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II. Formulation of the Problem

The Problem

Text Book Solutions
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The Problem
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Behavior of the chiral condensate for Nf = 1 for QCD at θ = 0 (left) and for

QCD at fixed topology (right) .

Σ(m) = −〈q̄q〉 = 1

V

d

dm
logZ(m) =

〈

1

V

∑

k

m

λ2k +m2

〉

.

This suggests that the condensate changes sign when the quark mass

changes sign.
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Two Flavor QCD
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Behavior of the chiral condensate for Nf = 2 QCD with m1 = 1.5 and

m2 = m at θ = 0 (left) and the same for fixed topology (right) .

Chiral condensate

Σ(m) = −〈q̄q〉 = 1

V

d

dm
logZ(m,m2).
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Motivation
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Behavior of the chiral condensate for Nf = 1 (left) and Nf = 2 (right).

� What is the role of the zero modes?

� What is the differences between one and two flavors?

� Can we understand this behavior in terms of the Dirac spectrum,

also because of statements in the literature that are not

satisfactory. Creutz-2005
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One Flavor QCD

� Chiral symmetry is broken by the anomaly.

� There is no spontaneous symmetry breaking and there are no

Goldstone bosons.

� The mass dependence of the one flavor QCD partition function is

given by

Z = emV Σcos θ+O(m2V ).

� Among others, the chiral condensate vanishes for θ = π/2 .
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Text Book Solution for Two-Flavor QCD

Chiral symmetry is broken spontaneously, and in the low energy limit,

the partition function is given by the chiral Lagrangian,

Z(m1,m2) =

∫

U∈SU(2)

dU exp[V ΣTr diag(m1,m2)(Ue
iθ/2 + U−1e−iθ/2)].

In the thermodynamical limit U aligns with the mass term resulting in

Z(m1,m2) =
I1(

√

m2
1 +m2

2 + 2m1m2 cos θ)
√

m2
1 +m2

2 + 2m1m2 cos θ
≈ emV Σ|m1+m2|

Leutwyler-Smilga-1992

This results in the chiral condensate

〈ψ̄ψ〉 = 1

V
∂m logZ(m,m2) ∼ sign(m+m2).
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Phase Diagram of Two-Flavor QCD

Horkel-Sharpe-2015

Phase diagram of two-flavor QCD.
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III. Role of the Zero Modes

One Flavor QCD

Two Flavor QCD

Universal Formula

Dirac Spectra – p. 12/42



Text Book Solution for Nf = 1

|〈ψ̄ψ〉| =
〈

1

V

∑

ν

∑

k

1

m+ λk

m|ν|
∏

(λ2n +m2)
〈
∑

ν m
|ν|

∏

(λ2n +m2)
〉

〉

.

When m≪ 1/V the sum over the eigenvalues is dominated by the

zero modes, but only the ν = ±1 contributions remain for m→ 0 .

|〈ψ̄ψ〉| = 2

V

〈

∏

λn 6=0(λ
ν=1 2
n +m2)

〉

〈

∏

λn 6=0(λ
ν=0 2
n +m2)

〉 .

Issues:

� The limits are taken in the wrong order. What happens if we take

the V → ∞ limit before the chiral limit?

� When m < 0 there are large cancellations in the denominator

which can make the partition function exponentially small.
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Zero Modes and Two Flavor QCD

The arguments of one flavor QCD can also be applied to two-flavor

QCD

|〈ψ̄ψ〉| = 1

V

∑

ν

∑

k

1

m+ λk

(mm2)
|ν|

∏

(λ2n +m2)(λ2n +m2
2)

∑

ν(mm2)|ν|
∏

(λ2n +m2)(λ2n +m2
2)
.

When m≪ 1/V at fixed m2 the sum over the eigenvalues is

dominated by the zero modes, but only the ν = ±1 contributions

remain for m→ 0 .

|〈ψ̄ψ〉| = 2

V

∏

λn 6=0(λ
ν=1 2
n +m2)(λν=1 2

n +m2
2)

∏

λn 6=0(λ
ν=0 2
n +m2)(λν=0 2

n +m2
2)
.
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Zero Mode Contribution to Chiral Condensate

Issues:

� What happens to these contributions if we take the V → ∞ limit

before the chiral limit?

� When mm2 < 0 there are large cancellations in the denominator,

and as we will see next, this makes the partition function

exponentially small and the condensate exponentially large.

Dirac Spectra – p. 15/42



Zero Mode Contribution to Chiral Condensate

ΣZM(~m, θ) =
1

V

∑

ν

eiνθ
|ν|
m

Zν(~m)

Z(~m, θ)
.

Inserting a the δνν′ we obtain

Σ(~m, θ) =
1

V

∫

dφ

2π

∑

νν′

eiνφ
|ν|
m

eiν
′(θ−φ)Zν′(~m)

Z(~m, θ)
.

The sum over ν can be evaluated

∑

ν

|ν|eiνφ = − 1

2 sin2 φ/2
.

