0) \text { LO Fit }
$$

- Values of the chiral condensate

$M[\mathrm{MeV}]$	$\Sigma^{1 / 3}[\mathrm{MeV}]$	$r_{0} \Sigma^{1 / 3}$	$\chi^{2} /$ d.o.f.
80	$336(10)$	$0.807(23)$	0.555
120	$339(11)$	$0.815(26)$	0.344
160	$337(12)$	$0.809(29)$	0.387
GF	$308(26)$	$0.740(62)$	0.171

- Agreement between the Spectral Projectors and Gradient-Flow
- Total discretization error

What we learned by investigating the topological susceptibility?

- The topological susceptibility computed using spectral projectors has much smaller discretization effects than Gradient-Flow.
- Universality has been confirmed
- Spectral cutoff as small as $M \sim 30 \mathrm{MeV}$ is sufficient for extracting fit quantities.
- We can minimize the cutoff effects by choosing the right M (depending on the quark mass)
- We use $M=120 \mathrm{MeV}$ to quote

$$
r_{0} \Sigma^{1 / 3}=0.754(50)_{\text {stat }}(26)_{\text {sys }}, \quad \Sigma^{1 / 3}=318(21)_{\text {stat }}(11)_{\text {sys }} \mathrm{MeV}
$$

- This result is in agreement with other investigations (Banks-Casher relation)
- This is highly relevant for
- calculating topological charge dependent quantities when there is only
- one lattice spacing
available and a continuum extrapolation cannot be performed.

What we learned by investigating the topological susceptibility?

- The topological susceptibility computed using spectral projectors has much smaller discretization effects than Gradient-Flow.
- Universality has been confirmed
- Spectral cutoff as small as $M \sim 30 \mathrm{MeV}$ is sufficient for extracting fit quantities.
- We can minimize the cutoff effects by choosing the right M (depending on the quark mass)
- We use $M=120 \mathrm{MeV}$ to quote

$$
r_{0} \Sigma^{1 / 3}=0.754(50)_{\text {stat }}(26)_{\text {sys }}, \quad \Sigma^{1 / 3}=318(21)_{\text {stat }}(11)_{\text {sys }} \mathrm{MeV}
$$

- This result is in agreement with other investigations (Banks-Casher relation)
- This is highly relevant for
- calculating topological charge dependent quantities when there is only
- one lattice spacing
available and a continuum extrapolation cannot be performed.

THANK YOU!

The nEDM: General Considerations

The structure of the Standard Model
\rightarrow Based on the role of the discrete symmetries C, P, T
Possible experimental observation of nEDM
\rightarrow Flags violation of P and T

\rightarrow Due to CPT symmetry \rightarrow violation of $C P$
Best experimental bound:

$$
\left|\vec{d}_{N}\right|<2.9 \times 10^{-13} e \cdot \mathrm{fm}
$$

[C. A. Baker et al, Phys. Rev. Lett. 97, 131801 (2006) [arXiv:hep-ex/0602020]]

The nEDM: General Considerations

The structure of the Standard Model
\rightarrow Based on the role of the discrete symmetries C, P, T
Possible experimental observation of nEDM
\rightarrow Flags violation of P and T

\rightarrow Due to CPT symmetry \rightarrow violation of $C P$
Best experimental bound:

$$
\left|\vec{d}_{N}\right|<2.9 \times 10^{-13} e \cdot \mathrm{fm}
$$

[C. A. Baker et al, Phys. Rev. Lett. 97, 131801 (2006) [arXiv:hep-ex/0602020]]

The nEDM: General Considerations

Supersymmetric predictions:

$$
\left|\vec{d}_{N}\right| \sim\left(10^{-12} \sim 10^{-15}\right) e \cdot \mathrm{fm}
$$

[M. Pospelov and A. Ritz, [hep-ph/0504231]]
Weak Interactions prediction:

$$
\left|\vec{d}_{N}\right| \sim 10^{-19} e \cdot \mathrm{fm}
$$

[S. Dar, [arXiv:hep-ph/0008248]]

Missing the neutron electric dipole moment resulting from QCD.

The nEDM: General Considerations

Supersymmetric predictions:

$$
\left|\vec{d}_{N}\right| \sim\left(10^{-12} \sim 10^{-15}\right) e \cdot \mathrm{fm}
$$

[M. Pospelov and A. Ritz, [hep-ph/0504231]]
Weak Interactions prediction:

$$
\left|\vec{d}_{N}\right| \sim 10^{-19} e \cdot \mathrm{fm}
$$

[S. Dar, [arXiv:hep-ph/0008248]]

Missing the neutron electric dipole moment resulting from QCD.
\rightarrow Only from $a b$ initio Lattice Calculations

The nEDM: General Considerations

- Consider violation of $C P$ in strong interactions...
- QCD Lagrangian density with no additional insertions:

$$
\mathcal{L}_{\mathrm{QCD}}(x)=\frac{1}{2 g^{2}} \operatorname{Tr}\left[G_{\mu \nu}(x) G^{\mu \nu}(x)\right]+\sum_{f} \bar{\psi}_{f}(x)\left(i \gamma_{\mu} D^{\mu}+m_{f}\right) \psi_{f}(x)
$$

is invariant under C, P and T transformations.

- Hence, it cannot induce a non-vanishing nEDM.
- We need to insert the $C P$-violating Cherns-Simons (CS) term:

$$
\mathcal{L}_{\mathrm{CS}}(x) \equiv-i \theta \frac{1}{32 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} \operatorname{Tr}\left[G_{\mu \nu}(x) G_{\rho \sigma}(x)\right]
$$

- We, now, consider QFT with Lagrangian density:

$$
\mathcal{L}(x)=\mathcal{L}_{\mathrm{QCD}}(x)+\mathcal{L}_{\mathrm{CS}}(x)
$$

- Model dependend studies as well as ChPT predictions:

$$
\left|d_{N}\right| \sim \theta \cdot \mathcal{O}\left(10^{-2} \sim 10^{-3}\right) e \cdot \mathrm{fm}
$$

$\rightarrow \theta \lesssim \mathcal{O}\left(10^{-10} \sim 10^{-11}\right)$

The nEDM: General Considerations

- Interaction between nucleon fields $u_{N}(x)$ and the electromagnetic field tensor $F_{\mu \nu}$:

$$
-\frac{1}{2} \theta \frac{F_{3}\left(q^{2}\right)}{2 m_{N}} \bar{u}_{N}\left(p_{f}\right) \sigma_{\mu \nu} \gamma_{5} u_{N}\left(p_{i}\right) F^{\mu \nu}
$$

- In the static limit $\left(q^{2}=\left(p_{f}-p_{i}\right)^{2} \rightarrow 0\right)$ the above gives the Electric Dipole Moment of the nucleon

$$
\left|\vec{d}_{N}\right|=\lim _{q \rightarrow 0} \theta \frac{F_{3}\left(q^{2}\right)}{2 m_{N}} .
$$

