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theoretical descriptions in the high energy limit:  

2 alternatives 
a) t-channel perspective ~ BFKL  

(unintegrated gluon densities)

based on  
• gluon reggeization  

• effective (gauge 
invariant) production 
vertices 

= original derivation of 
BFKL evolution
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theoretical descriptions in the high energy limit:  

2 alternatives 
a) t-channel perspective ~ BFKL  

(unintegrated gluon densities) 
b) s-channel perspective ~ dipole picture

based on  

• propagators which resum strong 
gluing background field to all 
orders 

• path integral average over 
background field configurations 

basis of derivation of JIMWLK/BK 
evolution equation



relation non-trivial
• gluon Regge trajectory ω(t) re-obtained relatively 

late from JIMWLK evolution [Caron-Huot, 1309.6521]. 
• first: BFKL evolution in coordinate space = low 

density limit of JIMWLK/BK evolution [Jalilian-Marian, Kovner, 
Leonidov, Weigert, NPB 504 415 (1997)] 

• later on: BKP evolution,   
triple Pomeron vertex, … 

• in general: very similar structure, but immediate 
one-to-one correspondence not directly obvious

[Bartels, Lipatov, Vacca,  hep-ph/0404110]
[Chirilli, Szymanowski, Wallon,1010.0285]
[Ayala, Cazaroto, Hernandez, Jalilian-
Marian; 1408.3080]



essential difficulty
• traditional BFKL calculations: high energy limit of 

QCD scattering amplitudes 
• heavy use of unitarity & renormalizability of theory, 

analyticity of scattering amplitudes + s-channel 
bootstrap 

• similar for extensions (BKP, triple Pomeron vertex) 
• Color Glass Condensate formalism/Balitsky-

JIMWLK evolution = an effective theory   
↔︎ QCD correlators in presence of a background 
field (often in light-cone gauge)



an action formalism for reggeized gluons: 
Lipatov’s high energy effective action [Lipatov; hep-ph/9502308]

...

...

basic idea:

correlator with regions 
localized in rapidity, 

significantly separated 
from each other 

factorize using auxiliary 
degree of freedom = 
the reggeized gluon



• idea: factorize QCD amplitudes in the high energy 
limit through introducing a new kind of field: the 
reggeized gluon A± (conventional QCD gluon:     )

• reggeized gluon globally charged 
under SU(NC)

2 The High-Energy E↵ective Action

Within the framework provided by Lipatov’s e↵ective action [11, 12], QCD amplitudes are
in the high energy limit decomposed into gauge invariant sub-amplitudes which are localized
in rapidity space. The e↵ective Lagrangian then describes the coupling of quarks ( ) and
gluon (v

µ

) fields to a new degree of freedom, the reggeized gluon field A±(x). The latter
is introduced as a convenient tool to reconstruct the complete QCD amplitudes in the high
energy limit out of the sub-amplitudes restricted to small rapidity intervals. Lipatov’s e↵ective
action is obtained by adding an induced term S

ind.

to the QCD action S
QCD

,

S
e↵

= S
QCD

+ S
ind.

, (1)

where the induced term S
ind.

describes the coupling of the gluonic field v
µ

= �itava
µ

(x) to the
reggeized gluon field A±(x) = �itaAa

±(x), with ta a SU(N
c

) generator in the fundamental
representation, tr(tatb) = �ab/2. For the definition of light-cone directions we follow the
conventions established in the original publication [11],

k± = n± · k = n⌥ · k = k⌥, (2)

with n± · n⌥ = 2 and (n±)2 = 0. This implies the following Sudakov decomposition of a four
momentum

k =
k+

2
n� +

k�

2
n+ + k =

k�
2

n
+

+
k
+

2
n� + k. (3)

Note that transverse momenta and coordinates will be denoted by bold letters. Furthermore

@±x± = 2, @⌥x± = 0 . (4)

High energy factorized amplitudes reveal strong ordering in plus and minus components of
momenta which leads to the following kinematic constraint obeyed by the reggeized gluon
field:

@
+

A�(x) = 0 = @�A
+

(x). (5)

Even though the reggeized gluon field is charged under the QCD gauge group SU(N
c

), it is
defined to be invariant under local gauge transformation �

L

A± = 0. With the local gauge
transformations of gluon and quark fields given by

�
L

vµ =
1

g
[D

µ

,�
L

], �
L

 = ��
L

 . D
µ

= @
µ

+ gv
µ

, (6)

where D
µ

denotes the covariant derivative and �
L

the parameter of the local gauge trans-
formations which decreases for x ! 1, the reggeized gluons fields are invariant under local
gauge transformations,

�
L

A± =
1

g
[A±,�

L

] = 0 . (7)
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• but invariant under local gauge transformation

→ gauge invariant factorization of QCD correlators

vs.

kinematics (strong ordering in light-cone 
momenta between different sectors):
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underlying idea: 
➜ integrate out specific details of 

(relatively) fast +/- fields 
➜ description in sub-amplitude local 

in rapidity: QCD Lagrangian + 
universal eikonal factor  

➜ effective field theory for each local 
rapidity cluster

Forward Higgs production at NLO in the heavy quark limit
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reggeized gluon field A±(x) = �itaAa

±(x), with ta a SU(N
c

) generator in the fundamental
representation, tr(tatb) = �ab/2. High energy factorized amplitudes reveal strong ordering in
plus and minus components of momenta which leads to the following kinematic constraint
obeyed by the reggeized gluon field:

@
+
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(x). (2)
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), it is
defined to be invariant under local gauge transformation �
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where D
µ

denotes the covariant derivative and �
L

the parameter of the local gauge trans-
formations which decreases for x ! 1, the reggeized gluons fields are invariant under local
gauge transformations,

�
L

A± =
1

g
[A±,�

L

] = 0 . (4)

The kinetic term and the gauge invariant coupling of the reggeized gluon field to the QCD
gluon field are provided by the induced term

S
ind.

=

Z

d4x

⇢

tr
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(W�[v(x)]�A�(x)) @
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The functionals W±[v] can be obtained from the following operator definition
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@±
v± � . . . (6)

where the integral operator is implied to act on a unit constant matrix from the left. For
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eikonal factor 
= special
• Combination with reggeized gluon field  in action  
→ projected on SU(Nc) color octet 

• real production: immediately purely anti-symmetric 
terms ~ SU(N) structure constants  

• loop corrections: need pole-prescription → use 
explicit projection on purely anti-symmetric terms  
[MH, 1112.4509]

• symmetric terms: multiple reggeized gluon 
exchange
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example:  
“scattering” of a 
Wilson line on a 
quark
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A Multi-gluon exchange within the high energy e↵ective ac-
tion
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Figure 3: Left: 2 gluon exchange within QCD. Right: The corresponding decomposition within the

high energy e↵ective action in symmetric (2 reggeized gluon exchange) and anti-symmetric contribution

We consider in the following the interaction of a Wilson line in the fundamental repre-
sentation with a color current, where the interaction is mediated through the exchange of
reggeized gluons. To embed the Wilson line into a physical process (and to take the regarding
high energy limit), one can for instance use the vertex Eq. (41), and combine it with corre-
sponding quark spinors; this relates then the following discussion to scattering of a quark on
a color current. For definiteness we take for the color current on which the Wilson is scat-
tering a quark. The following result does not depend on those details. We are further only
interested in t-channel gluon exchange of (high energy) gluons between the Wilson line and
the color current; couplings of the reggeized gluon to the quark take therefore place through
the QCD quark-gluon vertex as well as induced vertices Fig. 1.

Starting with two gluon exchange as the first non-trivial contribution we have within con-
ventional QCD the two diagrams depicted in Fig. 3.a-b, while the two relevant contributions
within the high energy e↵ective action are given in Fig. 3.c-e. The black blob denotes the
various couplings of the reggeized gluon to the Wilson line. For two reggeized gluons one has
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Due to high-energy kinematics, the loop integral in the diagram with two reggeized gluon
exchange of Fig. 3.c factorizes. It is therefore possible to associate the integration over minus
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• only multiple (=2) gluon exchange 
contr. 

• QCD: 2 diagrams
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effective action:

decompose Wilson line into 3 
contributions (the last one =0)
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momentum directly with the Wilson line:
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= (ig)2S
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In the above we used a short-hand notation, introduced in [28],

[i, j] ⌘ [tci , tcj ] S
n

(1 . . . n) ⌘ 1

n!

X

i1,...,in

tci1 · · · tcin (80)

where in the second term the sum is taken over all permutations of the numbers 1, . . . , n.
Using this notation, a possible decomposition of a color tensor with two adjoint color indices
is given by the following basis,

[1, 2], S
2

(12) . (81)

In [28], this decomposition has been used to construct the the pole prescription for induced
vertices, by projecting out the anti-symmetric sector of the complete color structure of a Wil-
son line. Using this pole prescription and associating the integration over minus momentum
similar with the 1 reggeized gluon to 2 reggeized gluon splitting, similar to Eq. (79), it is then
straightforward to demonstrate that diagrams such as Fig. 3.e vanishes. We note that this
holds for all splittings of a single reggeized gluons into n reggeized gluons at tree-level, i.e.
such splittings are generally absent within this particular pole prescription5 after integration
over corresponding light-cone momenta. The only diagrams left are therefore Fig. 3.c and
Fig. 3.d, where the induced vertex associated with Fig. 3.d, carries the color tensor [1, 2],
providing therefore the anti-symmetric contribution missing in Eq. (79). For an explicit de-
composition of diagrams such as Fig. 3.a and Fig. 3.b, we refer the interested reader to [21,28].

(a) (b) (c) (d) (e)

Figure 4: Three gluon exchange within the high energy e↵ective action. Left: The anti-symmetric

contribution. Center: The contribution with mixed symmetry. Right: The symmetric contribution.

The corresponding symmetry decomposition for three adjoint color indices is provided by
the following six tensors:

[[3, 1], 2], [[3, 2], 1], S
2

([1, 2]3), S
2

([1, 3]2), S
2

([2, 3]1), S
3

(123) . (82)

5
We note that a prescription di↵erent from the one of [28] has been used in [20]. We point out the possibility

that the arguments presented here may not hold for this particular prescription.
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symmetric color tensor 
after integration

by construction: 
anti-symmetric 
color
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⇒
vanishes
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symmetric + anti-symmetric = complete

coupling of 2 
reggeized gluons 
to a Wilson line



“[[3,2]1]” + “[[3,1],2]” 
double anti-symmetric  

(by construction)

S2(1[2,3]), S2([1,2]3]), 
S2([1,3]2) 
mixed symmetry

S3(123) - symmetric

• pole-prescription for eikonal factor = minimal 
sector required for gauge invariance 

• universal: commutator does NOT depend on the 
representation of Wilson line
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Results obtained so far from Lipatov’s 
effective action

• high energy evolution (gluon 
trajectory, BFKL kernel, … ) = 
coefficient of rapidity singularities  

• various studies address multiple 
reggeized gluon exchange → 
agreement with established results 

• took a while,  now we know how to 
use Lipatov’s action for loop 
calculations (up to 2 loop) 
→ correct, since agrees with high 
energy limit of exact QCD scattering 
amplitudes
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Lipatov’s effective action & 
the CGC formalism

• idea to compare both emerged 
very early 

• attempts mainly on the level of 
effective Lagrangians 

• here: pragmatic approach: 
compare results for scattering 
amplitudes & propagators

[Hatta; hep-ph/0607126]
[Bondarenko, Lipatov,Pozdnyakov, 
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proposal: calculate the correlators for 
scattering of a  perturbative (=dilute) 
projectile one a dense target

• know how to do this within the CGC-formalism 
(= use propagators which resum strong 
background field b+~1/g into Wilson lines) 

• high energy effective action: study effective 
action for quasi-elastic scattering, assuming a 
strong reggeized gluon field gA+~1



• quasi-elastic scattering 
= integrate out fields 
only from one side  

• task: resum interaction 
of QCD fields with ∞ # 
of reggeized gluon 
fields

quarks: relatively straightforward 
gluon: at first a mess …. 
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with the kinetic term of the gluonic and quark field
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and the quadratic terms which describe interaction with the reggeized gluon field,
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Since we assume that the reggeized gluon field couples to high partonic densities in the target,
we have gA
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⇠ 1; the term L
1

is therefore of the same order as L
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. The term tr(A�@
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provides the kinetic term of the reggeized gluon field which is only needed to connect the A
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field to e.g. the target.

