Probing the time structure of the QGP

Liliana Apolinário (LIP)

Guilherme Milhano, Carlos Salgado and Gavin Salam (LIP, USC, CERN)

> Accepted by PRL arXiv:1711.03105

> > Probing QCD at the high energy frontier, Trento, Italy

Jet Quenching Formalism

- Modifications imprinted by a hot and dense medium on fast traversing particle
- In pQCD, the description of such phenomena is based on a high energy approximation:

$$p_{\mu} = \left(p_{+}, p_{-} = \frac{p_{\perp}^{2}}{2p_{+}}, p_{\perp}\right) \qquad p_{+} \gg p_{\perp} \gg p_{-}$$

Jet Quenching Formalism

- Modifications imprinted by a hot and dense medium on fast traversing particle
- In pQCD, the description of such phenomena is based on a high energy approximation:

/

 y_+

$$p_{\mu} = \left(p_{+}, p_{-} = \frac{p_{\perp}}{2p_{+}}, p_{\perp}\right) \qquad p_{+} \gg p_{\perp} \gg p_{-}$$

 ~ 2

Where the medium is seen as a collection of static scattering centres...

$$A_{+} = 0$$

...Not able to exchange momentum: (eikonal approximation)

a

$$W_{ba}(y_+, x_+, x_\perp) = \mathcal{P} \exp\left\{ ig \int_{x_+}^{y_+} d\xi A_-(\xi, x_\perp) \right\}$$

Jet Quenching Formalism

- Modifications imprinted by a hot and dense medium on fast traversing particle
- In pQCD, the description of such phenomena is based on a high energy approximation:

$$p_{\mu} = \left(p_{+}, p_{-} = \frac{p_{\perp}^{2}}{2p_{+}}, p_{\perp}\right) \qquad p_{+} \gg p_{\perp} \gg p_{-}$$

Where the medium is seen as a collection of static scattering centres...

$$A_{+} = 0$$

...Not able to exchange momentum: (eikonal approximation)

$$W_{ba}(y_+, x_+, x_\perp) = \mathcal{P} \exp\left\{ ig \int_{x_+}^{y_+} d\xi A_-(\xi, x_\perp) \right\}$$

...or able to induce transverse Browninan motion (beyond eikonal approximation):

$$G_{ba}(y_{+}, y_{\perp}; x_{+}, x_{\perp}) = \int_{r(x_{+})=x_{\perp}}^{r(y_{+})=y_{\perp}} \mathcal{D}r(\xi) \exp\left\{\frac{ip_{+}}{2} \int_{x_{+}}^{y_{+}} d\xi \left(\frac{dr}{d\xi}\right)^{2}\right\}$$

- Jet Quenching signatures:
 - Medium-induced energy loss and transverse momentum broadening:
 - Single gluon emission (beyond) eikonal limit

[Baier, Dokshitzer, Mueller, Peigné, Schiff (95)], [Zakharov (96)],[Wiedemann (01)], [Arnold, Moore, Yaffe (02)], [LA, Armesto, Salgado, (12)],[Blaizot, Dominguez, Iancu, Mehtar-Tani (13-14)], [LA, Armesto, Milhano, Salgado, (15)]

- Jet Quenching signatures:
 - Medium-induced energy loss and transverse momentum broadening:
 - Single gluon emission (beyond) eikonal limit

Average over medium color configurations: multiple soft scattering approximation

[Baier, Dokshitzer, Mueller, Peigné, Schiff (95)], [Zakharov (96)],[Wiedemann (01)], [Arnold, Moore, Yaffe (02)], [LA, Armesto, Salgado, (12)],[Blaizot, Dominguez, Iancu, Mehtar-Tani (13-14)], [LA, Armesto, Milhano, Salgado, (15)]

- Jet Quenching signatures:
 - Vacuum coherence modifications:
 - Single gluon emission from a quark-antiquark antenna pair

[Mehtar-Tani, Salgado, Tywoniuk (2010-2011)] [Casalderrey-Solana, Iancu (2011)] [LA, Armesto, Milhano, Salgado (2017)]

- Jet Quenching signatures:
 - Vacuum coherence modifications:

Single gluon emission from a quark-antiquark antenna pair

Medium transverse scale: $r_{\perp} = \theta L$

 $\Delta_{med} \approx 1 - \mathrm{e}^{-\frac{1}{12}Q_s^2 r_\perp^2}$

After integrating over azimuthal angle:

$$dN_q^{\omega \to 0} \sim \alpha_s C_R \frac{d\omega}{\omega} \frac{\sin \theta d\theta}{1 - \cos \theta} \left[\Theta(\cos \theta_1 - \cos \theta) + \Delta_{med} \Theta(\cos \theta - \cos \theta_1) \right]$$