- Hence, what needs to be done is to Extract $C P$-odd Form-Factor $F_{3}(0)$ for $\theta \neq 0$ from expectation values such as:

$$
\left\langle\mathcal{O}\left(x_{1}, \ldots, x_{n}\right)\right\rangle_{\theta}=\frac{1}{Z_{\theta}} \int d[U] d\left[\psi_{f}\right] d\left[\bar{\psi}_{f}\right] \mathcal{O}\left(x_{1}, \ldots, x_{n}\right) e^{-S_{\mathrm{QCD}}+i \theta \int q(x) d^{4} x}
$$

- How?
? External Electric Field Method
? Analytical Continuation to Imaginary θ
? Extract $F_{3}(0)$ from perturbative expansion in θ :

$$
\left\langle\mathcal{O}\left(x_{1}, \ldots, x_{n}\right)\right\rangle_{\theta}=\left\langle\mathcal{O}\left(x_{1}, \ldots, x_{n}\right)\right\rangle_{\theta=0}+\left\langle\mathcal{O}\left(x_{1}, \ldots, x_{n}\right)\left(i \theta \int d^{4} x q(x)\right)\right\rangle_{\theta=0}+O\left(\theta^{2}\right)
$$

The nEDM: General Considerations

- Interaction between nucleon fields $u_{N}(x)$ and the electromagnetic field tensor $F_{\mu \nu}$:

$$
-\frac{1}{2} \theta \frac{F_{3}\left(q^{2}\right)}{2 m_{N}} \bar{u}_{N}\left(p_{f}\right) \sigma_{\mu \nu} \gamma_{5} u_{N}\left(p_{i}\right) F^{\mu \nu}
$$

- In the static limit $\left(q^{2}=\left(p_{f}-p_{i}\right)^{2} \rightarrow 0\right)$ the above gives the Electric Dipole Moment of the nucleon

$$
\left|\vec{d}_{N}\right|=\lim _{q \rightarrow 0} \theta \frac{F_{3}\left(q^{2}\right)}{2 m_{N}} .
$$

- Hence, what needs to be done is to Extract $C P$-odd Form-Factor $F_{3}(0)$ for $\theta \neq 0$ from expectation values such as:

$$
\left\langle\mathcal{O}\left(x_{1}, \ldots, x_{n}\right)\right\rangle_{\theta}=\frac{1}{Z_{\theta}} \int d[U] d\left[\psi_{f}\right] d\left[\bar{\psi}_{f}\right] \mathcal{O}\left(x_{1}, \ldots, x_{n}\right) e^{-S_{\mathrm{QCD}}+i \theta \int q(x) d^{4} x}
$$

- How?

X External Electric Field Method
? Analytical Continuation to Imaginary θ
? Extract $F_{3}(0)$ from perturbative expansion in θ :

$$
\left\langle\mathcal{O}\left(x_{1}, \ldots, x_{n}\right)\right\rangle_{\theta}=\left\langle\mathcal{O}\left(x_{1}, \ldots, x_{n}\right)\right\rangle_{\theta=0}+\left\langle\mathcal{O}\left(x_{1}, \ldots, x_{n}\right)\left(i \theta \int d^{4} x q(x)\right)\right\rangle_{\theta=0}+O\left(\theta^{2}\right)
$$

The nEDM: General Considerations

- Interaction between nucleon fields $u_{N}(x)$ and the electromagnetic field tensor $F_{\mu \nu}$:

$$
-\frac{1}{2} \theta \frac{F_{3}\left(q^{2}\right)}{2 m_{N}} \bar{u}_{N}\left(p_{f}\right) \sigma_{\mu \nu} \gamma_{5} u_{N}\left(p_{i}\right) F^{\mu \nu}
$$

- In the static limit $\left(q^{2}=\left(p_{f}-p_{i}\right)^{2} \rightarrow 0\right)$ the above gives the Electric Dipole Moment of the nucleon

$$
\left|\vec{d}_{N}\right|=\lim _{q \rightarrow 0} \theta \frac{F_{3}\left(q^{2}\right)}{2 m_{N}} .
$$

- Hence, what needs to be done is to Extract $C P$-odd Form-Factor $F_{3}(0)$ for $\theta \neq 0$ from expectation values such as:

$$
\left\langle\mathcal{O}\left(x_{1}, \ldots, x_{n}\right)\right\rangle_{\theta}=\frac{1}{Z_{\theta}} \int d[U] d\left[\psi_{f}\right] d\left[\bar{\psi}_{f}\right] \mathcal{O}\left(x_{1}, \ldots, x_{n}\right) e^{-S_{\mathrm{QCD}}+i \theta \int q(x) d^{4} x}
$$

- How?

X External Electric Field Method
X Analytical Continuation to Imaginary θ
? Extract $F_{3}(0)$ from perturbative expansion in θ :

$$
\left\langle\mathcal{O}\left(x_{1}, \ldots, x_{n}\right)\right\rangle_{\theta}=\left\langle\mathcal{O}\left(x_{1}, \ldots, x_{n}\right)\right\rangle_{\theta=0}+\left\langle\mathcal{O}\left(x_{1}, \ldots, x_{n}\right)\left(i \theta \int d^{4} x q(x)\right)\right\rangle_{\theta=0}+O\left(\theta^{2}\right)
$$

The nEDM: General Considerations

- Interaction between nucleon fields $u_{N}(x)$ and the electromagnetic field tensor $F_{\mu \nu}$:

$$
-\frac{1}{2} \theta \frac{F_{3}\left(q^{2}\right)}{2 m_{N}} \bar{u}_{N}\left(p_{f}\right) \sigma_{\mu \nu} \gamma_{5} u_{N}\left(p_{i}\right) F^{\mu \nu}
$$

- In the static limit $\left(q^{2}=\left(p_{f}-p_{i}\right)^{2} \rightarrow 0\right)$ the above gives the Electric Dipole Moment of the nucleon

$$
\left|\vec{d}_{N}\right|=\lim _{q \rightarrow 0} \theta \frac{F_{3}\left(q^{2}\right)}{2 m_{N}} .
$$

- Hence, what needs to be done is to Extract $C P$-odd Form-Factor $F_{3}(0)$ for $\theta \neq 0$ from expectation values such as:

$$
\left\langle\mathcal{O}\left(x_{1}, \ldots, x_{n}\right)\right\rangle_{\theta}=\frac{1}{Z_{\theta}} \int d[U] d\left[\psi_{f}\right] d\left[\bar{\psi}_{f}\right] \mathcal{O}\left(x_{1}, \ldots, x_{n}\right) e^{-S_{\mathrm{QCD}}+i \theta \int q(x) d^{4} x}
$$

- How?