3.3 Parton-parton-reggeized gluon vertices
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explicit dependence on the reggeized gluon field, we find for quarks,
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which coincides with the expression used e.g. in [13]. For gluons one obtains instead
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properties, the following parametrization of the gluonic field has been proposed in [11]:

V µ(x) = vµ(x) +
nµ

+

2
U [v

+

(x)]A�(x)U�1[v
+

(x)] +
nµ

�
2

U [v�(x)]A
+

(x)U�1[v�(x)]

= vµ(x) +
nµ

+

2
B�(x) +

nµ

�
2

B
+

(x) , (12)

where

B±[v⌥] = U [v⌥]A±U�1[v⌥] . (13)

and (inverse) Wilson line operators are defined as

U [v±] =
1

1 + g

@±
v±

, U�1[v±] = 1 +
g

@±
v± . (14)

Here the integral operators U and U�1 act on a unit constant matrix from the left- and
right-had sides, respectively. For the above composite field B±[v⌥], one finds the following
gauge transformation properties:

�
L

B± = �
L

U [v⌥]A±U�1[v⌥] + U [v⌥]A±�
L

U�1[v⌥] = [gB±,�
L

] . (15)

As a consequence the shifted gluonic field Eq. (12) transforms as
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i.e. the field V
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has consistent gauge transformation properties corresponding to a gauge
field. In the following we will use the above parametrization of the gluonic field to expand
the high energy e↵ective action for the quasi-elastic case around the reggeized gluon field A
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which we treat as a strong classical background field gA
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the reggeized gluon momenta and color indices, the follwing expression
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Gluon propagator: For the construction of the gluon propagator in the presence
of high gluon densities, it is useful to introduce e↵ective vertices, which describe the
coupling of the gluon to the reggeized gluon fields. Following [1] we define the Gluon-
Gluon-Reggeized gluon (GGR) vertex as

= + (8)
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i.e. it fullfills current conservation if the second gluon is a) on the mass-shell and b) has
physical polarization ✏(p) · p = 0. For the following discussion it is useful to decompose
this tensor into two orthogornal tensors
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original idea: use GGR 
(gluon-gluon-reggeized 
gluon) vertex & iterate

≠
essential problem: 
no iteration/ 
“reggeization”

one term (internal momenta) 
cancels against 4 gluon vertex
terms (external momenta):  
vanish for real gluon  

off-shell: non-trivial cancelation against other diagrams  
→ see e.g. calculation of Triple Pomeron Vertex

#
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they way out:  
a proposal made by Lipatov already in 1995 
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gives direct transition gluon v- to reggeized gluon A+

Forward Higgs production at NLO in the heavy quark limit
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get rid of it  
through shift

3 Resummation of a strong reggeized gluon field

In the following we provide a formulation of the high energy e↵ective action which allows for
a straight forward resummation of multiple reggeized gluon exchange in the chase of quasi-
elastic scattering, which is the relevant case for describing scattering of a dilute partonic
projectile on a dense target nucleus or proton.

3.1 A special parametrization of the gluonic field

The bulk of calculations performed within the framework set by the high energy e↵ective
action employs the vertex Fig. 1.a) which provides a direct transition between a reggeized
gluon field and a conventional QCD gluon. As noted in [11,12], it is possible to avoid the use
of such a direct transition vertex, if one performs a shift v± ! V± = v± +A± of the gluonic
field in the e↵ective action1. Such a shift has however the disadvantage that the gluonic
field v± transforms like a gauge field under local gauge transformations while the reggeized
gluon field is invariant under such transformations. To avoid such di↵ering transformation
properties, the following parametrization of the gluonic field has been proposed in [11]:
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2
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where

B±[v⌥] = U [v⌥]A±U
�1[v⌥] . (11)

and (inverse) Wilson line operators are defined as

U [v±] =
1

1 + g

@±
v±

, U�1[v±] = 1 +
g

@±
v± . (12)

Here the integral operators U and U�1 act on a unit constant matrix from the left- and
right-had sides, respectively. For the above composite field B±[v⌥], one finds the following
gauge transformation properties:
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U [v⌥]A±U
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] . (13)

As a consequence the shifted gluonic field Eq. (10) transforms as

�V± = [D±,�] + [gB±,�] = [D± + gB±,�] , (14)

i.e. the field V
µ

has consistent gauge transformation properties corresponding to a gauge
field. In the following we will use the above parametrization of the gluonic field to expand
the high energy e↵ective action for the quasi-elastic case around the reggeized gluon field A

+

which we treat as a strong classical background field gA
+

⇠ 1.

1
Such a shift has been used for instance in [20, 21]
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2 The High-Energy E↵ective Action

Within the framework provided by Lipatov’s e↵ective action [11, 12], QCD amplitudes are
in the high energy limit decomposed into gauge invariant sub-amplitudes which are localized
in rapidity space. The e↵ective Lagrangian then describes the coupling of quarks ( ) and
gluon (v

µ

) fields to a new degree of freedom, the reggeized gluon field A±(x). The latter
is introduced as a convenient tool to reconstruct the complete QCD amplitudes in the high
energy limit out of the sub-amplitudes restricted to small rapidity intervals. Lipatov’s e↵ective
action is obtained by adding an induced term S

ind.

to the QCD action S
QCD

,

S
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= S
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+ S
ind.

, (1)

where the induced term S
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(x) to the
reggeized gluon field A±(x) = �itaAa

±(x), with ta a SU(N
c

) generator in the fundamental
representation, tr(tatb) = �ab/2. High energy factorized amplitudes reveal strong ordering in
plus and minus components of momenta which leads to the following kinematic constraint
obeyed by the reggeized gluon field:
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where D
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denotes the covariant derivative and �
L

the parameter of the local gauge trans-
formations which decreases for x ! 1, the reggeized gluons fields are invariant under local
gauge transformations,
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L

] = 0 . (4)

The kinetic term and the gauge invariant coupling of the reggeized gluon field to the QCD
gluon field are provided by the induced term
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The functionals W±[v] can be obtained from the following operator definition
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where the integral operator is implied to act on a unit constant matrix from the left. For
the definition of light-cone directions we follow the conventions established in the original
publication [11],

k± = n± · k = n⌥ · k = k⌥, (7)
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The functionals W±[v] can be obtained from the following operator definition
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where the integral operator is implied to act on a unit constant matrix from the left. For
the definition of light-cone directions we follow the conventions established in the original
publication [11],

k± = n± · k = n⌥ · k = k⌥, (7)
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3.2 The e↵ective Lagrangian quadratic in v

µ

In the following we limit ourselves to the quasi-elastic case where the Lagrangian contains
only the induced terms corresponding to the functional W�[v]. The second set of induced
terms is left aside for the moment. This is su�cient to describe the interaction of a dilute
projectile with a target characterized by high parton densities in the high energy limit, where
the A

+

will couple through the reggeized gluon propagator to color charges in the target. To
construct the e↵ective action for quasi-elastic processes, we use the following parametrization
of the gluonic field

V µ(x) = vµ(x) +
1

2
(n�)

µB
+

[v�] (15)

and consider the following e↵ective action for the quasi-elastic case
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to all orders and expanding in quantum fluctuations v
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and  ,  ̄ to
quadratic order we obtain
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with the kinetic term of the gluonic and quark field
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and the quadratic terms which describe interaction with the reggeized gluon field,
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Since we assume that the reggeized gluon field couples to high partonic densities in the target,
we have gA

+

⇠ 1; the term L
1

is therefore of the same order as L
0

. The term tr(A�@
2A

+

)
provides the kinetic term of the reggeized gluon field which is only needed to connect the A

+

field to e.g. the target.

6

better use a special 
parametrization of the 
gluon field

3 Resummation of a strong reggeized gluon field

In the following we provide a formulation of the high energy e↵ective action which allows for
a straight forward resummation of multiple reggeized gluon exchange in the chase of quasi-
elastic scattering, which is the relevant case for describing scattering of a dilute partonic
projectile on a dense target nucleus or proton.

3.1 A special parametrization of the gluonic field

The bulk of calculations performed within the framework set by the high energy e↵ective
action employs the vertex Fig. 1.a) which provides a direct transition between a reggeized
gluon field and a conventional QCD gluon. As noted in [11,12], it is possible to avoid the use
of such a direct transition vertex, if one performs a shift v± ! V± = v± +A± of the gluonic
field in the e↵ective action1. Such a shift has however the disadvantage that the gluonic
field v± transforms like a gauge field under local gauge transformations while the reggeized
gluon field is invariant under such transformations. To avoid such di↵ering transformation
properties, the following parametrization of the gluonic field has been proposed in [11]:
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and (inverse) Wilson line operators are defined as
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Here the integral operators U and U�1 act on a unit constant matrix from the left- and
right-had sides, respectively. For the above composite field B±[v⌥], one finds the following
gauge transformation properties:
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As a consequence the shifted gluonic field Eq. (10) transforms as

�V± = [D±,�] + [gB±,�] = [D± + gB±,�] , (14)

i.e. the field V
µ

has consistent gauge transformation properties corresponding to a gauge
field. In the following we will use the above parametrization of the gluonic field to expand
the high energy e↵ective action for the quasi-elastic case around the reggeized gluon field A

+

which we treat as a strong classical background field gA
+

⇠ 1.

1
Such a shift has been used for instance in [20, 21]
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= sort of: a gauge rotation of 
the reggeized gluon field A±

Wilson line operator          and its inverse … 

program:  
• shift 
•  expand Lagrangian up to quadratic order in 

quantum fields 𝒗μ, 𝜓, but all orders in gA+~1

of the quasi-elastic Lagrangian. For an ensemble of Wilson lines the latter are directly pro-
portional to the high energy divergence, without the need to drop any finite terms. We hope
to return to the description which uses the high energy e↵ective action for central rapidity
processes in a future publication.

For the following discussion it su�cient to consider Wilson lines in the fundamental
representation. While adjoint Wilson lines can be rewritten in terms of fundamental Wilson
lines using the well-known relation

Uab(z) = 2tr
h

taW (z)tbW †(z)
i

, (57)

the hermitian conjugate of a fundamental Wilson lines follows trivially from the discussion
of the fundamental Wilson line. We will therefore consider the quantum fluctuations of an
ensemble of n fundamental Wilson lines in the reggeized gluon fields,

W [A
+

](z
1

) ⌦ . . . ⌦ W [A
+

](z
n

). (58)

5.1 Feynman rules for quantum fluctuations of a Wilson line

Integrating out the quantum fluctuations vµ is most easily achieved, if one supplements the
e↵ective action with an auxiliary complex 1-dimensional scalar field, ' = '(x+, z, x�

0

) where
z, x�

0

= 0 are constant for the dynamics of the scalar field. The field is charged in the
fundamental representation of SU(N

c

) and transforms under gauge transformations as

�
L

' = ��
L

'. (59)

The 1-dimensional gauge invariant action of this field, which describes interaction with the
gluonic field, is given by

S[', V ] =

Z

dx+'† [i@
+

+ igv
+

] ' , (60)

where all fields are taken at fixed (x, x�
0

). One obtains in a straightforward manner for the
propagator of this scalar field
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+
dz+v

+

!