We then find that the zero mode contribution to the chiral condensate

is given by

Σzm(~m, θ) =
1

mV

∫

dφ

2π

−1

2 sin2 φ/2

Z(~m, θ − φ)− Z(~m, θ)

Z(~m, θ)
.
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Zero Mode Contribution

Σzm(~m, θ) =
1

mV

∫

dφ

2π

−1

2 sin2 φ/2

Z(~m, θ − φ)− Z(~m, θ)

Z(~m, θ)
.

This is a completely general formula for the zero mode contribution to

the chiral condensate.

The integral is dominated by the region around φ = θ, and for mV ≫ 1

,

Σzm(~m, θ) ∼ 1

mV

−1

2 sin2 θ/2

Z(~m, θ = 0)

Z(~m, θ)
.

For one and two flavor QCD we obtain for mV ≫ 1

ΣNf=1(m, θ) ∼ 1

mV
e(|m|−m cos θ)ΣV

ΣNf=2(m,m2, θ) ∼ 1

mV
e(|m|+|m2|−

√
m2+m2

2
+2mm2 cos θ)ΣV .

Diverges exponentially in V except at θ = 0 .
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Zero Modes and the Chiral Condensate
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How to Get a Finite Chiral Condensate

� We see that the statement that for Nf = 1 the chiral condensate

comes from the zero modes is exponentially wrong.

� For two-flavor QCD the contribution from the zero modes is

exponentially large as well

� We know that the chiral condensate is finite, so that this

contribution should be canceled by another exponentially large

contribution.

� Let us looked at the quenched part of the chiral condensate.
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III. Decomposition of the Chiral Condensate

Decomposition of the Chiral Condensate

Universal Result for the Quenched Contribution

Cancellation of exponential large Terms
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Decomposition of the Spectral Density and Chiral
Condensate

ρν(~m, x) = ρZMν (x) + ρqν(x) + ρdν(~m, x).

The spectral density at fixed θ can also be decomposed into a zero

mode part, a quenched part and a dynamical part,

ρ(~m, θ) =
∑

ν

eiνθ
Zν(~m)

Z(~m, θ)

= ρZMν (~m, θ) + ρqν(~m, θ) + ρdν(~m, θ).

Note that the zero mode part and the quenched part now depend on

~m .

The chiral condensate can also be decomposed in the same way, both

at fixed ν and at fixed θ. The quenched condensate at fixed ν only

depends on one valence mass, but at fixed θ it depends on all masses.
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The Microscopic Domain of QCD

We will do calculations in the microscopic domain of QCD.

In this domain, also know as the ǫ -domain, the quark mass and the

Dirac eigenvalues scale in the thermodynamic limit as

m ∼ 1

V
, λ ∼ 1

V
.

Correction terms will enter when m,λ ≈ 1/ΛQCD

√
V .

In this domain, the spectral density can be evaluated analytically.
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Spectral Density at Fixed ν for Nf = 1

The one-flavor spectral density in the ǫ -domain is given by

ρν(λ,m) = ρZM(x) + ρq(x) + ρd(m,x)

= |ν|δ(x̂) + x̂

2
(J2

ν (x̂)− Jν+1(x̂)Jν−1(x̂))

− x̂

m̂2 + x̂2

[

x̂Jν(x̂)Jν+1(x̂)− m̂
Iν+1(m̂)

Iν(m̂)
J2
ν (x̂)

]

.

Damgaard-Osborn-Toublan-JV-1999

x̂ ≡ λΣV, m̂ ≡ mΣV

Σq
ν(m) =

∫

dx
2m

m2 + x2
ρqν(x).
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Quenched Chiral Condensate

Condensate corresponding to ρν(x) =
x̂
2 (J

2
ν (x̂)− Jν+1(x̂)Jν−1(x̂)) at

fixed θ-angle is given by

ΣNf=0(m, θ) =
1

2mV sin2 θ/2
− K1(2V |m sinφ/2|)

sign(m)| sin θ/2| .
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Microscopic Spectral Density at fixed ν

5 xV

0.25

Ρ
Ν
HxL

The one microscopic spectral density for ν = 2 and mV = 1 (red)

compared to the quenched result for ν = 2 (blue).
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Quenched Part of the Chiral Condensate

Σq(~m, θ) =
∑

ν

eiνθΣq
ν(m)

Zν(~m)

Z(~m, θ)

=

∫

dφ

2π

∑

νν′

eiν
′θΣq

ν(m)ei(ν−ν′)φ Zν′(~m)

Z(~m, θ)

=

∫

dφ

2π
ΣNf=0(m,φ)

Z(~m, θ − φ)

Z(~m, θ)

=

∫

dφ

2π

[

1

2mV sin2 φ/2
− K1(2mV | sinφ/2|)

sign(m)| sinφ/2|

]

Z(~m, θ − φ)

Z(~m, θ)

The first term cancels exactly against the zero mode contribution.