X External Electric Field Method
\mathbf{X} Analytical Continuation to Imaginary θ
\checkmark Extract $F_{3}(0)$ from perturbative expansion in θ :

$$
\left\langle\mathcal{O}\left(x_{1}, \ldots, x_{n}\right)\right\rangle_{\theta}=\left\langle\mathcal{O}\left(x_{1}, \ldots, x_{n}\right)\right\rangle_{\theta=0}+\left\langle\mathcal{O}\left(x_{1}, \ldots, x_{n}\right)\left(i \theta \int d^{4} x q(x)\right)\right\rangle_{\theta=0}+O\left(\theta^{2}\right)
$$

The nEDM: General Considerations

- This is a first test on the applicability of the implemented methods!
- Our final goal is to Extract the nEDM for
- physical pion mass
- continuum limit
- Extract the nEDM on configurations produced with $N_{f}=2+1+1$ twisted mass fermions,
- Produced with Iwasaki Gauge Action.
- Lattice spacing $a \simeq 0.082 \mathrm{fm}$.
- $L / a=32$.
- B55.32.
$-\beta=1.95, a=0.0823(10) \mathrm{fm}$
$-a \mu=0.0055, M_{\pi}=0.372 \mathrm{GeV}$
$-r_{0} / a=5.710(41)$
$-32^{3} \times 64, L=2.6 \mathrm{fm}$
- No. of confs $=4695$

The nEDM: Lattice Calculation

- From Nucleon-Nucleon matrix element of the electromagnetic current $J_{\mu}^{\text {em }}$ we obtain
$\rightarrow C P$-odd electromagnetic Form-Factor $F_{3}\left(Q^{2}\right)$:

$$
\left\langle N\left(\vec{p}_{f}, s_{f}\right)\right| J_{\mu}^{\mathrm{em}}\left|N\left(\vec{p}_{i}, s_{i}\right)\right\rangle=\bar{u}\left(\vec{p}_{f}, s_{f}\right)\left[\cdots+\theta \frac{F_{3}\left(Q^{2}\right)}{2 m_{N}} Q_{\nu} \sigma_{\mu \nu} \gamma_{5}+\cdots\right] u\left(\vec{p}_{i}, s_{i}\right)
$$

- Assuming a theory where $C P$ symmetry is violated ...
- Problem: $C P$-odd Form-Factor $\propto Q^{k} F_{3}\left(Q^{2}\right)$
- Parametrize $F_{3}\left(Q^{2}\right)$ in Q^{2} and peform a Dipole fit.
- Use the "Application of the derivative to the ratio technique".
- Use the "The elimination of the momentum in the plateau region technique".
- Now let's extract $F_{3}\left(Q^{2}\right)$!!!
- What are the desired quantities without treating the CS term perturbatively?
- How 3-pt functions modify if we treat the CS term perturbatively.
- Equate the above two: perturbatively \equiv non-perturbatively (in θ).
[E. Shintani et al, arXiv:hep-lat/0505022]

The nEDM: non-perturbative treatment (in θ)

- Consider the 3 -pt function:

$$
G_{3 \mathrm{pt}}^{\mu,(\theta)}\left(\vec{q}, t_{f}, t_{i}, t\right) \equiv\left\langle J_{N}\left(\vec{p}_{f}, t_{f}\right) J_{\mu}^{\mathrm{em}}(\vec{q}, t) \bar{J}_{N}\left(\vec{p}_{i}, t_{i}\right)\right\rangle_{\theta} .
$$

- By inserting two complete sets of states etc...

$$
\begin{aligned}
G_{3 \mathrm{pt}}^{\mu,(\theta)}\left(\vec{q}, t_{f}, t_{i}, t\right) & \simeq e^{-E_{N^{\theta}}^{f}\left(t_{f}-t\right)} e^{-E_{N \theta}^{i}\left(t-t_{i}\right)} \\
& \times \sum_{s_{f}, s_{i}}\left\langle J_{N} \mid N\left(\vec{p}_{f}, s_{f}\right)\right\rangle_{\theta}\left\langle N\left(\vec{p}_{f}, s_{f}\right)\right| J_{\mu}^{\mathrm{em}}\left|N\left(\vec{p}_{i}, s_{i}\right)\right\rangle_{\theta}\left\langle N\left(\vec{p}_{i}, s_{i}\right) \mid \bar{J}_{N}\right\rangle .
\end{aligned}
$$

with $E_{N^{\theta}}^{f}=\sqrt{\vec{p}_{f}^{2}+m_{N^{\theta}}^{2}}$ and $E_{N^{\theta}}^{i}=\sqrt{\vec{p}_{i}^{2}+m_{N^{\theta}}^{2}}$.
$-\quad \operatorname{with}\left\langle J_{N}^{\theta} \mid N^{\theta}(\vec{p}, s)\right\rangle_{\theta}=Z_{N}^{\theta} u_{N}^{\theta}(\vec{p}, s), \quad$ and $\quad\left\langle N^{\theta}(\vec{p}, s) \mid \bar{J}_{N}^{\theta}\right\rangle_{\theta}=\left(Z_{N}^{\theta}\right)^{*} \bar{u}_{N}^{\theta}(\vec{p}, s)$.

- and $\left(i \gamma^{\mu} p_{\mu}+m_{N^{\theta}} e^{-i 2 \alpha(\theta) \gamma_{5}}\right) u_{N}^{\theta}(\vec{p}, s)=\bar{u}_{N}^{\theta}(\vec{p}, s)\left(i \gamma^{\mu} p_{\mu}+m_{N^{\theta}} e^{-i 2 \alpha(\theta) \gamma_{5}}\right)=0$.
- The phase $e^{i 2 \alpha(\theta) \gamma_{5}}$ appears due to the $C P$-breaking in the θ-vacuum.

The nEDM: non-perturbative treatment (in θ)

- The phase $e^{i 2 \alpha(\theta) \gamma_{5}}$ appears due to the $C P$-breaking in the θ-vacuum:
$\rightarrow C P$-even: $m_{N^{\theta}}=m_{N}+O\left(\theta^{2}\right), \quad Z_{N}^{\theta}=Z_{N}+O\left(\theta^{2}\right)$.
$\rightarrow C P$-odd: $\alpha(\theta)=\alpha^{1} \theta+O\left(\theta^{3}\right)$.
- Form-Factors:

$$
\left\langle N^{\theta}\left(\vec{p}_{f}, s_{f}\right)\right| J_{\mu}^{\mathrm{em}}\left|N^{\theta}\left(\vec{p}_{i}, s_{i}\right)\right\rangle_{\theta}=\bar{u}_{N}^{\theta}\left(\vec{p}_{f}, s_{f}\right) W_{\mu}^{\theta}(Q) u_{N}^{\theta}\left(\vec{p}_{i}, s_{i}\right),
$$

with

$$
W_{\mu}^{\theta}(Q)=g\left(\theta^{2}\right) W_{\mu}^{\mathrm{even}}(Q)+i \theta h\left(\theta^{2}\right) W_{\mu}^{\mathrm{odd}}(Q)
$$

and $g\left(\theta^{2}\right)=1+O\left(\theta^{2}\right) \quad$ and $\quad h\left(\theta^{2}\right)=1+O\left(\theta^{2}\right)$

$$
\begin{aligned}
W_{\mu}^{\text {even }}(Q) & =\gamma_{\mu} F_{1}\left(Q^{2}\right)-i \frac{F_{2}\left(Q^{2}\right)}{2 m_{N}} Q_{\nu} \sigma_{\nu \mu} \\
W_{\mu}^{\text {odd }}(Q) & =-i \frac{F_{3}\left(Q^{2}\right)}{2 m_{N}} Q_{\nu} \sigma_{\nu \mu} \gamma_{5}+F_{A}\left(Q^{2}\right)\left(Q_{\mu} \not Q-\gamma_{\mu} Q^{2}\right) \gamma_{5}
\end{aligned}
$$