. (61)

As a next step we use the parametrization Eq. (17) of the gluonic field and limit ourselves
to terms quadratic in the quantum fluctuation. Limiting ourselves further to covariant or
v� = 0 gauges, the following simplified shift is su�cient4,

vµ ! V µ = vµ +
1

2
(n�)µ

✓

A
+

+ [A
+

,
g

@�
v�]

◆

+ O(v2�). (62)

4
Covariant gauge requires correlators of v� and v+ fields as well as two v+ fields; the correlator of two v�

vanishes on the other hand. v� = 0 gauge requires on the other hand only the correlator of two v+ fields
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to all orders and expanding in quantum fluctuations v
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with the kinetic term of the gluonic and quark field
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and the quadratic terms which describe interaction with the reggeized gluon field,
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Since we assume that the reggeized gluon field couples to high partonic densities in the target,
we have gA

+

⇠ 1; the term L
1

is therefore of the same order as L
0

. The term tr(A�@
2A

+

)
provides the kinetic term of the reggeized gluon field which is only needed to connect the A

+

field to e.g. the target.
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this is NOT the case for 

2 The High-Energy E↵ective Action

Within the framework provided by Lipatov’s e↵ective action [11, 12], QCD amplitudes are
in the high energy limit decomposed into gauge invariant sub-amplitudes which are localized
in rapidity space. The e↵ective Lagrangian then describes the coupling of quarks ( ) and
gluon (v

µ

) fields to a new degree of freedom, the reggeized gluon field A±(x). The latter
is introduced as a convenient tool to reconstruct the complete QCD amplitudes in the high
energy limit out of the sub-amplitudes restricted to small rapidity intervals. Lipatov’s e↵ective
action is obtained by adding an induced term S

ind.

to the QCD action S
QCD

,

S
e↵

= S
QCD

+ S
ind.

, (1)

where the induced term S
ind.

describes the coupling of the gluonic field v
µ

= �itava
µ

(x) to the
reggeized gluon field A±(x) = �itaAa

±(x), with ta a SU(N
c

) generator in the fundamental
representation, tr(tatb) = �ab/2. High energy factorized amplitudes reveal strong ordering in
plus and minus components of momenta which leads to the following kinematic constraint
obeyed by the reggeized gluon field:

@
+

A�(x) = 0 = @�A+

(x). (2)

Even though the reggeized gluon field is charged under the QCD gauge group SU(N
c

), it is
defined to be invariant under local gauge transformation �

L

A± = 0. With the local gauge
transformations of gluon and quark fields given by
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, (3)

where D
µ

denotes the covariant derivative and �
L

the parameter of the local gauge trans-
formations which decreases for x ! 1, the reggeized gluons fields are invariant under local
gauge transformations,

�
L

A± =
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g
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] = 0 . (4)

The kinetic term and the gauge invariant coupling of the reggeized gluon field to the QCD
gluon field are provided by the induced term
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The functionals W±[v] can be obtained from the following operator definition
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where the integral operator is implied to act on a unit constant matrix from the left. For
the definition of light-cone directions we follow the conventions established in the original
publication [11],

k± = n± · k = n⌥ · k = k⌥, (7)
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b) a new gluon-gluon-
reggeized gluon vertex

3.3 Parton-parton-reggeized gluon vertices

The above Lagrangian L
1

allows now for the straight forward determination of the quark-
quark-reggeized gluon (QQR) and gluon-gluon-reggeized gluon (GGR) vertex. Keeping an
explicit dependence on the reggeized gluon field, we find for quarks,
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which coincides with the expression used e.g. in [13]. For gluons one obtains instead
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= �ifabc. Since @�A+

= 0, the integral over z yields for both vertices a �(p+� r+).
We note that the above GGR-vertex was already obtained in [11]; it di↵ers from the GGR-
vertex obtained in e.g. [14, 29], which is derived using the direct transition vertex Fig. 1.a.
The above GGR vertex obeys the following important properties: at first one finds current
conservation on the level of the vertex, even if the the second gluon is not real and/or does
not carry physical polarization,
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A disadvantage of the above vertex, already noticed in [11] is that the term p · r/p+ is in
potential conflict with the Steinmann-relations [30], since it may yield individual Feynman
diagrams which contain singularities in overlapping channels e.g. the s and the t-channel.
Nevertheless, since this vertex is obtained from a shift in the gluonic field from an e↵ective
action which explicitly obeys the Steinmann-relations, the terms which potentially violate the
Steinmann relations should cancel for physical quantities. Application of this vertex to the
calculation of physical observables should be therefore save. Apart from the above relation,
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Identical properties hold for the QQR-vertex,
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• already written down by Lipatov in 1995 

• good properties: current conservation  

• properties Lipatov didn’t like: violates for individual 
Feynman diagrams Steinmann relations
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relations → OK for physical observables
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• n reggeized gluons = 1 reggeized gluon × factor 
~ “reggeization”/iteration 

• technical details aside: allows to sum up ∞ # of 
reggeized gluons into a Wilson line of reggeized 
gluons 

• works also for other gauges than “Feynman 
gauge”



• interaction of n gluons with a reggeized gluon 
(n>2) is O(g2) → re-appears at NLO and beyond; 
for the time being not relevant (care about LO)

=0
• 2 gluon + n reggeized 

gluons vanish

= #
• iteration 

works

• still missing: summation into Wilson line requires 
shock wave form→ is this case?



from the reggeized gluon to the shock wave …
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A disadvantage of the above vertex, already noticed in [11] is that the term p · r/p+ is in
potential conflict with the Steinmann-relations [30], since it may yield individual Feynman
diagrams which contain singularities in overlapping channels e.g. the s and the t-channel.
Nevertheless, since this vertex is obtained from a shift in the gluonic field from an e↵ective
action which explicitly obeys the Steinmann-relations, the terms which potentially violate the
Steinmann relations should cancel for physical quantities. Application of this vertex to the
calculation of physical observables should be therefore safe. Apart from the above relation,
this GGR-vertex also obeys
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Identical properties hold for the QQR-vertex,
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3.4 Properties of the reggeized gluon field

The last two properties Eq. (28) and Eq. (34) are of high importance to arrive at a summation
of the reggeized gluon field to all orders. Before addressing this task, we first recall the
following property of the reggeized gluon field,

@�A
+

(x) = 0, A
+

(x) = A
+

(x�
0

, x, x+)

@
+

A�(x) = 0, A�(x) = A�(x+

0

, x, x+) , (30)

with a x±
0

a constant which is common to all A
+

fields; since the scattering amplitude depen-
des by Lorentz invariance not on absolute space-time values, this constant can be conveniently
set to x±

0

= 0. To keep the presentation as general as possible, we keep in the following how-
ever the dependence on x±

0

and set it only to zero when comparing to other approaches.
We further recall that the propagator of the reggeized gluon field, Fig. 1.b, which connects
clusters significantly separated in rapidity, comes with a purely transverse denominator. The
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clusters significantly separated in rapidity, comes with a purely transverse denominator. The
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suggests shock-wave form of 
reggeized gluon field

corresponding configuration space propagator is therefore in four dimensions given by

hA
+

(x)A�(y)i =

Z

d4q

(2⇡)4
e�iq·(x�y)

2i

q

2

=
1

2

Z

d2q

(2⇡)2

Z

dq+

2⇡
e�iq

+
(x

�
0 �y

�
)/2

Z

dq�

2⇡
e�iq

�
(x

+�x

+
0 )/2eiq·(x�y)

2i

q

2

= 4�(y� � x�
0

)�(x+ � x+

0

) ·
Z

d2q

(2⇡)2
eiq·(x�y)

i

q

2

. (31)

The four dimensional reggeized gluon propagator can therefore be interpreted as the prop-
agator of a two-dimensional reggeized gluon field ↵(z), together with corresponding delta
functions,

hA
+

(x)A�(y)i = 4�(x+ � x+

0

)�(y� � x�
0

) · h↵(x)↵(y)i, (32)

with

h↵(x)↵(0)i =

Z

d2q

(2⇡)2
ieiq·(x)

q

2

. (33)

The result then suggests to parametrize the reggeized gluon field as :

A
+

(x) = 2 · ↵(x)�(x+ � x+

0

) , (34)

where the factor of two appears due to the chosen convention for light-cone directions. We
note that such a parametrization is commonly used in calculations within the CGC-formalism,
see e.g. [6–10], with x+

0

= 0. This treatment of the reggeized gluon field is possible, since the
fields A± are within the e↵ective action to be treated as external classical fields for individual
rapidity clusters, while they only connect to other clusters through the above reggeized gluon
propagator.

3.5 All order summation of the reggeized gluon fields

To sum up the interaction of partons with reggeized gluon fields to all orders in ↵
s

, it is
necessary to determine the free gluon propagator of the quantum fluctuations vµ, which
requires fixing a gauge following the usual Faddeev-Popov procedure. While the following
discussion will be based on covariant gauge, we will also comment on the corresponding results
obtained in axial light cone gauge with the free propagators given by the usual expressions

G̃(0),ab

cov.,µ⌫

(k) = �abD̃
0

(k)



�g
µ⌫

+ (1 � ⇠)
k
µ

k
⌫

k2

�

= �abd
µ⌫

(k, ⇠)D̃
0

(k) ,

G̃
(0),ab

l.c.,µ⌫

(k) = �abD̃
0

(k)



�g
µ⌫

+
k
µ

(n+)
⌫

+ (n+)
µ

k
⌫

k · n+

�

= �abd
l.c.,µ⌫

(k, n+)D̃(0)(k) , (35)

with

D̃(0)(k) =
i

k2 + i✏
. (36)
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…. relates to 2dim propagator 

corresponding configuration space propagator is therefore in four dimensions given by

hA
+

(x)A�(y)i =

Z

d4q

(2⇡)4
e�iq·(x�y)

2i

q

2

=
1

2

Z

d2q

(2⇡)2

Z

dq+

2⇡
e�iq

+
(x

�
0 �y

�
)/2

Z

dq�

2⇡
e�iq

�
(x

+�x

+
0 )/2eiq·(x�y)

2i

q

2

= 4�(y� � x�
0

)�(x+ � x+

0

) ·
Z

d2q

(2⇡)2
eiq·(x�y)

i

q

2

. (31)

The four dimensional reggeized gluon propagator can therefore be interpreted as the prop-
agator of a two-dimensional reggeized gluon field ↵(z), together with corresponding delta
functions,

hA
+

(x)A�(y)i = 4�(x+ � x+

0

)�(y� � x�
0

) · h↵(x)↵(y)i, (32)

with

h↵(x)↵(0)i =

Z

d2q

(2⇡)2
ieiq·(x)

q

2

. (33)

The result then suggests to parametrize the reggeized gluon field as :

A
+

(x) = 2 · ↵(x)�(x+ � x+

0

) , (34)

where the factor of two appears due to the chosen convention for light-cone directions. We
note that such a parametrization is commonly used in calculations within the CGC-formalism,
see e.g. [6–10], with x+

0

= 0. This treatment of the reggeized gluon field is possible, since the
fields A± are within the e↵ective action to be treated as external classical fields for individual
rapidity clusters, while they only connect to other clusters through the above reggeized gluon
propagator.