[Mehtar-Tani, Salgado, Tywoniuk (2010-2011)] [Casalderrey-Solana, Iancu (2011)] [LA, Armesto, Milhano, Salgado (2017)]

 From single particle measurements (single particle) to jets (full partonic shower) requires better theoretical description:

- From single particle measurements (single particle) to jets (full partonic shower) requires better theoretical description:
 - Multiple gluon emissions (medium-induced gluon evolution equations)

[Blaizot, Iancu, Mehtar-Tani (2013)] [Fister, Iancu (2015)], [Iancu, Wu (2016)]

Interplay between medium and vacuum-like showers

[Kurkela, Wiedemann (2014)], [Mehtar-Tani, Tywoniuk (2017)] [Caucal, Iancu, Mueller, Soyez (2018)]

- From single particle measurements (single particle) to jets (full partonic shower) requires better theoretical description:
 - Multiple gluon emissions (medium-induced gluon evolution equations)

[Blaizot, Iancu, Mehtar-Tani (2013)] [Fister, Iancu (2015)], [Iancu, Wu (2016)]

Interplay between medium and vacuum-like showers

[Kurkela, Wiedemann (2014)], [Mehtar-Tani, Tywoniuk (2017)] [Caucal, Iancu, Mueller, Soyez (2018)]

But main signatures in qualitative agreement with experimental observations!

- From single particle measurements (single particle) to jets (full partonic shower) requires better theoretical description:
 - Multiple gluon emissions (medium-induced gluon evolution equations)

[Blaizot, Iancu, Mehtar-Tani (2013)] [Fister, Iancu (2015)], [Iancu, Wu (2016)]

Interplay between medium and vacuum-like showers

[Kurkela, Wiedemann (2014)], [Mehtar-Tani, Tywoniuk (2017)] [Caucal, Iancu, Mueller, Soyez (2018)]

But main signatures in qualitative agreement with experimental observations!

- From single particle measurements (single particle) to jets (full partonic shower) requires better theoretical description:
 - Multiple gluon emissions (medium-induced gluon evolution equations)

[Blaizot, Iancu, Mehtar-Tani (2013)] [Fister, Iancu (2015)], [Iancu, Wu (2016)]

Interplay between medium and vacuum-like showers

[Kurkela, Wiedemann (2014)], [Mehtar-Tani, Tywoniuk (2017)] [Caucal, Iancu, Mueller, Soyez (2018)]

Dijet/Boson+Jet Asymmetry

- Probing of the QGP in heavy-ion collisions through a range of complementary probes:
 - Jets, Quarkonia, Hydrodynamical Flow coefficients, Hadrochemistry,...
 - All of them are the integrated result over the whole medium evolution

- Probing of the QGP in heavy-ion collisions through a range of complementary probes:
 - Jets, Quarkonia, Hydrodynamical Flow coefficients, Hadrochemistry,...
 - All of them are the integrated result over the whole medium evolution

But...

Strong time-dependence of the medium properties (expansion and cooling of the system)

- Probing of the QGP in heavy-ion collisions through a range of complementary probes:
 - Jets, Quarkonia, Hydrodynamical Flow coefficients, Hadrochemistry,...
 - All of them are the integrated result over the whole medium evolution

Strong time-dependence of the medium properties (expansion and cooling of the system) Small-size systems (high-multiplicity pp and pA collisions) show signatures of collective behaviour

- Probing of the QGP in heavy-ion collisions through a range of complementary probes:
 - Jets, Quarkonia, Hydrodynamical Flow coefficients, Hadrochemistry,...
 - All of them are the integrated result over the whole medium evolution

Strong time-dependence of the medium properties (expansion and cooling of the system) Small-size systems (high-multiplicity pp and pA collisions) show signatures of collective behaviour

Need to devise a strategy to probe the time-structure of the QGP!

Jet Quenching

- Jet Quenching probes so far: Dijets, Z+jet, γ+jet,
 - Produced simultaneously with the collision;
 - Our suggestion: t+tbar events
 - Leptonic decay: tagging;
 - + Hadronic decay: probe of the medium
 - Decay chain: top + W boson
 - At rest: τ_{top}=0.15 fm/c; τ_W=0.10 fm/c
 - Originated jets will interact with the medium at later times

Jet Quenching

Closer look to q+qbar antenna...