\Rightarrow

$$
\begin{aligned}
G_{3 \mathrm{pt}}^{\mu,(\theta)}\left(\vec{q}, t_{f}, t_{i}, t\right) & =\left|Z_{N}\right|^{2} e^{-E_{N}^{f}\left(t_{f}-t\right)} e^{-E_{N}^{i}\left(t-t_{i}\right)} \frac{-i \not p_{f}+m_{N}\left(1+2 i \alpha^{1} \theta \gamma_{5}\right)}{2 E_{N}^{f}} \\
& \times\left[W_{\mu}^{\text {even }}(Q)+i \theta W_{\mu}^{\text {odd }}(Q)\right] \frac{-i \not \phi_{i}+m_{N}\left(1+2 i \alpha^{1} \theta \gamma_{5}\right)}{2 E_{N}^{i}}+O\left(\theta^{2}\right) .
\end{aligned}
$$

The nEDM: non-perturbative treatment (in θ)

- The phase $e^{i 2 \alpha(\theta) \gamma_{5}}$ appears due to the $C P$-breaking in the θ-vacuum:
$\rightarrow C P$-even: $m_{N^{\theta}}=m_{N}+O\left(\theta^{2}\right), \quad Z_{N}^{\theta}=Z_{N}+O\left(\theta^{2}\right)$.
$\rightarrow C P$-odd: $\alpha(\theta)=\alpha^{1} \theta+O\left(\theta^{3}\right)$.
- Form-Factors:

$$
\left\langle N^{\theta}\left(\vec{p}_{f}, s_{f}\right)\right| J_{\mu}^{\mathrm{em}}\left|N^{\theta}\left(\vec{p}_{i}, s_{i}\right)\right\rangle_{\theta}=\bar{u}_{N}^{\theta}\left(\vec{p}_{f}, s_{f}\right) W_{\mu}^{\theta}(Q) u_{N}^{\theta}\left(\vec{p}_{i}, s_{i}\right),
$$

with

$$
W_{\mu}^{\theta}(Q)=g\left(\theta^{2}\right) W_{\mu}^{\mathrm{even}}(Q)+i \theta h\left(\theta^{2}\right) W_{\mu}^{\mathrm{odd}}(Q)
$$

and $g\left(\theta^{2}\right)=1+O\left(\theta^{2}\right) \quad$ and $\quad h\left(\theta^{2}\right)=1+O\left(\theta^{2}\right)$

$$
\begin{aligned}
W_{\mu}^{\mathrm{even}}(Q) & =\gamma_{\mu} F_{1}\left(Q^{2}\right)-i \frac{F_{2}\left(Q^{2}\right)}{2 m_{N}} Q_{\nu} \sigma_{\nu \mu} \\
W_{\mu}^{\mathrm{odd}}(Q) & =-i \frac{F_{3}\left(Q^{2}\right)}{2 m_{N}} Q_{\nu} \sigma_{\nu \mu} \gamma_{5}+F_{A}\left(Q^{2}\right)\left(Q_{\mu} Q-\gamma_{\mu} Q^{2}\right) \gamma_{5}
\end{aligned}
$$

\Rightarrow

$$
\begin{aligned}
G_{3 \mathrm{pt}}^{\mu,(\theta)}\left(\vec{q}, t_{f}, t_{i}, t\right) & =\left|Z_{N}\right|^{2} e^{-E_{N}^{f}\left(t_{f}-t\right)} e^{-E_{N}^{i}\left(t-t_{i}\right)} \frac{-i \not p_{f}+m_{N}\left(1+2 i \alpha^{1} \theta \gamma_{5}\right)}{2 E_{N}^{f}} \\
& \times\left[W_{\mu}^{\text {even }}(Q)+i \theta W_{\mu}^{\text {odd }}(Q)\right] \frac{-i \not \phi_{i}+m_{N}\left(1+2 i \alpha^{1} \theta \gamma_{5}\right)}{2 E_{N}^{i}}+O\left(\theta^{2}\right) .
\end{aligned}
$$

The nEDM: non-perturbative treatment (in θ)

Correction came from Abramczyk, et al., arXiv:1701.07792
$\rightarrow C P$-even

- Dirac Equation: $\left(i \gamma^{\mu} p_{\mu}+m_{N}\right) u_{N}(\vec{p})$
- Parity Operator: γ_{4}
- Under Parity $u_{N}(\vec{p}) \rightarrow \gamma_{4} u_{N}(-\vec{p})$
$\rightarrow C P$-odd
- Dirac Equation: $\left(i \gamma^{\mu} p_{\mu}+m_{N^{\theta}} e^{-i 2 \alpha(\theta) \gamma_{5}}\right) u_{N}^{\theta}(\vec{p})$
- Parity Operator: $e^{i 2 \alpha(\theta) \gamma_{5}} \gamma_{4}$
- Under Parity $u_{N}^{\theta}(\vec{p}) \rightarrow e^{i 2 \alpha(\theta) \gamma_{5}} \gamma_{4} u_{N}^{\theta}(-\vec{p})$
- γ_{4} is no longer parity operator of neutron state.
- This accounts to rotating:

$$
\begin{aligned}
\tilde{F}_{2} & =\cos (2 \alpha) F_{2}-\sin (2 \alpha) F_{3} \\
\tilde{F}_{3} & =\sin (2 \alpha) F_{2}+\cos (2 \alpha) F_{3}
\end{aligned}
$$

The nEDM: perturbative treatment (in θ)

- Perturbative treatment of the CS term according to:

$$
e^{i \theta \int d^{4} x q(x)} \equiv e^{i \theta \mathcal{Q}}=1+i \theta \mathcal{Q}+O\left(\theta^{2}\right)
$$