3.5 All order summation of the reggeized gluon fields

To sum up the interaction of partons with reggeized gluon fields to all orders in ↵
s

, it is
necessary to determine the free gluon propagator of the quantum fluctuations vµ, which
requires fixing a gauge following the usual Faddeev-Popov procedure. While the following
discussion will be based on covariant gauge, we will also comment on the corresponding results
obtained in axial light cone gauge with the free propagators given by the usual expressions

G̃(0),ab

cov.,µ⌫

(k) = �abD̃
0

(k)



�g
µ⌫

+ (1 � ⇠)
k
µ

k
⌫

k2

�

= �abd
µ⌫

(k, ⇠)D̃
0

(k) ,

G̃
(0),ab

l.c.,µ⌫

(k) = �abD̃
0

(k)



�g
µ⌫

+
k
µ

(n+)
⌫

+ (n+)
µ

k
⌫

k · n+

�

= �abd
l.c.,µ⌫

(k, n+)D̃(0)(k) , (35)

with

D̃(0)(k) =
i

k2 + i✏
. (36)
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corresponding configuration space propagator is therefore in four dimensions given by

hA
+

(x)A�(y)i =

Z

d4q

(2⇡)4
e�iq·(x�y)

2i

q

2

=
1

2

Z

d2q

(2⇡)2

Z

dq+

2⇡
e�iq

+
(x

�
0 �y

�
)/2

Z

dq�

2⇡
e�iq

�
(x

+�x

+
0 )/2eiq·(x�y)

2i

q

2

= 4�(y� � x�
0

)�(x+ � x+

0

) ·
Z

d2q

(2⇡)2
eiq·(x�y)

i

q

2

. (31)

The four dimensional reggeized gluon propagator can therefore be interpreted as the prop-
agator of a two-dimensional reggeized gluon field ↵(z), together with corresponding delta
functions,

hA
+

(x)A�(y)i = 4�(x+ � x+

0

)�(y� � x�
0

) · h↵(x)↵(y)i, (32)

with

h↵(x)↵(0)i =

Z

d2q

(2⇡)2
ieiq·(x)

q

2

. (33)

The result then suggests to parametrize the reggeized gluon field as :

A
+

(x) = 2 · ↵(x)�(x+ � x+

0

) , (34)

where the factor of two appears due to the chosen convention for light-cone directions. We
note that such a parametrization is commonly used in calculations within the CGC-formalism,
see e.g. [6–10], with x+

0

= 0. This treatment of the reggeized gluon field is possible, since the
fields A± are within the e↵ective action to be treated as external classical fields for individual
rapidity clusters, while they only connect to other clusters through the above reggeized gluon
propagator.

3.5 All order summation of the reggeized gluon fields

To sum up the interaction of partons with reggeized gluon fields to all orders in ↵
s

, it is
necessary to determine the free gluon propagator of the quantum fluctuations vµ, which
requires fixing a gauge following the usual Faddeev-Popov procedure. While the following
discussion will be based on covariant gauge, we will also comment on the corresponding results
obtained in axial light cone gauge with the free propagators given by the usual expressions

G̃(0),ab

cov.,µ⌫

(k) = �abD̃
0

(k)



�g
µ⌫

+ (1 � ⇠)
k
µ

k
⌫

k2

�

= �abd
µ⌫

(k, ⇠)D̃
0

(k) ,

G̃
(0),ab

l.c.,µ⌫

(k) = �abD̃
0

(k)



�g
µ⌫

+
k
µ

(n+)
⌫

+ (n+)
µ

k
⌫

k · n+

�

= �abd
l.c.,µ⌫

(k, n+)D̃(0)(k) , (35)

with

D̃(0)(k) =
i

k2 + i✏
. (36)
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with

corresponding configuration space propagator is therefore in four dimensions given by

hA
+

(x)A�(y)i =

Z

d4q

(2⇡)4
e�iq·(x�y)

2i

q

2

=
1

2

Z

d2q

(2⇡)2

Z

dq+

2⇡
e�iq

+
(x

�
0 �y

�
)/2

Z

dq�

2⇡
e�iq

�
(x

+�x

+
0 )/2eiq·(x�y)

2i

q

2

= 4�(y� � x�
0

)�(x+ � x+

0

) ·
Z

d2q

(2⇡)2
eiq·(x�y)

i

q

2

. (31)

The four dimensional reggeized gluon propagator can therefore be interpreted as the prop-
agator of a two-dimensional reggeized gluon field ↵(z), together with corresponding delta
functions,

hA
+

(x)A�(y)i = 4�(x+ � x+

0

)�(y� � x�
0

) · h↵(x)↵(y)i, (32)

with

h↵(x)↵(0)i =

Z

d2q

(2⇡)2
ieiq·(x)

q

2

. (33)

The result then suggests to parametrize the reggeized gluon field as :

A
+

(x) = 2 · ↵(x)�(x+ � x+

0

) , (34)

where the factor of two appears due to the chosen convention for light-cone directions. We
note that such a parametrization is commonly used in calculations within the CGC-formalism,
see e.g. [6–10], with x+

0

= 0. This treatment of the reggeized gluon field is possible, since the
fields A± are within the e↵ective action to be treated as external classical fields for individual
rapidity clusters, while they only connect to other clusters through the above reggeized gluon
propagator.

3.5 All order summation of the reggeized gluon fields

To sum up the interaction of partons with reggeized gluon fields to all orders in ↵
s

, it is
necessary to determine the free gluon propagator of the quantum fluctuations vµ, which
requires fixing a gauge following the usual Faddeev-Popov procedure. While the following
discussion will be based on covariant gauge, we will also comment on the corresponding results
obtained in axial light cone gauge with the free propagators given by the usual expressions

G̃(0),ab

cov.,µ⌫

(k) = �abD̃
0

(k)



�g
µ⌫

+ (1 � ⇠)
k
µ

k
⌫

k2

�

= �abd
µ⌫

(k, ⇠)D̃
0

(k) ,

G̃
(0),ab

l.c.,µ⌫

(k) = �abD̃
0

(k)



�g
µ⌫

+
k
µ

(n+)
⌫

+ (n+)
µ

k
⌫

k · n+

�

= �abd
l.c.,µ⌫

(k, n+)D̃(0)(k) , (35)

with

D̃(0)(k) =
i

k2 + i✏
. (36)
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the 4dim propagator

sum  ∞ # of reggeized gluons 
into Wilson line ✓



For quarks one finds,

p

r

= ⌧
F

(q,�r) = 2⇡�(p+ � r+)/n+

Z

d2zeiz·(p�r)

·


✓(p+) [W (z)� 1]� ✓(�p+)
h

[W (z)]† � 1
i

�

. (38)

To write down the above expressions, we introduced Wilson lines in the adjoint

Uab(z) = P exp

✓

�g

2

Z 1

�1
dz+Ã

+

◆

, Ã
+

= �iT c

ab

Ac

+

, (39)

and the fundamental representation

W (z) = P exp

✓

�g

2

Z 1

�1
dz+A

+

◆

, A
+

= �itc
ij

Ac

+

. (40)

In contrast to the notation used in [28,31] and elsewhere, we use here the letter W to denote
the Wilson line in the fundamental representation to avoid confusion with the gluonic field
in the e↵ective action. The above expressions Eq. (37) and Eq. (38) are one of the central
results of this paper.

4 Comparison with expressions in the literature

At this stage it is necessary to compare the result derived from Lipatov’s high energy e↵ective
action with the conventional quark and gluon propagators in the presence of a background
field used in the literature.

4.1 Comparison with propagators in the presence of a background field

Corresponding resummed propagators are within the e↵ective action now easily obtained.
Using Eqs. (37) and (38) one finds for the resummed quark (S

F

) and gluon (G) propagators:

S
F

(p, q) = S
(0)

F

(p)(2⇡)4�(4)(p� q) + S
(0)

F

(p) · ⌧
F

(p, q) · S(0)

F

(q) ,

Gad

µ⌫

(p, q) = G(0),ab

µ⌫

(p)(2⇡)4�(4)(p� q) + G(0),ab

µ↵

(p) · ⌧↵�,bc
G

(p, q) · G(0),cd

�⌫

(q) , (41)

where for the moment we do not specify the gauge of the free gluon propagators. These
expression are now to be compared with propagators obtained from treating the target as a
background field in light-cone gauge b · n� = 0 with the only non-zero component

b
+

(x+, z) = �(x+)�(z), (42)

while bµ? = 0. Using the Fourier transform of corresponding counter parts in configuration
space, see e.g. [32] one finds in momentum space (see e.g. [31] for expressions used in a recent
calculation),

S
[b]

F

(p, q) = S
(0)

F

(p)(2⇡)4�(4)(p� q) + S
(0)

F

(p) · ⌧̃
F

(p, q) · S(0)

F

(q) ,

G[b],ad

µ⌫

(p, q) = G
(0),ab

l.c.,µ⌫

(p)(2⇡)4�(4)(p� q) +G(0),ab

µ↵

(p) · ⌧̃↵�,bc
G

(p, q) · G(0),cd

l.c.,�⌫

(q) , (43)
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with

D̃(0)(k) =
i

k2 + i✏
. (33)

If not denoted otherwise, we will in the following always use covariant gauge. For the quark
propagator one finds the usual expression

S̃
(0)

F

(k) = /kD̃(0)(k) . (34)

Due to the properties Eq. (24), Eq. (28) , connecting two GGR vertices with a gluon propa-
gator, the polarization tensor of the latter reduces always to �g

µ⌫

, since all other terms are
set to zero. Using further the properties Eqs. (26) and (31), the interaction of n reggeized
gluons with a quark or gluon reduces to essentially to

n

Y

i=1

Z

dz4
i

n

Y

j=1

Z

d4k
j

(2⇡)4
(�k+

1

)D
0

(k
1

)eik1·(z1�z2) . . . (�k+
n�1

)D
0

(k
n�1

)eikn�1·(zn�1�zn)

e�ip·z1 (�igA
+

(z
n

)) . . . (�igA
+

(z
1

)) eir·zn

= �2⇡�(p+ � r+)

Z

d2zeiz·(r�p)



✓(p+)P

✓�g

2

◆

n

Z

n

Y

i=1

dz+
i

Ã
+

(z
i

)

� ✓(�p+)P
⇣g

2

⌘

n

Z

n

Y

i=1

dz+
i

Ã
+

(z
i

)

�

. (35)

To arrive at the above identity, we used the property Eq. (31). A
+

= �itc
ji

Ac

+

are reggeized

gluon fields in the fundamental representation for quarks while gluons require A
+

! Ã
+

=
�iT c

ba

Ac

+

i.e. reggeized gluon fields in the adjoint representation. (Anti-)path ordering of
color matrices is as usually defined as

PA(z+
n

, z) · · ·A(z+
1

, z) ⌘ A(z+
n

, z) · · ·A(z+
1

, z)✓(z+
n

� z+
n�1

) . . . ✓(z+
2

� . . . z+
1

)

PA(z+
n

, z) · · ·A(z+
1

, z) ⌘ A(z+
1

, z) · · ·A(z+
n

, z)✓(z+
n

� z+
n�1

) . . . ✓(z+
2

� . . . z+
1

). (36)

Summing finally over the number of reggeized gluons, one obtains for gluons the following
e↵ective vertex which sums up the interaction with an arbitrary number of reggeized gluon
fields,

p

r

= ⌧ab
G,⌫µ

(p,�r) = �4⇡�(p+ � r+)�
⌫µ

(r, p)

Z

d2zeiz·(p�r)

·


✓(p+)
h

U ba(z)� �ab
i

� ✓(�p+)
h

[U ba(z)]† � �ab
i

�

. (37)
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For quarks one finds,

p

r

= ⌧
F

(q,�r) = 2⇡�(p+ � r+)/n+

Z

d2zeiz·(p�r)

·


✓(p+) [W (z)� 1]� ✓(�p+)
h

[W (z)]† � 1
i

�

. (38)

To write down the above expressions, we introduced Wilson lines in the adjoint

Uab(z) = P exp

✓

�g

2

Z 1

�1
dz+Ã

+

◆

, Ã
+

= �iT c

ab

Ac

+

, (39)

and the fundamental representation

W (z) = P exp

✓

�g

2

Z 1

�1
dz+A

+

◆

, A
+

= �itc
ij

Ac

+

. (40)

In contrast to the notation used in [28,31] and elsewhere, we use here the letter W to denote
the Wilson line in the fundamental representation to avoid confusion with the gluonic field
in the e↵ective action. The above expressions Eq. (37) and Eq. (38) are one of the central
results of this paper.