- Jet Quenching probes so far: Dijets, Z+jet, γ+jet,
 - Produced simultaneously with the collision;
 - Our suggestion: t+tbar events
 - Leptonic decay: tagging;
 - + Hadronic decay: probe of the medium
 - Decay chain: top + W boson
 - At rest: τ_{top}=0.15 fm/c; τ_W=0.10 fm/c
 - Originated jets will interact with the medium at later times

• assume 50% efficiency for two b-tags

• as Colore Conterence

• assume about 50% of cross section for 10% centrality

Moreover, W boson hadronic decay is the natural setup to study coherence effects: • People typically assume a medium lifetime of 5 fm/c effects: diluted over that time.

• The decoherence $Q_s < Becoherence time.$ Ref. [1] gives this without the leading numerical factors we should have • $r_{\perp} < Q_s^{-1}$ (Dipole

1/Bransport

length: L

(Dipole regime

Medium "sees" both $p\bar{t}_{ar}$ ticles $\left(\begin{array}{c} 3 \\ as \\ \hat{q}\theta_{q\bar{q}}^2 \end{array} \right)$ Coefficient: \hat{q} Medium $\theta_{q\bar{q}}$ is Medium able to "see" both particles one single emitter Color correlation is broken Particles emit coherently Both particles emit independently

A sensible value for \hat{q} is $\hat{q} = 4 \text{ GeV}^2 / \text{ fm.}$ If we translate that

Increases an end on the time delay allowing to have a complete ma

+ Stayint colours singlet state during: $t_d = 0.31 \text{ fm} \times \theta_{q\bar{q}}^{+2/3}$ $\left| \begin{array}{c} t_d = 0.31 \text{ fm} \times \theta_{q\bar{q}}^{+2/3} \\ \left| \begin{array}{c} q\bar{q} \end{array} \right|^{1/3} \end{array} \right|^{1/3}$

• Hard scale: • CMS event display http://mediisakladostymbiom/j/ new/101130-cern-RhoPhi-huge, grid-6x2, ipg 10

Time Delayed Probes

Time Dependence Toy Model

- Toy model for energy loss (current jet quenching Monte Carlo event generators without medium modifications to coherence pattern):
 - For a fixed medium length, a coloured particle loses, e.g., 15% of its energy

Average number of Z + Jet pairs

40 60 80 100 120 80 100 120 m_w^{reco} (GeV) **Time Dependence Toy Model**

- W decay particles will lose energy proportionally to the distance that they travel:
 - Particles emitted from the qqbar "antenna", will lose:

20

60

m_W^{reco} (GeV)

 τ_{tot} = total delay time (t_{top} + t_W + t_d)

(time at which the antenna decoheres)

+ To make a proof of concept, used Pythia 8 proton-proton event:

colouring = p_T

+ To make a proof of concept, used Pythia 8 proton-proton event:

colouring = p_T

Rescaled energy momentum of the particles to mimic energy loss

To make a proof of concept, used Pythia 8 proton-proton event:

obar 0 QGP Z 0 tbar N bbar

Rescale W decay particles independently to account for coherence effects

colouring = p_T

To make a proof of concept, used Pythia 8 proton-proton event: +

dbar 0 QGP Z 0 tbar N bbar

True rescaling account for energy loss fluctuations!

To make a proof of concept, used Pythia 8 proton-proton event:

0 obar QGP Z 0 tbar N bbar

True rescaling account for energy loss fluctuations!

Jet energy loss \Rightarrow change in reconstructed W mass

- Expected reconstructed W Mass:
 - At Future Circular Collider (FCC) energies (√s_{NN} = 39 TeV):
 - σ_{ttbar→qqbar+µv} ~ 1 nb

quenching factor (embedded in (embedded in PbPb) PbPb) Unquenched Unquenched (incorrect reco) Quenched Quenched (incorrect reco) <u>×</u>10⁻³ FCC $\sqrt{s}_{NN} = 39 \text{ TeV}$ 0.25 $(400 < p_{T,top}^{reco} < 600 \text{ GeV})$ 0.2 qu)_{0.15} (qu)_{0.15} 0.1 0.05 0 20 40 60 80 100 120 m_w^{reco} (GeV)

pp event

pp event scaled by

- Expected reconstructed W Mass:
 - At Future Circular Collider (FCC) energies (√s_{NN} = 39 TeV):
 - σ_{ttbar→qqbar+µv} ~ 1 nb
 - At Large Hadron Collider (LHC) energies (√s_{NN} = 5.5 TeV):
 - + $\sigma_{ttbar \rightarrow qqbar+\mu v} \sim 10 \text{ pb}$

pp event scaled by
quenching factor
(embedded in PbPb)pp event
(embedded in
PbPb)