- Let us apply the perturbative expansion in 3-pt functions:

$$
\begin{aligned}
G_{3 \mathrm{pt}}^{\mu,(\theta)}\left(\vec{q}, t_{f}, t_{i}, t\right) & =\left\langle J_{N}\left(\vec{p}_{f}, t_{f}\right) J_{\mu}^{\mathrm{em}}(\vec{q}, t) \bar{J}_{N}\left(\vec{p}_{i}, t_{i}\right)\right\rangle_{\theta} \\
& =G_{3 \mathrm{pt}}^{\mu,(0)}\left(\vec{q}, t_{f}, t_{i}, t\right)+i \theta G_{3 \mathrm{pt}, \mathcal{Q}}^{\mu,(0)}\left(\vec{q}, t_{f}, t_{i}, t\right)+O\left(\theta^{2}\right)
\end{aligned}
$$

where:

$$
\begin{aligned}
G_{3 \mathrm{pt}}^{\mu,(0)}\left(\vec{q}, t_{f}, t_{i}, t\right) & =\left\langle J_{N}\left(\vec{p}_{f}, t_{f}\right) J_{\mu}^{\mathrm{em}}(\vec{q}, t) \bar{J}_{N}\left(\vec{p}_{i}, t_{i}\right)\right\rangle, \\
G_{3 \mathrm{pt}, \mathcal{Q}}^{\mu,(0)}\left(\vec{q}, t_{f}, t_{i}, t\right) & =\left\langle J_{N}\left(\vec{p}_{f}, t_{f}\right) J_{\mu}^{\mathrm{em}}(\vec{q}, t) \bar{J}_{N}\left(\vec{p}_{i}, t_{i}\right) \mathcal{Q}\right\rangle .
\end{aligned}
$$

- What is new here is the topological charge \mathcal{Q}

The nEDM: equate non-perturbative with perturbative in θ

- Equating the results from the two treatments we obtain:

$$
\begin{aligned}
G_{3 \mathrm{pt}}^{(0)}\left(\vec{q}, t_{f}, t_{i}, t\right) & =\left|Z_{N}\right|^{2} e^{-E_{N}^{f}\left(t_{f}-t\right)} e^{-E_{N}^{i}\left(t-t_{i}\right)} \frac{-i \not \phi_{f}+m_{N}}{2 E_{N}^{f}} W_{\mu}^{\text {even }}(Q) \frac{-i \not p_{i}+m_{N}}{2 E_{N}^{i}}, \\
G_{3 \mathrm{pt}, \mathcal{Q}}^{(0)}\left(\vec{q}, t_{f}, t_{i}, t\right) & =\left|Z_{N}\right|^{2} e^{-E_{N}^{f}\left(t_{f}-t\right)} e^{-E_{N}^{i}\left(t-t_{i}\right)}\left[\frac{-i \not 申_{f}+m_{N}}{2 E_{N}^{f}} W_{\mu}^{\text {odd }}(Q) \frac{-i \not \phi_{i}+m_{N}}{2 E_{N}^{i}}\right. \\
& \left.+\frac{2 \alpha^{1} m_{N}}{2 E_{N}^{f}} \gamma_{5} W_{\mu}^{\text {even }}(Q) \frac{-i \not \phi_{i}+m_{N}}{2 E_{N}^{i}}+\frac{-i \not \phi_{f}+m_{N}}{2 E_{N}^{f}} W_{\mu}^{\text {even }}(Q) \frac{2 \alpha^{1} m_{N}}{2 E_{N}^{i}} \gamma_{5}\right] .
\end{aligned}
$$

- Similarly for $2-\mathrm{pt}$ functions we obtain:

$$
G_{2 \mathrm{pt}}^{(\theta)}\left(\vec{q}, t_{f}, t_{i}\right)=G_{2 \mathrm{pt}}^{(0)}\left(\vec{q}, t_{f}, t_{i}\right)+i \theta G_{2 \mathrm{pt}, \mathcal{Q}}^{(0)}\left(\vec{q}, t_{f}, t_{i}\right)+O\left(\theta^{2}\right),
$$

where

$$
\begin{aligned}
& G_{2 \mathrm{pt}}^{(0)}\left(\vec{q}, t_{f}, t_{i}\right)=\left\langle J_{N}\left(\vec{q}, t_{f}\right) \bar{J}_{N}\left(\vec{q}, t_{i}\right)\right\rangle=\left|Z_{N}\right|^{2} e^{-E_{N} t} \frac{-i \not Q+m_{N}}{2 E_{N}}, \\
& G_{2 \mathrm{pt}, \mathcal{Q}}^{(0)}\left(\vec{q}, t_{f}, t_{i}\right)=\left\langle J_{N}\left(\vec{q}, t_{f}\right) \bar{J}_{N}\left(\vec{q}, t_{i}\right) \mathcal{Q}\right\rangle=\left|Z_{N}\right|^{2} e^{-E_{N} t} \frac{2 \alpha^{1} m_{N}}{2 E_{N}} \gamma_{5} .
\end{aligned}
$$

- We need to measure the topological charge \mathcal{Q} via:
\Rightarrow Cooling
\Rightarrow Gradient-Flow

The nEDM: Topological charge

- We calculate the topological charge:

$$
\mathcal{Q}=\int d^{4} x q(x)
$$

- with topological charge density:

$$
q(x)=\frac{1}{32 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} \operatorname{Tr}\left\{G_{\mu \nu} G_{\rho \sigma}\right\}
$$

- We use the improved definition with leading lattice artifacts (clasically) of $O\left(a^{4}\right)$:

$$
q(x)=c_{0} q_{L}^{\text {clov }}(x)+c_{1} q_{L}^{\text {rect }}(x),
$$

with $c_{0}=5 / 3$ and $c_{1}=-1 / 12$ as well as

$$
q_{L}^{\text {clov }}(x)=\frac{1}{32 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} \operatorname{Tr}\left(C_{\mu \nu}^{\text {clov }} C_{\rho \sigma}^{\text {clov }}\right) \quad \text { and } \quad q_{L}^{\text {rect }}(x)=\frac{2}{32 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} \operatorname{Tr}\left(C_{\mu \nu}^{\text {rect }} C_{\rho \sigma}^{\text {rect }}\right)
$$

where

$$
C_{\mu \nu}^{\mathrm{clov}}(x)=\frac{1}{4} \operatorname{Im}(\square) \quad \text { and } \quad C_{\mu \nu}^{\mathrm{rect}}(x)=\frac{1}{8} \operatorname{Im}
$$

- We need to smooth out the ultraviolet fluctuations...

The nEDM: Topological charge

Cooling

- Cooling $U_{\mu}(x) \in S U(N): U_{\mu}^{\text {old }}(x) \rightarrow U_{\mu}^{\text {new }}(x)$ with

$$
\left.P(U) \propto e^{\left(\lim _{\beta \rightarrow \infty} \beta \frac{1}{N} \operatorname{Re} \operatorname{Tr} X_{\mu} \dagger\right.} U_{\mu}\right) .
$$

- Choose a $U_{\mu}^{\text {new }}(x)$ that maximizes:

$$
\operatorname{Re} \operatorname{Tr}\left\{U_{\mu}^{\text {new }}(x) X_{\mu}^{\dagger}(x)\right\}
$$

- One full cooling iteration is noted as $n_{c}=1$.