4 Comparison with expressions in the literature

At this stage it is necessary to compare the result derived from Lipatov’s high energy e↵ective
action with the conventional quark and gluon propagators in the presence of a background
field used in the literature.

4.1 Comparison with propagators in the presence of a background field

Corresponding resummed propagators are within the e↵ective action now easily obtained.
Using Eqs. (37) and (38) one finds for the resummed quark (S

F

) and gluon (G) propagators:

S
F

(p, q) = S
(0)

F

(p)(2⇡)4�(4)(p� q) + S
(0)

F

(p) · ⌧
F

(p, q) · S(0)

F

(q) ,

Gad

µ⌫

(p, q) = G(0),ab

µ⌫

(p)(2⇡)4�(4)(p� q) + G(0),ab

µ↵

(p) · ⌧↵�,bc
G

(p, q) · G(0),cd

�⌫

(q) , (41)

where for the moment we do not specify the gauge of the free gluon propagators. These
expression are now to be compared with propagators obtained from treating the target as a
background field in light-cone gauge b · n� = 0 with the only non-zero component

b
+

(x+, z) = �(x+)�(z), (42)

while bµ? = 0. Using the Fourier transform of corresponding counter parts in configuration
space, see e.g. [32] one finds in momentum space (see e.g. [31] for expressions used in a recent
calculation),

S
[b]

F

(p, q) = S
(0)

F

(p)(2⇡)4�(4)(p� q) + S
(0)

F

(p) · ⌧̃
F

(p, q) · S(0)

F

(q) ,

G[b],ad

µ⌫

(p, q) = G
(0),ab

l.c.,µ⌫

(p)(2⇡)4�(4)(p� q) +G(0),ab

µ↵

(p) · ⌧̃↵�,bc
G

(p, q) · G(0),cd

l.c.,�⌫

(q) , (43)
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For quarks one finds,

p

r

= ⌧
F

(q,�r) = 2⇡�(p+ � r+)/n+

Z

d2zeiz·(p�r)

·


✓(p+) [W (z)� 1]� ✓(�p+)
h

[W (z)]† � 1
i

�

. (38)

To write down the above expressions, we introduced Wilson lines in the adjoint

Uab(z) = P exp

✓

�g

2

Z 1

�1
dz+Ã

+

◆

, Ã
+

= �iT c

ab

Ac

+

, (39)

and the fundamental representation

W (z) = P exp

✓

�g

2

Z 1

�1
dz+A

+

◆

, A
+

= �itc
ij

Ac

+

. (40)

In contrast to the notation used in [28,31] and elsewhere, we use here the letter W to denote
the Wilson line in the fundamental representation to avoid confusion with the gluonic field
in the e↵ective action. The above expressions Eq. (37) and Eq. (38) are one of the central
results of this paper.

4 Comparison with expressions in the literature

At this stage it is necessary to compare the result derived from Lipatov’s high energy e↵ective
action with the conventional quark and gluon propagators in the presence of a background
field used in the literature.

4.1 Comparison with propagators in the presence of a background field

Corresponding resummed propagators are within the e↵ective action now easily obtained.
Using Eqs. (37) and (38) one finds for the resummed quark (S

F

) and gluon (G) propagators:

S
F

(p, q) = S
(0)

F

(p)(2⇡)4�(4)(p� q) + S
(0)

F

(p) · ⌧
F

(p, q) · S(0)

F

(q) ,

Gad

µ⌫

(p, q) = G(0),ab

µ⌫

(p)(2⇡)4�(4)(p� q) + G(0),ab

µ↵

(p) · ⌧↵�,bc
G

(p, q) · G(0),cd

�⌫

(q) , (41)

where for the moment we do not specify the gauge of the free gluon propagators. These
expression are now to be compared with propagators obtained from treating the target as a
background field in light-cone gauge b · n� = 0 with the only non-zero component

b
+

(x+, z) = �(x+)�(z), (42)

while bµ? = 0. Using the Fourier transform of corresponding counter parts in configuration
space, see e.g. [32] one finds in momentum space (see e.g. [31] for expressions used in a recent
calculation),

S
[b]

F

(p, q) = S
(0)

F

(p)(2⇡)4�(4)(p� q) + S
(0)

F

(p) · ⌧̃
F

(p, q) · S(0)

F

(q) ,

G[b],ad

µ⌫

(p, q) = G
(0),ab

l.c.,µ⌫

(p)(2⇡)4�(4)(p� q) +G(0),ab

µ↵

(p) · ⌧̃↵�,bc
G

(p, q) · G(0),cd

l.c.,�⌫

(q) , (43)
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result: vertices which resum interaction with an 
arbitrary # of reggeized gluon fields 

+ interaction resumed into Wilson lines



Comparison to CGC expressions
• usually given for summed up propagators  
 
 

• quark case: immediate agreement, but with Wilson 
line in the background field (here: light-cone 
gauge)

To write down the above expressions, we introduced Wilson lines in the adjoint

Uab(z) = P exp

✓

�g

2

Z 1

�1
dz+Ã

+

◆

, Ã
+

= �iT c

ab

Ac

+

, (42)

and the fundamental representation

W (z) = P exp

✓

�g

2

Z 1

�1
dz+A

+

◆

, A
+

= �itc
ij

Ac

+

. (43)

In contrast to the notation used in [28,31] and elsewhere, we use here the letter W to denote
the Wilson line in the fundamental representation to avoid confusion with the gluonic field
in the e↵ective action. The above expressions Eq. (40) and Eq. (41) are one of the central
results of this paper.

4 Comparison with expressions in the literature

At this stage it is necessary to compare the result derived from Lipatov’s high energy e↵ective
action with the conventional quark and gluon propagators in the presence of a background
field used in the literature.

4.1 Comparison with propagators in the presence of a background field

Corresponding resummed propagators are within the e↵ective action now easily obtained.
Using Eqs. (40) and (41) one finds for the resummed quark (S

F

) and gluon (G) propagators:

S
F

(p, q) = S
(0)

F

(p)(2⇡)4�(4)(p � q) + S
(0)

F

(p) · ⌧
F

(p, q) · S
(0)

F

(q) ,

Gad

µ⌫

(p, q) = G(0),ab

µ⌫

(p)(2⇡)4�(4)(p � q) + G(0),ab

µ↵

(p) · ⌧↵�,bc

G

(p, q) · G
(0),cd

�⌫

(q) , (44)

where for the moment we do not specify the gauge of the free gluon propagators. These
expression are now to be compared with propagators obtained from treating the target as a
background field in light-cone gauge b · n� = 0 with the only non-zero component

b
+

(x+, z) = �(x+)�(z), (45)

while bµ? = 0. Using the Fourier transform of corresponding counter parts in configuration
space, see e.g. [32] one finds in momentum space (see e.g. [31] for expressions used in a recent
calculation),

S
[b]

F

(p, q) = S
(0)

F

(p)(2⇡)4�(4)(p � q) + S
(0)

F

(p) · ⌧̃
F

(p, q) · S
(0)

F

(q) ,

G[b],ad

µ⌫

(p, q) = G
(0),ab

l.c.,µ⌫

(p)(2⇡)4�(4)(p � q) + G(0),ab

µ↵

(p) · ⌧̃↵�,bc

G

(p, q) · G
(0),cd

l.c.,�⌫

(q) , (46)

where the gluon propagator is now restricted to v · n� = 0 light-cone gauge. The superscript
‘[b]’ indicates that these propagators have been derived using the background field in light-
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cone gauge and not the reggeized field A
+

. One has

⌧̃
F

(p, �q) = 2⇡�(p+ � q+) /n+

⇥
Z

d2zeiz·(p�q)

n

✓(p+)
⇥

W [b](z) � 1
⇤ � ✓(�p+)

⇥

W [b]†(z) � 1
⇤

o

(47)

⌧̃ab

G,⌫µ

(p, q) = 2⇡�(p+ � q+) (�2p+g
⌫µ

)

⇥
Z

d2zeiz·(p�q)

⇢

✓(p+)
⇥

Uab[b](z) � 1
⇤ � ✓(�p+)

⇥

⇣

Uab[b]
⌘†

(z) � 1
⇤

�

, (48)

with Wilson lines in fundamental (W ) and adjoint (U) representation

W [b](z) = P exp

0

@�g

2

1
Z

�1

dx+b�,c(x+, z)tc

1

A , b�(x+, z) = �ib�,c(x+, z)tc

U [b](z) = P exp

0

@�g

2

1
Z

�1

dx+b�,c(x+, z)T c

1

A , b̃�(x+, z) = �ib�,c(x+, z)T c . (49)

Leaving aside potential di↵erences in the Wilson lines, to which we will turn in Sec. 4.2, one
observes that both quark propagators agree directly with each other (if one sets x+

0

= 0). To
carry out a similar comparison for the gluon, we consider first the case where the external
free propagators in Eq. (44) are taken in v · n� = 0 light-cone gauge. Since dµ⌫

l.c.

(p, n+)n+

⌫

=
0 = dµ⌫

l.c.

(r, n+)n+

µ

, all terms in the vertex �⌫µ(r, p) which contain a n+

µ

or n+

⌫

vanish. One
therefore remains with the 2p+g

µ⌫

term only which is precisely the term used in Eq. (48).
Both expression therefore agree for x+

0

= 0. We further note that both the light-cone gauge
polarization tensor and the GGR-vertex can be factorized into the products of a ‘left’ and
‘right’ tensor,

cµ↵
L

(p, n+) =

✓

gµ↵ � (n+)µp↵

p · n+

◆

c↵⌫
R

(r, n+) =

✓

g↵⌫ � r↵(n+)⌫

r · n+

◆

, (50)

where

�µ⌫ = p+cµ↵
L

(p, n+)c↵⌫
R

(r, n+), (51)

and

dµ⌫(p, n+) = cµ↵
R

(p, n+)(�g
↵�

)c�⌫
L

(p, n+). (52)

This property allows to establish on a diagrammatic level how the vertex �µ⌫ can build
up from properly factorizing the numerator of the light-cone gauge gluon propagator and
absorbing them into the vertex; the information contained in Eq. (44) and (46) is therefore
in this sense identical. It is an interesting note aside that a similar mechanism has been used
in the construction of a certain projector in [33].