Because K1(x) ∼ exp(−x) the second term is exponentially smaller. It

turns out the total exponent in the numerator is the same as in the

denominator and the total integral becomes O(1) .
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Quenched Part of the Chiral Condensate
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Quenched part of the chiral condensate.
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Quenched and Zero Mode Part of the Chiral
Condensate
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IV. The Bottom Line

Addition of the Contributions
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Quenched and Zero Mode Part of the Chiral
Condensate
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Quenched and Zero Mode Part of the Chiral
Condensate
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Dirac Spectra – p. 31/42



Chiral Condensate for θ = π/2
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Kieburg-JV-Wettig-2017

Σq ∼ 1√
2π|m|3/2

e|m|V Σ[1 +O(1/mV Σ)]

ΣZM ∼ − 1√
2π|m|3/2

e|m|V Σ[1 +O(1/mV Σ)]
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Contributions to the Nf = 2 Chiral Condensate
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Contributions to the Nf = 2 Chiral Condensate
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Adding the Contributions
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V. Banks-Casher and Dirac Spectrum

Dirac spectrum
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Is the Banks-Casher Relation Still Valid

� Also for Nf = 1 the Dirac operator is anti-Hermitian with a Dirac

spectrum that is dense on the the imaginary axis.

� The discontinuity of the chiral condensate has to be canceled. This

can do done if the spectral oscillates with a period of order 1/V

and an amplitude that increases exponentially with V . This

mechanism was first discovered for QCD at nonzero chemical

potential Osborn-Splittorff-JV-1996.

� The conclusion that the spectral density vanishes because the

chiral condensate is continuous is incorrect.

� At fixed topology The Dirac spectrum is dense on the imaginary

axis and gives rise to a discontinuity of the chiral condensate

according to the Banks-Casher formula.
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Spectral Density for θ = π/2

The spectral density of the eigenvalues of the Dirac operator for

one-flavor QCD. The quenched part is shown in the left figure and the

dynamical part in the right figure. Kieburg-JV-Wettig-2017

The chiral condensate corresponding to this spectral density should

vanish!
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Spectral Density for Two Flavors

Spectral density of the QCD Dirac operator for θ = 0 and m̂2 = 10 .

Left we show the quenched contribution and right the correction

induced by the fermion determinant.
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Analytical Expression for One and Two Flavors

Spectral density in the microscopic domain for one flavor QCD,

ρ(x,m, θ) =
|z|

z2 +m2

∫ π

−π

dφ

2π

Z(m, θ − φ)

Z(m, θ)
[(m2 + z2 cosφ)

J1(2z sinφ/2)

2z sinφ/2

−m cos(θ − φ)J0(2z sinφ/2)]

Spectral density in the microscopic domain for two flavor QCD,

ρ(z,m1,m2, θ) =
|z|

2Z(m1,m2, θ)

∫ π

−π

dφ

2π

((

−2J1(2z cosφ/2)

2z cosφ/2

−
2ze−i(φ/2+θ)(2m1m2 − (m2

2 +m2
1)e

i(θ+φ))

(z2 +m2
1)(z

2 +m2
2)

J1(2z cosφ/2)

)

Z(m1,m2, θ + φ)

−
2J0(2z cosφ/2)

(z2 +m2
1)(z

2 +m2
2)

I0(
√

m2
1 +m2

2 − 2m1m2 cos(θ + φ))
(

m1m2e
−i(θ+φ) − z2eiφ

)

)

Kieburg-JV-Wettig-2017
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V. Conclusions

� One and two-flavor QCD show a Silver Blaze phenomenon when

the chiral condensate remains constant while the quark mass

crosses a line of eigenvalues.
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� We have obtained a compact formula for the contribution of the

zero modes the chiral condensate. The contribution grows

exponentially with the volume when θ 6= 0 .
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the chiral condensate remains constant while the quark mass

crosses a line of eigenvalues.

� We have obtained a compact formula for the contribution of the

zero modes the chiral condensate. The contribution grows

exponentially with the volume when θ 6= 0 .

� This exponentially increasing part is canceled by the quenched

part of the chiral condensate.
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V. Conclusions

� One and two-flavor QCD show a Silver Blaze phenomenon when

the chiral condensate remains constant while the quark mass

crosses a line of eigenvalues.

� We have obtained a compact formula for the contribution of the

zero modes the chiral condensate. The contribution grows

exponentially with the volume when θ 6= 0 .

� This exponentially increasing part is canceled by the quenched

part of the chiral condensate.

� From QCD at nonzero chemical potential we have learnt that the

solution of the Silver Blaze problem requires an oscillating spectral

density with period ∼ 1/V and an amplitude that grows

exponentially with the volume. This also happens for QCD at

nonzero θ angle, but in addition, the zero modes are essential for

canceling an exponential increasing part of the chiral condensate.
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V. Conclusions

� In the ǫ domain of QCD we have obtained simple exact analytical

expressions for the eigenvalue density of the Dirac operator at

θ 6= 0 both for one and two flavors.
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V. Conclusions

� In the ǫ domain of QCD we have obtained simple exact analytical

expressions for the eigenvalue density of the Dirac operator at

θ 6= 0 both for one and two flavors.

� Contributions of zero models and nonzero modes have to be

perfectly balanced. Lattice simulations at nonzero θ angle can

only be trusted if this balance is preserved by the algorithm.
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