Gradient Flow

- Solution of the evolution equations:

$$
\begin{aligned}
\dot{V}_{\mu}(x, \tau) & =-g_{0}^{2}\left[\partial_{x, \mu} S_{G}(V(\tau))\right] V_{\mu}(x, \tau) \\
V_{\mu}(x, 0) & =U_{\mu}(x)
\end{aligned}
$$

- With link derivative defined as:

$$
\begin{aligned}
\partial_{x, \mu} S_{G}(U) & =\left.i \sum_{a} T^{a} \frac{\mathrm{~d}}{\mathrm{~d} s} S_{G}\left(e^{i s Y^{a}} U\right)\right|_{s=0} \\
& \equiv i \sum_{a} T^{a} \partial_{x, \mu}^{(a)} S_{G}(U)
\end{aligned}
$$

- Total gradient flow time is expressed as $\tau=n_{\mathrm{int}} \epsilon$.

The nEDM: Topological charge - Equivalence between smoothers

- Recently shown that cooling exhibits equivalence with gradient flow:
- Smoothing with Wilson Action
- Perturbatively $\tau \simeq n_{c} / 3$
[C. Bonati and M. D’Elia, Phys. Rev. D 89, 105005 (2014) [arXiv:1401.2441]]
- Configurations produced with Iwasaki Gauge Action
- Generalize the equivalence for Symanzik improved actions with rectangles
- Smoothing with:

$$
S_{g}=\frac{\beta}{N} \sum_{x}\left(c_{0} \sum_{\substack{\mu, \nu=1 \\ 1 \leq \mu<\nu}}^{4}\left\{1-\operatorname{Re} \operatorname{Tr}\left(U_{x, \mu, \nu}^{1 \times 1}\right)\right\}+c_{1} \sum_{\substack{\mu, \nu=1 \\ \mu \neq \nu}}^{4}\left\{1-\operatorname{Re} \operatorname{Tr}\left(U_{x, \mu, \nu}^{1 \times 2}\right)\right\}\right)
$$

with $c_{0}+8 c_{1}=1$

- Shown that perturbatively $\tau \simeq n_{c} /\left(3-15 c_{1}\right)$
- Consider
* Wilson: $c_{1}=0, \tau \simeq n_{c} / 3$
* Symanzik tree-level improved: $c_{1}=-1 / 12, \tau \simeq n_{c} / 4.25$
* Iwasaki: $c_{1}=-0.331, \tau \simeq n_{c} / 7.965$
[C. Alexandrou, A. A and K. Jansen, Phys. Rev. D 92, 125014 (2015) [arXiv:1509.04259]].

The nEDM: Topological charge - Equivalence between smoothers

The nEDM: Topological charge - Equivalence between smoothers

- We read an observable at a fixed value of $a \sqrt{8 \tau}=O(0.3 \mathrm{fm})$.
[M. Lüscher, JHEP 1008:071 2010 [arXiv:1006.4518v3]].
- For practical reasons we choose a value of $a \sqrt{8 \tau} \approx 0.6 \mathrm{fm}$.
- This corresponds to:

Smoothing action	c_{0}	c_{1}	n_{c} / τ	$n_{c}(a \sqrt{8 \tau} \approx 0.6 \mathrm{fm})$	$\tau\left(n_{c}\right)$
Wilson	1	0	3	20	6.7
Symanzik tree-level improved	$\frac{5}{3}$	$-\frac{1}{12}$	4.25	30	7.1
Iwasaki	3.648	-0.331	7.965	50	6.3

The nEDM: Topological charge - History

The nEDM: Topological charge - Distribution

The nEDM: Topological charge - Distribution

The nEDM: Topological charge - Distribution

The nEDM: 2-pt functions

- We calculate the $2-\mathrm{pt}$ function:

- In practice we evaluate the 2 -pt functions:

$$
\begin{aligned}
G_{2 \mathrm{pt}}\left(\vec{q}, t_{f}, t_{i}, \Gamma_{0}\right) & \equiv\left|Z_{N}\right|^{2} e^{-E_{N}\left(t_{f}-t_{i}\right)} \Gamma_{0}{ }^{\alpha \beta}\left[\Lambda_{1 / 2}(\vec{q})\right]_{\alpha \beta}, \\
G_{2 \mathrm{pt}, \mathcal{Q}}\left(\vec{q}, t_{f}, t_{i}, \Gamma_{5}\right) & \equiv\left|Z_{N}\right|^{2} e^{-E_{N}\left(t_{f}-t_{i}\right)} \Gamma_{5}{ }^{\alpha \beta}\left[\frac{\alpha^{1} m_{N}}{E_{N}} \gamma_{5}\right]_{\alpha \beta} .
\end{aligned}
$$

- With projectors

$$
\Gamma_{0}=\frac{1}{4}\left(\mathbb{1}+\gamma_{0}\right), \quad \Gamma_{5}=\frac{\gamma_{5}}{4},
$$

- We determine the value of α^{1} by:

$$
\mathrm{R}_{2 \mathrm{pt}}\left(\alpha^{1}, t_{f}, t_{i}\right)=\frac{G_{2 \mathrm{pt}, \mathcal{Q}}\left(0, t_{f}, t_{i}, \Gamma_{5}\right)}{G_{2 \mathrm{pt}}\left(0, t_{f}, t_{i}, \Gamma_{0}\right)}
$$

The nEDM: 2-pt Plateaus

- We calculate the plateau:

$$
\Pi_{2 \mathrm{pt}}\left(\alpha^{1}\right)=\lim _{t_{f}-t_{i} \rightarrow \infty} \mathrm{R}_{2 \mathrm{pt}}\left(\alpha^{1}, t_{f}, t_{i}\right)=\alpha^{1} .
$$

- Example of a plateau for Iwasaki action, gradient flow at $\tau=6.3$

The nEDM: α^{1} - Gradient Flow VS Cooling

α^{1} via cooling $\left(n_{c}\right)$ and gradient flow (τ) for Wilson smoothing action

The nEDM: 3-pt functions

- Calculate:

- We extract the $C P$-odd Form-Factors $F_{3}\left(q^{2}\right)$ from:

$$
\begin{aligned}
\mathrm{R}_{3 \mathrm{pt}, \mathcal{Q}}^{\mu}\left(\vec{q}, t_{f}, t_{i}, t, \Gamma_{k}\right) & =\frac{G_{3 \mathrm{pt}, \mathcal{Q}}^{\mu}\left(\vec{q}, t_{f}, t_{i}, t, \Gamma_{k}\right)}{G_{2 \mathrm{pt}}\left(\vec{q}, t_{f}-t_{i}, \Gamma_{0}\right)} \\
& \times \sqrt{\frac{G_{2 \mathrm{pt}}\left(\vec{q}, t_{f}-t, \Gamma_{0}\right) G_{2 \mathrm{pt}}\left(\overrightarrow{0}, t-t_{i}, \Gamma_{0}\right) G_{2 \mathrm{pt}}\left(\overrightarrow{0}, t_{f}-t_{i}, \Gamma_{0}\right)}{G_{2 \mathrm{pt}}\left(\overrightarrow{0}, t_{f}-t, \Gamma_{0}\right) G_{2 \mathrm{pt}}\left(\vec{q}, t-t_{i}, \Gamma_{0}\right) G_{2 \mathrm{pt}}\left(\vec{q}, t_{f}-t_{i}, \Gamma_{0}\right)}} .
\end{aligned}
$$