4.2 Comparison of Wilson lines and the definition of the reggeized gluon

In the following we attempt a somewhat detailed comparison between the Wilson lines in the
reggeized gluon field A

+

, arising from Lipatov’s high energy e↵ective action, and Wilson lines

12

→ difference matters for average over target configuration, 
does not matter for calculation of (projectile) correlators



gluon case difference in the Lorentz-
structure

If not denoted otherwise, we will in the following always use covariant gauge. For the quark
propagator one finds the usual expression

S̃
(0)

F

(k) = /kD̃(0)(k) . (37)

Due to the properties Eq. (26), Eq. (30) , connecting two GGR vertices with a gluon propa-
gator, the polarization tensor of the latter reduces always to �g

µ⌫

, since all other terms are
set to zero. Using further the properties Eqs. (28) and (34), the interaction of n reggeized
gluons with a quark or gluon reduces to essentially to

n

Y

i=1

Z

dz4
i

n

Y

j=1

Z

d4k
j

(2⇡)4
(�k+

1

)D
0

(k
1

)eik1·(z1�z2) . . . (�k+

n�1

)D
0

(k
n�1

)eikn�1·(zn�1�zn)

e�ip·z1 (�igA
+

(z
n

)) . . . (�igA
+

(z
1

)) eir·zn

= �2⇡�(p+ � r+)e�ix

+
0 (p

��r

�
)

Z

d2zeiz·(p�r)



✓(p+)P

✓�g

2

◆

n

Z

n

Y

i=1

dz+
i

Ã
+

(z
i

) � ✓(�p+)P
⇣g

2

⌘

n

Z

n

Y

i=1

dz+
i

Ã
+

(z
i

)

�

. (38)

To arrive at the above identity, we used the property Eq. (34). A
+

= �itc
ji

Ac

+

are reggeized

gluon fields in the fundamental representation for quarks while gluons require A
+

! Ã
+

=
�iT c

ba

Ac

+

i.e. reggeized gluon fields in the adjoint representation. (Anti-)path ordering of
color matrices is as usually defined as

PA
+

(z+
n

, z) · · · A
+

(z+
1

, z) ⌘ A
+

(z+
n

, z) · · · A
+

(z+
1

, z)✓(z+
n

� z+
n�1

) . . . ✓(z+
2

� . . . z+
1

)

PA
+

(z+
n

, z) · · · A
+

(z+
1

, z) ⌘ A
+

(z+
1

, z) · · · A
+

(z+
n

, z)✓(z+
n

� z+
n�1

) . . . ✓(z+
2

� . . . z+
1

). (39)

Summing finally over the number of reggeized gluons, one obtains for gluons the following
e↵ective vertex which sums up the interaction with an arbitrary number of reggeized gluon
fields,

p

r

= ⌧ab

G,⌫µ

(p, �r) = �4⇡�(p+ � r+)�
⌫µ

(r, p)e�ix

+
0 (p

��r

�
)

·
Z

d2zeiz·(p�r)



✓(p+)
h

U ba(z) � �ab
i

� ✓(�p+)
h

[U ba(z)]† � �ab
i

�

. (40)

For quarks one finds,

p

r

= ⌧
F

(q, �r) = 2⇡�(p+ � r+)/n+e�ix

+
0 (p

��r

�
)

·
Z

d2zeiz·(p�r)



✓(p+) [W (z) � 1] � ✓(�p+)
h

[W (z)]† � 1
i

�

. (41)
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cone gauge and not the reggeized field A
+

. One has

⌧̃
F

(p, �q) = 2⇡�(p+ � q+) /n+

⇥
Z

d2zeiz·(p�q)

n

✓(p+)
⇥

W [b](z) � 1
⇤ � ✓(�p+)

⇥

W [b]†(z) � 1
⇤

o

(47)

⌧̃ab

G,⌫µ

(p, q) = 2⇡�(p+ � q+) (�2p+g
⌫µ

)

⇥
Z

d2zeiz·(p�q)

⇢

✓(p+)
⇥

Uab[b](z) � 1
⇤ � ✓(�p+)

⇥

⇣

Uab[b]
⌘†

(z) � 1
⇤

�

, (48)

with Wilson lines in fundamental (W ) and adjoint (U) representation

W [b](z) = P exp

0

@�g

2

1
Z

�1

dx+b�,c(x+, z)tc

1

A , b�(x+, z) = �ib�,c(x+, z)tc

U [b](z) = P exp

0

@�g

2

1
Z

�1

dx+b�,c(x+, z)T c

1

A , b̃�(x+, z) = �ib�,c(x+, z)T c . (49)

Leaving aside potential di↵erences in the Wilson lines, to which we will turn in Sec. 4.2, one
observes that both quark propagators agree directly with each other (if one sets x+

0

= 0). To
carry out a similar comparison for the gluon, we consider first the case where the external
free propagators in Eq. (44) are taken in v · n� = 0 light-cone gauge. Since dµ⌫

l.c.

(p, n+)n+

⌫

=
0 = dµ⌫

l.c.

(r, n+)n+

µ

, all terms in the vertex �⌫µ(r, p) which contain a n+

µ

or n+

⌫

vanish. One
therefore remains with the 2p+g

µ⌫

term only which is precisely the term used in Eq. (48).
Both expression therefore agree for x+

0

= 0. We further note that both the light-cone gauge
polarization tensor and the GGR-vertex can be factorized into the products of a ‘left’ and
‘right’ tensor,

cµ↵
L

(p, n+) =

✓

gµ↵ � (n+)µp↵

p · n+

◆

c↵⌫
R

(r, n+) =

✓

g↵⌫ � r↵(n+)⌫

r · n+

◆

, (50)

where

�µ⌫ = p+cµ↵
L

(p, n+)c↵⌫
R

(r, n+), (51)

and

dµ⌫(p, n+) = cµ↵
R

(p, n+)(�g
↵�

)c�⌫
L

(p, n+). (52)

This property allows to establish on a diagrammatic level how the vertex �µ⌫ can build
up from properly factorizing the numerator of the light-cone gauge gluon propagator and
absorbing them into the vertex; the information contained in Eq. (44) and (46) is therefore
in this sense identical. It is an interesting note aside that a similar mechanism has been used
in the construction of a certain projector in [33].

4.2 Comparison of Wilson lines and the definition of the reggeized gluon

In the following we attempt a somewhat detailed comparison between the Wilson lines in the
reggeized gluon field A

+

, arising from Lipatov’s high energy e↵ective action, and Wilson lines
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where G
µ⌫

= 1

g

[D
µ

, D
⌫

] and

Sq.e.

ind.

=

Z

d4x tr
�{W�[v] � A�(x)} @2A

+

(x)
⇤

. (20)

Keeping fields A
+

to all orders and expanding in quantum fluctuations v
µ

and  ,  ̄ to
quadratic order we obtain

Sq.e.

e↵

=

Z

d4x
⇥L

0

+ L
1

� tr
�

A�@
2A

+

�⇤

+ O(v3
µ

), (21)

with the kinetic term of the gluonic and quark field

L
0

= tr
��vµ[g

µ⌫

@2 � @
µ

@
⌫

]v⌫
�

+  ̄i/@ (22)

and the quadratic terms which describe interaction with the reggeized gluon field,

L
1

= g ·
⇢

i

2
 ̄/n�A

+

 + tr



@�v
µ

[A
+

, vµ] + 2@
µ

v�[vµ, A
+

]+

+ @2v�

✓

1

@�
v�

◆

, A
+

�

� v�

✓

1

@�
v�

◆

@2A
+

��

. (23)

Since we assume that the reggeized gluon field couples to high partonic densities in the target,
we have gA

+

⇠ 1; the term L
1

is therefore of the same order as L
0

. The term tr(A�@
2A

+

)
provides the kinetic term of the reggeized gluon field which is only needed to connect the A

+

field to e.g. the target.

3.3 Parton-parton-reggeized gluon vertices

The above Lagrangian L
1

allows now for the straightforward determination of the quark-
quark-reggeized gluon (QQR) and gluon-gluon-reggeized gluon (GGR) vertex. Keeping an
explicit dependence on the reggeized gluon field, we find for quarks,

p

r

c,+

i,↵ j, � = �igtc
ji

�
�↵

(r, p)

Z

d4z e�iz·(p�r)Ac

+

(z), �
�↵

(r, p) = �1

2
/n+

↵�

, (24)

which coincides with the expression used e.g. in [13]. For gluons one obtains instead

p

r

c,+

a, µ b, ⌫ = �igT c

ba

�⌫µ(r, p)

Z

d4z e�iz·(p�r)Ac

+

(z),

�⌫µ

+

(r, p) = p+gµ⌫ � (n+)µp⌫ � (n+)⌫rµ +
r · p

p+
(n+)µ(n+)⌫

= p+gµ⌫? � (n+)µp

⌫ � (n+)⌫rµ � r · p

p+
(n+)µ(n+)⌫ , (25)
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background field in 
light-cone gauge

reggeized gluon/
Lipatov action → 

any gauge
good news: if light-cone gauge v･n+=0 is used ⇒ all 
terms, but the first vanish for propagator

both expressions agree for  
v･n+=0  light-cone gauge ✓



What about the Wilson line ?
one in gluon background field,  

one in reggeized gluon field

• in both cases, we have a remaining path integral 
over the regarding field → “weight-functional” over 
target configuration 

• Lipatov’s effective action: there’s an explicit action 
to calculate this average 

• Note: also the Wilson line itself differs



in the background field b
+

, frequently encountered in CGC calculation in light-cone gauge.
While we find that the interpretation of these Wilson lines di↵ers, we would like to stress that
for the calculation of correlators in the dilute quasi-elastic region, i.e. perturbative forward
scattering in the presence of a strong background field (reggeized gluon or light-cone gauge),
both formalism are equivalent; the only di↵erence is that the e↵ective action allows use of
arbitrary gauges2. The di↵erence lies therefore mainly in the interpretation of the background
field, i.e. the coupling to color sources in a di↵erent rapidity cluster. At first both Wilson
lines appear to resum identical fields; Eq. (34) and Eq. (45) take identical forms. Obviously
one has for a Wilson line of a generic gluonic field V

+

,

W [V ](x) = P exp

0

@�g

2

1
Z

�1

dx+V
+

(x)

1

A =
1

X

n=0

(�g)n

2nn!

Z

n

Y

i=1

dx+

i



V
+

(x
1

) . . . V
+

(x
n

)✓(x+

1

� x+

2

) . . . ✓(x+

n�1

� x+

n

) + permutations

�

. (53)

If now V
+

(x) = A
+

(x) = �2i�(x+ � x+

0

)↵a(x)ta, the permutations of the fields A(x
i

), i =
1, . . . , n are all identical (since their x+ dependence is identical) and we arrive directly at

W [A](x) =
1

X

n=0

1

n!

✓�g

2

◆

n

n

Y

i=1

Z

dx+

i

A
+

(x
1

) . . . A
+

(x
n

)

⇥

✓(x+

1

� x+

2

) . . . ✓(x+

n�1

� x+

n

) + permutations
⇤

=
1

X

n=0

1

n!

✓�g

2

◆

n

n

Y

i=1

Z

dx+

i

A
+

(x
1

) . . . A
+

(x
n

) = eig↵
a
(x)t

a
, (54)

We therefore obtain a simple matrix exponential. Formally, also the choice V
+

(x) = b
+

(x) =
�i�(x+)�a(x, x�)ta leads obviously to the same result. In the literature such an interpreta-
tion is however usually avoided, by treating the contracting of the x+-dependence to delta-like
support as an approximation which applies to the calculation of correlators in the background
field, while the b

+

itself is ordered in the x+ coordinates. see e.g. [10].

While the precise interpretation used is irrelevant for the calculation of correlators in the
presence of a background field, the di↵erence becomes striking once correlators of the back-
ground field with e.g. color charges in a rapidity cluster significantly separated in rapidity
are considered (“the dense target”). Vertices which describe the interaction of the Wilson
line with n-reggeized gluons fields come with purely symmetric color tensors, since the precise
ordering of fields is irrelevant. For the gluonic field b

+

(x) such a result is not acceptable, since
one would miss the corresponding anti-symmetric and mixed symmetry correlators. Within
the e↵ective action, the interaction with these color charges does not occur directly through
the reggeized gluon field, but through the induced vertices Fig. 1 and corresponding higher
order vertices. Following the treatment in [28], theses vertices carry only anti-symmetric
color tensors (corresponding to a combination of anti-commutators of SU(N

c

) generators).
Combining these induced vertices with the symmetric m reggeized gluon state to construct

2
Nevertheless we would like to stress that calculation based on the background field in light-cone gauge

allow at least in principle also for the use of di↵erent gauges for the gluon fluctuations.
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There appears to be a close connection of these two dimensional fields with the defi-
nition of the reggeized gluon field in [13] as the logarithm of a Wilson line. We plan
to return to a detailed discussion of these two-dimensional fields within the e↵ective
action in a separate publication. For the the moment we merely use it to motivate the
above additional simplification imposed on the reggeized gluon field.

Since this is an important point for the following discussion, we further point out
that with the general Fourier decomposition of the reggeized gluon field

A
+

(x) =
1

2

Z
dk+dk�d2k

(2⇡)4
e�ik

+
x

�
0 /2�ik

�
x

+
+ik·xÃ

+

(k)

=
1

2

Z
dk�d2k
(2⇡)4

e�ik

�
x

+
+ik·xÂ

+

(k), (115)

the relation A
+

⇠ �(x+) corresponds to Â
+

(k�,k) = Â
+

(k) i.e. the k� distribution
encoded in the Fourier transform of the reggeized gluon field is constant. This reflects
the fact, that the precise value of the k� component is irrelevant to the dynamics
in di↵erent rapidity clusters and therefore this component is un-constrained by such
dynamics. Since we are dealing with Wilson lines, path ordered in x+, we point out the
following, seeminly trivial, yet important relation. In general we define a path ordered
exponential W [v](x) as the solution to the following equation,

[@
+

+ gV
+

(x)]W [v](x) = (116)

with v
+

(x) the matrix valued gluon field. A solution is given by

W [V ](x) =
1X

n=0

✓�g

2

◆
n

nY

i=1

Z
dx+

i

V
+

(x
1

) . . . V
+

(x
n

)✓(x+ � x+

1

) . . . ✓(x+

n�1

� x+

n

).

(117)

Here we are interested in the special case x+ = 1 which essentially set the first of the
n theta functions to 1. Obviously it is possible to rewrite the corresponding expression
in the following form,

W [V ](x)

����
x

+
=1

=
1X

n=0

(�g)n

2nn!

Z
nY

i=1

dx+

i


V
+

(x
1

) . . . V
+

(x
n

)✓(x+

1

� x+

2

) . . . ✓(x+

n�1

� x+

n

) + permutations

�
,

(118)

through a simple relabelling of coordinates. If now V
+

(x) = A
+

(x) = �i�(x+)↵a(x, x�)ta

– where we introduced generators to explicitely denote the matrix nature – the permu-
tations of the fields A(x

i

), i = 1, . . . , n are all the same (since their x+ dependence is
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generic path-ordered 
exponential

There appears to be a close connection of these two dimensional fields with the defi-
nition of the reggeized gluon field in [13] as the logarithm of a Wilson line. We plan
to return to a detailed discussion of these two-dimensional fields within the e↵ective
action in a separate publication. For the the moment we merely use it to motivate the
above additional simplification imposed on the reggeized gluon field.

Since this is an important point for the following discussion, we further point out
that with the general Fourier decomposition of the reggeized gluon field
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the relation A
+

⇠ �(x+) corresponds to Â
+

(k�,k) = Â
+

(k) i.e. the k� distribution
encoded in the Fourier transform of the reggeized gluon field is constant. This reflects
the fact, that the precise value of the k� component is irrelevant to the dynamics
in di↵erent rapidity clusters and therefore this component is un-constrained by such
dynamics. Since we are dealing with Wilson lines, path ordered in x+, we point out the
following, seeminly trivial, yet important relation. In general we define a path ordered
exponential W [v](x) as the solution to the following equation,
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Here we are interested in the special case x+ = 1 which essentially set the first of the
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through a simple relabelling of coordinates. If now V
+

(x) = A
+

(x) = �i�(x+)↵a(x, x�)ta

– where we introduced generators to explicitely denote the matrix nature – the permu-
tations of the fields A(x

i

), i = 1, . . . , n are all the same (since their x+ dependence is
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rewrite as sum over all 
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in the background field b
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, frequently encountered in CGC calculation in light-cone gauge.
While we find that the interpretation of these Wilson lines di↵ers, we would like to stress that
for the calculation of correlators in the dilute quasi-elastic region, i.e. perturbative forward
scattering in the presence of a strong background field (reggeized gluon or light-cone gauge),
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We therefore obtain a simple matrix exponential. Formally, also the choice V
+

(x) = b
+

(x) =
�i�(x+)�a(x, x�)ta leads obviously to the same result. In the literature such an interpreta-
tion is however usually avoided, by treating the contracting of the x+-dependence to delta-like
support as an approximation which applies to the calculation of correlators in the background
field, while the b

+

itself is ordered in the x+ coordinates. see e.g. [10].

While the precise interpretation used is irrelevant for the calculation of correlators in the
presence of a background field, the di↵erence becomes striking once correlators of the back-
ground field with e.g. color charges in a rapidity cluster significantly separated in rapidity
are considered (“the dense target”). Vertices which describe the interaction of the Wilson
line with n-reggeized gluons fields come with purely symmetric color tensors, since the precise
ordering of fields is irrelevant. For the gluonic field b

+

(x) such a result is not acceptable, since
one would miss the corresponding anti-symmetric and mixed symmetry correlators. Within
the e↵ective action, the interaction with these color charges does not occur directly through
the reggeized gluon field, but through the induced vertices Fig. 1 and corresponding higher
order vertices. Following the treatment in [28], theses vertices carry only anti-symmetric
color tensors (corresponding to a combination of anti-commutators of SU(N

c

) generators).
Combining these induced vertices with the symmetric m reggeized gluon state to construct

2
Nevertheless we would like to stress that calculation based on the background field in light-cone gauge

allow at least in principle also for the use of di↵erent gauges for the gluon fluctuations.
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Wilson line of a reggeized 
gluon = a simple matrix 
exponential
objection: this would then also apply to a gluon 
background field in shock-wave form  

in reality: such an interpretation is usually avoided → 
would miss certain configurations

Lipatov’s effective action: • reggeized gluon coupling to 
Wilson line symmetric color 

• anti-symmetric configuration 
through induced vertices on 
target side



Wilson lines and reggeized gluons

a ‘Wilson-line-n gluon’ vertex (n � m), where the coupling to the Wilson line is always me-
diated by at least one reggeized gluon, one recovers the complete symmetry structure. For a
pedagogic presentation for the case up to three gluons we refer to Appendix A; see also the
discussion in [21].

At this point we would like to return to a proposal made in [27] for the definition of the
reggeized gluon from Wilson-lines in the Balitsky-JIMWLK formalism. There it has been
proposed to define the reggeized gluon Ra(z) as the logarithm of the adjoint Wilson line,

Ra(z) ⌘ 1

gN
c

fabc log U bc(z) . (55)

Using the above results, one finds directly for the results obtained from Lipatov’s high energy
e↵ective action,

Ra(z) =
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gN
c

fabc

h

ig↵d(z)T d

bc

i

= ↵a(z) =
1

2

Z

dx+Aa

+

(x+, z), (56)

i.e. the definition of the reggeized gluon of [27] coincides with the reggeized gluon field
of Lipatov’s e↵ective action, once this field is integrated over the corresponding light-cone
coordinate3.

5 Balitsky-JIMWLK evolution

In the following we demonstrate that the high energy evolution of Wilson lines of reggeized
gluons (obtained within the high energy e↵ective action) leads directly to the leading order
Balitsky-JIMWLK evolution equation. Even though this is expected, given the coincidence
in the resummed gluon and quark propagators, this provides an important consistency check,
in particular for future calculation of CGC-observables. We will then investigate the question
whether integrating out quantum fluctuations of a general ensemble of Wilson lines gives in-
deed rise to the Balitsky-JIMWLK evolution equation.

Within Lipatov’s high energy e↵ective action, the determination of high energy evolution
requires in general the high energy e↵ective action for ‘central-rapidity’ processes, i.e. the
e↵ective action which contains both A� and the A

+

reggeized gluon fields and corresponding
induced vertices. For the discussion of dense-dilute collision the decomposition provided by
the e↵ective action for central rapidities is however not very e�cient; the additional set of
induced vertices provides a certain color decomposition of amplitudes which describe gluon
production from a multi-reggeized gluon exchange. While it has been demonstrated at the
level of the scattering amplitude for four-reggeized gluon exchange that after a certain reshuf-
fling of terms the 2 � 4 reggeized gluon vertex (triple Pomeron vertex) arises from the high
energy e↵ective action [21] (which at the same time can be shown to arise as well from
Balitsky-JIMWLK evolution [23]), the calculation is rather cumbersome. While the refor-
mulation of the e↵ective action provided in Sec. 3 already provides a first simplification, it
is easier to recover the Balitsky-JIMWLK evolution equation from the quantum fluctuations

3
At least within the high energy e↵ective action, a definition based on the Wilson lines in the fundamental

representation would be equally possible, i.e. Ra
(z) = 2

ig tr(t
a
log[V (z)]) = ↵a

(z)

14

proposal in [Caron-Huot, 1309.6521] : 
reggeized gluon as the log of an 
adjoint Wilson line, subject to 
Balitsky-JIMWLK evolution 
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reggeized gluon of Caron-Hout ≣ 
integrated reggeized gluon of the high 

energy effective action
within the effective action this works also with a fundamental Wilson line!



Can we re-obtain Balitsky-JIMWLK 
evolution form Lipatov’s action?

• quantum fluctuations of Wilson lines within Lipatov’s 
action →Balitsky-JIMWLK evolution (so far LL) 

• effective action for central production processes  
→ color decomposition imposed of effective action 
gives complication  

• similar problems in deriving the Triple Pomeron 
vertex [MH, 0908.2576]) 

• here: investigate quantum corrections to quasi-
elastic regime;  
high energy divergence = JIMWLK-Kernel 

→ Yes



Baltisky-JIMWLK evolution
• consider quantum 

fluctuations of an ensemble 
of Wilson lines 

• 1 Wilson line from action for 
1-dim complex (auxiliary) 
scalar field 𝝋, charged in 
fundamental rep. of SU(NC) 

• propagator

of the quasi-elastic Lagrangian. For an ensemble of Wilson lines the latter are directly pro-
portional to the high energy divergence, without the need to drop any finite terms. We hope
to return to the description which uses the high energy e↵ective action for central rapidity
processes in a future publication.