- We calculate the plateau:

$$
\Pi_{3 \mathrm{pt}}^{\mu}\left(\Gamma_{k}\right)=\lim _{t_{f}-t \rightarrow \infty} \lim _{t-t_{i} \rightarrow \infty} \mathrm{R}_{3 \mathrm{pt}}^{\mu}\left(\vec{q}, t_{f}, t_{i}, t, \Gamma_{k}\right) .
$$

- Projectors:

$$
\Gamma_{k}=\frac{i}{4}\left(\mathbb{1}+\gamma_{0}\right) \gamma_{5} \gamma_{k} \quad(k=1,2,3) .
$$

The nEDM: 3-pt functions

- The above plateau gives:
$\Pi_{3 \mathrm{pt}, \mathcal{Q}}^{0}\left(\Gamma_{k}\right)=i \sqrt{\frac{2 m_{N}^{2}}{E_{N}\left(E_{N}+m_{N}\right)}} Q_{k}\left[\frac{\alpha^{1} F_{1}\left(Q^{2}\right)}{2 m_{N}}+\frac{\left(E_{N}+3 m_{N}\right) \alpha^{1} F_{2}\left(Q^{2}\right)}{4 m_{N}^{2}}+\frac{\left(E_{N}+m_{N}\right) F_{3}\left(Q^{2}\right)}{4 m_{N}^{2}}\right]$.
- We elliminate F_{1} and F_{2} through the $C P$-even plateaus:

$$
\begin{aligned}
\Pi_{F_{3}}^{k} & =-i \Pi_{3 \mathrm{pt}, \mathcal{Q}}^{0}\left(\Gamma_{k}\right)+i \alpha^{1} \Pi_{3 \mathrm{pt}}^{k}\left(\Gamma_{0}\right)+\alpha^{1} \frac{1}{2} \sum_{i, j=1}^{3} \epsilon_{j k i} \Pi_{3 \mathrm{pt}}^{j}\left(\Gamma_{i}\right) \\
& =\sqrt{\frac{E_{N}+m_{N}}{8 E_{N} m_{N}^{2}}} Q_{k} F_{3}\left(Q^{2}\right)
\end{aligned}
$$

- Momentum Q_{k} hinders a direct evaluation of $F_{3}\left(Q^{2}=0\right)$
- Usual parametrization in Q^{2} and then fit with Dipole ansatz
- "Application of the derivative to the ratio technique".
[D. Guadagnoli et al, JHEP 0304 (2003) 019, [arXiv:hep-lat/0210044]]
- "The elimination of the momentum in the plateau region technique"
[C. Alexandrou et al, PoS LATTICE2014 (2014) 075, [arXiv:1410.8818]]

The nEDM: Extraction of $F_{3}(0)$ via Dipole Fit

- We extract the plateau $\Pi_{F_{3}}^{k}\left(Q^{2}, \Gamma_{k}\right)$ for momentum transfer Q^{2} :
(Averaging over all momentum directions and index $k \ldots$..)
for $t_{f}-t_{i}=10 a, t_{f}-t_{i}=12 a$ and $t_{f}-t_{i}=14 a$ (we chose results for $t_{f}-t_{i}=12 a$)
- We use the value of α^{1} to build the ratio which leads to $F_{3}\left(Q^{2}\right)$ via $\Pi_{F_{3}}^{k}$.
- We parametrize $F_{3}\left(Q^{2}\right)$ in momentum transfer Q^{2}.
- We finally perform a dipole fit:

$$
F_{3}\left(Q^{2}\right)=\frac{F_{3}(0)}{\left(1+\frac{Q^{2}}{m_{F_{3}}^{2}}\right)^{2}} .
$$

The nEDM: Extraction of $F_{3}(0)$ via Dipole fit

Example of a plateau for Iwasaki action, gradient flow at $\tau=6.3$ and $Q^{2} \simeq 0.17 \mathrm{GeV}^{2}$:

The nEDM: Extraction of $F_{3}(0)$ via Dipole fit

Example of a dipole fit for Iwasaki action, gradient flow at $\tau=6.3$ and $Q^{2} \leq 1 \mathrm{GeV}^{2}$:

The nEDM: Extraction of $F_{3}(0)$ via Dipole fit
$F_{3}(0) / 2 a m_{N}$ via cooling $\left(n_{c}\right)$ and gradient flow (τ) :

The three smoothing actions give consistent results!

The nEDM: Extraction of $F_{3}(0)$ via Derivative on the ratio

- Assuming continuous momenta one can remove the Q_{k} dependence in front of $F_{3}\left(Q^{2}\right)$:

$$
\lim _{Q^{2} \rightarrow 0} \frac{\partial}{\partial Q_{j}} \Pi_{F_{3}}^{k}(\vec{Q})=\sqrt{\frac{E_{N}+m_{N}}{8 E_{N} m_{N}^{2}}} \delta_{k j} F_{3}(0) .
$$

- We build ratios such as:

$$
\lim _{Q^{2} \rightarrow 0} \frac{\partial}{\partial Q_{j}} \mathrm{R}_{3 \mathrm{pt}, \mathcal{Q}}^{\mu}\left(\vec{q}, t_{f}, t_{i}, t, \Gamma_{k}\right)=\frac{1}{G_{2 \mathrm{pt}}\left(\overrightarrow{0}, t_{f}, t_{i}, \Gamma_{0}\right)} \cdot \sum_{x_{j}=-L / 2+a}^{L / 2-a}\left(\sum_{\substack{x_{i}=0 \\ i \neq j, i=1,2,3}}^{L-a} i x_{j} G_{3 \mathrm{pt}, \mathcal{Q}}^{\mu}\left(\vec{x}, t_{f}, t_{i}, t, \Gamma_{k}\right)\right)
$$

- Requires position space correlators $G_{\mu J_{N} J_{\mu}^{\mathrm{em}} \mathcal{Q} J_{N}}^{(0)}\left(\vec{x}, t_{f}, t_{i}, t, \Gamma_{k}\right)$
- In finite volume this approximates the derivative of δ-function:

$$
\begin{array}{r}
a^{3} \sum_{x_{j}=-L / 2+a}^{L / 2-a}\left(\sum_{\substack{x_{i}=0 \\
i \neq j}}^{L-a} i x_{j} G_{3 \mathrm{pt}, \mathcal{Q}}^{\mu}\left(\vec{x}, t_{f}, t_{i}, t, \Gamma_{k}\right)\right)= \\
V
\end{array} \sum_{\vec{k}}\left(a^{3} \sum_{x_{j}=-L / 2+a}^{L / 2-a}\left(\sum_{\substack{x_{i}=0 \\
i \neq j}}^{L-a} i x_{j} \exp (i \vec{k} \vec{x})\right)\right) G_{3 \mathrm{pt}, \mathcal{Q}}^{\mu}\left(\vec{k}, t_{f}, t_{i}, t, \Gamma_{k}\right) .
$$

- Residual t-dependence $G_{3 \mathrm{pt}, \mathcal{Q}}^{\mu,(0)}\left(\vec{q}, t_{f}, t_{i}, t, \Gamma_{k}\right) \sim \exp \left(-\Delta E_{N} t\right)$, with $\Delta E_{N} \rightarrow 0$ for $L \rightarrow \infty$ [W. Wilcox, Phys.Rev. D66 (2002) 017502, [arXiv:hep-lat/0204024]]

The nEDM: Extraction of $F_{3}(0)$ via Derivative on the ratio

Example of a plateau for Iwasaki action and gradient flow at $\tau=6.3$:

The nEDM: Extraction of $F_{3}(0)$ via Momentum Elimination

- Define a suitable ratio such that:

$$
\Pi_{F_{3}}^{k}=-i \Pi_{3 \mathrm{pt}, \mathcal{Q}}^{0}\left(\Gamma_{k}\right)+i \alpha^{1} \Pi_{3 \mathrm{pt}}^{k}\left(\Gamma_{0}\right)+\alpha^{1} \frac{1}{2} \sum_{i, j=1}^{3} \epsilon_{j k i} \Pi_{3 \mathrm{pt}}^{j}\left(\Gamma_{i}\right)=\sqrt{\frac{E_{N}+m_{N}}{8 E_{N} m_{N}^{2}}} Q_{k} F_{3}\left(Q^{2}\right)
$$

- On-axis momenta e.g. $\vec{q}=(\pm \tilde{Q}, 0,0)^{T}$
- Fourier transform on $\Pi(\tilde{Q}) \rightarrow \Pi(y)$ in position space; with $(n=y / a)$

$$
\Pi(y)= \begin{cases}+\Pi(n), & n=0, \ldots, N / 2 \\ -\Pi(N-n), & n=N / 2+1, \ldots, N-1, N=L / a\end{cases}
$$

- Average over pos. and neg. y we get $\rightarrow \bar{\Pi}(n)$
- Finally transform back and introduce continuous momenta k :

$$
\Pi(k)=[\exp (i k n) \bar{\Pi}(n)]_{n=0, N / 2}+2 i \sum_{n=1}^{N / 2-1} \bar{\Pi}(n) \sin \left(\frac{k}{2} \cdot(2 n)\right)
$$

- We define $\hat{k} \equiv 2 \sin \left(\frac{k}{2}\right)$ and $P_{n}\left(\hat{k}^{2}\right)=P_{n}\left(\left(2 \sin \left(\frac{k}{2}\right)\right)^{2}\right)=\sin (n k) / \sin \left(\frac{k}{2}\right)$ and obtain:

$$
\Pi(\hat{k})-\Pi(0)=i \sum_{n=1}^{N / 2-1} \hat{k} P_{n}\left(\hat{k}^{2}\right) \bar{\Pi}(n)
$$

- $P_{n}\left(\hat{k}^{2}\right)$ is related to Chebyshev polynomials of the $2^{\text {nd }}$ kind

The nEDM: Extraction of $F_{3}(0)$ via Momentum Elimination

- By applying the derivative in respect to \hat{k} :

$$
\frac{F_{3}\left(\hat{k}^{2}\right)}{2 m_{N}}=i \sum_{n=1}^{N / 2-1} P_{n}\left(\hat{k}^{2}\right) \bar{\Pi}(n)
$$

- Generalize to off-axis momentum classes
$M\left(\tilde{Q}, Q_{\mathrm{off}}^{2}\right)=\left\{\vec{q} \mid \vec{q}=\left\{ \pm \tilde{Q}, Q_{1}, Q_{2}\right\}, Q_{1}^{2}+Q_{2}^{2}=q_{\mathrm{off}}^{2}\right\}$
where $\left\{ \pm \tilde{Q}, Q_{1}, Q_{2}\right\}$ denotes all possible permutations of $\pm \tilde{Q}, Q_{1}$ and Q_{2}
- To combine results for $F_{3}\left(Q^{2}\right) /\left(2 m_{N}\right)$ for different momentum classes $Q_{\text {off }}$ and arrive at (Euclidean) $Q^{2}\left(\hat{k}, Q_{\text {off }}^{2}\right)=0$: Analytic Continuation:

$$
\begin{aligned}
k & \rightarrow i \kappa \\
\hat{k} & \rightarrow i \hat{\kappa}=-2 \sinh \left(\frac{\kappa}{2}\right) \\
P_{n}\left(\hat{k}^{2}\right) \rightarrow P_{n}\left(\hat{\kappa}^{2}\right) & =\sinh (n \kappa) / \sinh \left(\frac{\kappa}{2}\right)
\end{aligned}
$$

Final formular takes similar form:

$$
\frac{F_{3}\left(\hat{\kappa}^{2}\right)}{2 m_{N}}=i \sum_{n=1}^{N / 2-1} P_{n}\left(\hat{\kappa}^{2}\right) \bar{\Pi}(n)
$$

Combine results from different sets of $M\left(\tilde{Q}, Q_{\text {off }}^{2}\right)$ by taking the error weighted average.

The nEDM: Extraction of $F_{3}(0)$ via Elimination of momentum
$F_{3}\left(Q^{2}\right) / 2 m_{N}$ via gradient flow ($\tau=6.3$) with the Iwasaki smoothing action extracted for $Q_{\text {offmax }}^{2}=5(2 \pi / L)^{2}$:

The nEDM: Comparison

Weighted results for the three different smoothing actions with \mathcal{Q} extracted via cooling (open symbols) and the gradient flow (closed symbols):

The nEDM: Comparison

Our result $(*)$ compared to other works:

(©) Ottnad et. al. ChPT, [arXiv:0911.3981 [hep-ph]], (■) Shintani et al, ($\boldsymbol{\nabla}$) Shintani et al [arXiv:0803.0797].

The nEDM: Corrected Values

- Without rotation Phase $e^{i \alpha \gamma_{5}}$ there is mixing of F_{2} and F_{3}. [Abramczyk, et al, arXiv:1701.07792]

The nEDM: What we learn?

- Calculate the nEDM for B 55.32 at $M_{\pi} \simeq 370 \mathrm{MeV}$.
- Implemented three momentum dependence treating techniques:
- Dipole fit.
- Application of the derivative to the ratio.
- Elimination of the momentum in the plateau region.
- Implemented two smoothers and demonstrated equivalence:
- Cooling.
- Gradient Flow.
- Used three smoothing actions:
- Wilson.
- Symanzik tree-level improved.
- Iwasaki.
- All combinations give similar results!
- Our result agrees with older estimations!
- We are looking forward to the physical point - continuum limit.