For the following discussion it su�cient to consider Wilson lines in the fundamental
representation. While adjoint Wilson lines can be rewritten in terms of fundamental Wilson
lines using the well-known relation

Uab(z) = 2tr
h

taW (z)tbW †(z)
i

, (57)

the hermitian conjugate of a fundamental Wilson lines follows trivially from the discussion
of the fundamental Wilson line. We will therefore consider the quantum fluctuations of an
ensemble of n fundamental Wilson lines in the reggeized gluon fields,
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+

](z
1

) ⌦ . . . ⌦ W [A
+

](z
n

). (58)

5.1 Feynman rules for quantum fluctuations of a Wilson line

Integrating out the quantum fluctuations vµ is most easily achieved, if one supplements the
e↵ective action with an auxiliary complex 1-dimensional scalar field, ' = '(x+, z, x�

0

) where
z, x�

0

= 0 are constant for the dynamics of the scalar field. The field is charged in the
fundamental representation of SU(N
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) and transforms under gauge transformations as
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The 1-dimensional gauge invariant action of this field, which describes interaction with the
gluonic field, is given by
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where all fields are taken at fixed (x, x�
0

). One obtains in a straightforward manner for the
propagator of this scalar field
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As a next step we use the parametrization Eq. (17) of the gluonic field and limit ourselves
to terms quadratic in the quantum fluctuation. Limiting ourselves further to covariant or
v� = 0 gauges, the following simplified shift is su�cient4,

vµ ! V µ = vµ +
1

2
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4
Covariant gauge requires correlators of v� and v+ fields as well as two v+ fields; the correlator of two v�

vanishes on the other hand. v� = 0 gauge requires on the other hand only the correlator of two v+ fields
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Covariant gauge requires correlators of v� and v+ fields as well as two v+ fields; the correlator of two v�

vanishes on the other hand. v� = 0 gauge requires on the other hand only the correlator of two v+ fields
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of the quasi-elastic Lagrangian. For an ensemble of Wilson lines the latter are directly pro-
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Figure 2: Feynman rules for the calculation of quadratic fluctuations of the Wilson lines for covariant

or v� = 0 gauge. Note that the the Wilson-line-gluon vertex (d) conserves momentum as usually, while

four momenta are not conserved at the vertices (a) and (c). Momenta which are not fixed by external

momenta are understood to be integrated over with the measure d4p/(2⇡)4

.

Expanding our expressions around the background field gA
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The resulting set of Feynman rules necessary for the calculation of O(g2) corrections within
covariant and/or v� = 0 gauge are then summarized in Fig. 2.

5.2 Calculating quantum fluctuations

Since we require only fluctuations up to quadratic order, it is su�cient to consider the cor-
relator of two Wilson lines at 1-loop.The non-zero diagrams for self-energy type corrections
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B-JIMWLK in covariant gauge
to one Wilson line are given by
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For interactions between 2 Wilson lines, evaluation of the following diagrams is su�cient (the
remaining diagrams can be deduced from symmetry),
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Note that correlators of Wilson-lines are only infra-red finite, if projected onto the color
singlet. The general case of colored Wilson lines is nevertheless of interest; in particular it
allows to recover the gluon Regge trajectory, see [27] for a detailed discussion. We therefore
work in d = 4+2✏ space-time dimensions, with the vertices Eq. (40) and Eq. (41) generalizing
trivially. We obtain
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The divergent integral over the plus-momenta provides the high-energy singularity which
defines the kernel of the high energy evolution. The precise choice of the regulator is irrelevant
for leading order accuracy. In the following we chose ⇤

a,b

! 1 and a scale s
0

of the order of
the transverse scale, also known as the reggeization scale, to regularize the integral as,
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To derive the high energy evolution of Wilson-lines, ⇤
a

will be the regulator of interest, since
it limits the p+ integral from above. With the MS strong coupling constant in d = 4 + 2✏
dimensions

↵
s

=
g2µ2✏�(1 � ✏)

(4⇡)1+✏

, (68)
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re-obtain B-JIMWLK evolution
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We then obtain for the complete correlator of 2 Wilson lines
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Using the above result it is straightforward to obtain the high energy evolution of an ensemble
of n Wilson lines as
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with the Balitsky-JIMWLK Hamiltonian

H
ij

=
↵
s

�2(1 + ✏)

2⇡2�(1 � ✏)

✓

4

⇡µ2

◆

✏

Z

d2+2✏

z

(x
i

� z) · (x
j

� z)

[(x
i

� z)2]1+✏[(x
j

� z)2]1+✏

h

T a

i,L

T a

j,L

+ T a

i,R

T a

j,R

� Uab(z)
⇣

T a

i,L

T b

j,R

+ T a

j,L

T b

i,R

⌘i

. (76)

In the presentation we followed here closely [27] and define T a

L,i

and T a

R,j

as the group gener-
ators acting to the left (L) or to the right (R) on the Wilson line W (x

i

),
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group generators 
acting to the left (L) 
or to the right (R)



Conclusion
• up to quadratic order in quantum fluctuations, 

Lipatov’s high energy effective action and standard 
expressions for propagators in presence of a strong 
background field agree 

• important difference: gluon background field vs. 
reggeized gluon → different gauge transformation + 
symmetry properties   

• leading order Baltisky-JIMWLK evolution has been 
re-obtained 

• future: higher flexibility concerning choosing 
gauges



• so far paradigm: get high 
energy divergence from 
effective action for central 
production → we didn’t 
achieve this so far 

• confirmed so far the leading 
order, NLO remains to be 
verified

...

...

what about 2 strong 
reggeized gluon 

fields?

… work in progress …

Conclusion



Appendix



Theory: Propagators in background field

the real gluon interacting with the quark at the same vertex) and therefore posesses, as
far as the pole structure is concerend, the same structure as the the first contribution.
Moreover, unlike the first contribution, the vertex which leads to emission of the real
gluon, can appear at any position. Note that, since we are dealing with a real final
state quark and gluon, the time ordering of the ‘quark Wilson line’ is not a↵ected by
the emission of the real gluon. Taking into account only the color generators due to the
interaction with the background field and the vertex Eq. (24) we have for the second
contribution, the following result,
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where we restricted ourselves to the case n = 3 with the generalization to arbitrary n

apparent. After contraction with q

⇢, the factor in front of the squared bracket turns
into gn�. For the first contribution one has instead (with the incoming quark momentum
p and the outgoing quark momentum r)
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After contraction with q

⇢ and using that the out-going quark is real we have
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The last two terms cancel now against the with q

⇢ contracted Eq. (25) while the first
term is only present due to the o↵-shellness of the initial gluon and is identical to the
case where a gluon is emitted from a quark without interaction with the background
field. Hence it is supposed to be canceled by some standard mechanism.

1.2 Momentum space

Generalizing [1] to d dimensions and masses we have for the propagators
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with Wilson lines in fundamental (V ) and adjoint (U) represenation which read
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For a straightforward formulation in momentum space, it is useful to include e↵ective
2-point (1 ! 1) vertices which correspond to the above introduced ⌧

f

and ⌧

g

. In
combination with conventional QCD Feynman rules (where we follow the conventions

1

I interpret the k
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of [1] as k2
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with k2

Euclidean.
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A complete derivation requires the LSZ-reduction formula
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interaction with the background field:

strong background field resummed into path ordered 
exponentials (Wilson lines)

[Balitsky, Belitsky; NPB 629 (2002) 290], [Ayala, Jalilian-Marian, McLerran, 
Venugopalan, PRD 52 (1995) 2935-2943], …

use light-cone gauge, with k-=n+･k, (n+)2=0, n+~ target momentum
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Figure 2: Left: Tree diagram with 2 insertions of the vertices Eqs. (7) and (8): the internal mo-

mentum k1 is integrated over like a loop momenta i.e. with

R

d

4
k1/(2⇡)4. Right: Tree diagram with

1 insertion the vertices Eqs. (7) and (8): all momenta are fixed by external momenta
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with Wilson lines in fundamental (V ) and adjoint (U) representation. They read
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acb. To construct amplitudes in the presence of a (strong) background field, it
is convenient to extend conventional QCD momentum space Feynman rules by two additional
rules: (a) adding the vertices Eqs. (7) and (8) and (b) the requirement that all internal
momenta p, i.e. momenta which cannot be expressed in terms of momenta of external

particles, are integrated over with the measure
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loop momenta. In tree diagrams such internal momenta arise if n � 2 vertices from Eqs. (7)
and (8), are inserted into a single Feynman diagram; see Fig. 2 for an illustrative example. If
the number n of produced colored particles in the final state is small, n  2, the above method
provides an e�cient alternative to the calculation of matrix elements in the presence of large
gluon densities, see [11, 24] for earlier examples. For final states with large multiplicities,
n � 3, the method becomes ine�cient due to the large number of Feynman diagrams which
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already 16 diagrams for the process �

⇤+ target ! q + q̄ + g. Moreover, calculations based

5

p

�q

l

�k1

l � k1

p

�q

l

p� l
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with Wilson lines in fundamental (V ) and adjoint (U) representation. They read
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with �iT

c

ab

= f

acb. To construct amplitudes in the presence of a (strong) background field, it
is convenient to extend conventional QCD momentum space Feynman rules by two additional
rules: (a) adding the vertices Eqs. (7) and (8) and (b) the requirement that all internal
momenta p, i.e. momenta which cannot be expressed in terms of momenta of external

particles, are integrated over with the measure
R

d

4

p

(2⇡)

4

, in 1-1 correspondence to conventional

loop momenta. In tree diagrams such internal momenta arise if n � 2 vertices from Eqs. (7)
and (8), are inserted into a single Feynman diagram; see Fig. 2 for an illustrative example. If
the number n of produced colored particles in the final state is small, n  2, the above method
provides an e�cient alternative to the calculation of matrix elements in the presence of large
gluon densities, see [11, 24] for earlier examples. For final states with large multiplicities,
n � 3, the method becomes ine�cient due to the large number of Feynman diagrams which
need to be considered. While the process �⇤+ target ! q + q̄ requires 3 diagrams, one finds
already 16 diagrams for the process �

⇤+ target ! q + q̄ + g. Moreover, calculations based

5

p

k

�q

`

P

X

Figure 1:

a general four vector v given by
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+
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, where n · n̄ = 1, n

2 = 0 = n̄

2

,

v

+ = n · v, v

� = n̄ · v , and v

2

t
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2

, (2)

we obtain for the momenta of initial particles

P

µ

= P

�
n

µ

, l

µ

= l

+

n̄� Q

2

l

+

n . (3)

To include the possibility of arbitrary large gluon densities in the target, we represent the
latter by its gluonic field which can reach a maximum strength of A

µ

⇠ 1/g, with g the gauge
coupling. To calculate scattering amplitudes in the high energy limit it is then convenient
to treat the gluon field of the target as a background field (shock-wave); in light-cone gauge
A · n = 0, the only non-zero component is A

�(x+, x
t

) = �(x+)↵(x
t

), while A

t

= 0 in the
high energy limit. Amplitudes are written in terms of momentum space quark and gluon
propagators in the presence of the background field, see e.g. [23],
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which are directly obtained from Fourier transforming their corresponding counter parts in
configuration space. In the above we use the conventional free fermion and gluon propagator,
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