- Expected reconstructed W Mass:
 - At Future Circular Collider (FCC) energies (√s_{NN} = 39 TeV):
 - σ_{ttbar→qqbar+µν} ~ 1 nb
 - At Large Hadron Collider (LHC) energies (√s_{NN} = 5.5 TeV):
 - $\sigma_{ttbar \rightarrow qqbar+\mu v} \sim 10 \text{ pb}$
 - Functional form fit:

$$N(m) = a \exp\left[-\frac{(m - m_W^{fit})^2}{2\sigma^2}\right] + b + c m$$

pp event scaled by quenching factor (embedded in PbPb)

pp event (embedded in PbPb)

Gaussian on top of a linear background

- Expected reconstructed W Mass:
 - At Future Circular Collider (FCC) energies (√s_{NN} = 39 TeV):
 - σ_{ttbar→qqbar+µν} ~ 1 nb
 - At Large Hadron Collider (LHC) energies (√s_{NN} = 5.5 TeV):
 - $\sigma_{ttbar \rightarrow qqbar+\mu v} \sim 10 \text{ pb}$
 - Functional form fit:

$$N(m) = a \exp\left[-\frac{(m - m_W^{fit})^2}{2\sigma^2}\right] + b + c m$$

pp event scaled by quenching factor (embedded in PbPb)

pp event (embedded in PbPb)

Gaussian on top of a linear background
Reconstructed W Mass as a function of the top p_T:

"Bands" = 1σ standard deviation from a true-sized sample (including reconstruction efficiency, b-tagging efficiency...)

unquenchedquenched

Unquenched = pp reference Quenched = scaled pp reference

Reconstructed W Mass as a function of the top p_T:

Reconstructed W Mass as a function of the top p_T:

Reconstructed W Mass as a function of the top p_T:

Reconstructed W Mass as a function of the top p_T:

Reconstructed W Mass as a function of the top p_T:

Reconstructed W Mass as a function of the top p_T:

Can we say something with inclusive distributions on the top p_t ?

Can we say something with inclusive distributions on the top p_t ?

Can we say something with inclusive distributions on the top pt?

Can we say something with inclusive distributions on the top pt?

Needed luminosity for LHC (PbPb) run? unquenched $= \tau_m = 1.0 \text{ fm/c}$ $= \tau_m = 5 \text{ fm/c}$ quenched τ_{m} = 2.5 fm/c $-\tau_{m}$ = 10 fm/c $\langle \tau_{tot} \rangle$ (unquenched) [fm/c] 0.6 0.7 0.9 1.1 1.4 85 HE-LHC $\sqrt{s_{NN}} = 11 \text{ TeV}$ 2 fb⁻¹ pp, 30 nb⁻¹ PbPb 80 m_W^{reco} [GeV/c²] 75 70 65 200 300 400 0 100 p^{reco}_{t.top} (bin average) [GeV/c]

Needed luminosity for LHC (PbPb) run? unquenched $\tau_m = 1.0 \text{ fm/c}$ $\tau_m = 5 \text{ fm/c}$ τ_{m} = 2.5 fm/c $-\tau_{m}$ = 10 fm/c quenched $\langle \tau_{tot} \rangle$ (unquenched) [fm/c] "bands" = 1σ 0.6 0.7 0.9 1.1 1.4 85 80 HE-LHC $\sqrt{s_{NN}} = 11 \text{ TeV}$ HE-LHC $\sqrt{s_{IN}} = 11 \text{ TeV}$ 2 fb⁻¹ pp, 30 nb⁻¹ PbPb fixed at 2 fb⁻¹ $2 \text{ fb}^{-1} \text{ pp}$ 80 m^{reco} [GeV/c²] m^{reco} [GeV/c²] 75 75 Inclusive 70 (integrating over 70 top p_T) 15% quenching 65 30 10 20 50 70 100 200 200 300 400 100 PbPb lumi [nb⁻¹] 0 fixed at 2 fb⁻¹ p^{reco}_{t,top} (bin average) [GeV/c]

Statistical Significance:

LHC 5.5 TeV (L_{PbPb} = 10 nb⁻¹) vs HE-LHC 11 TeV:

Only possible to distinguish, $\tau_m = 1$ fm/c from full quenching baseline.

Distinction between larger values of τ_m need higher energies (HE-LHC) and/or

luminosities

Statistical Significance:

LHC 5.5 TeV (L_{PbPb} = 10 nb⁻¹) vs HE-LHC 11 TeV:

Only possible to distinguish, $\tau_m = 1$ fm/c from full quenching baseline.

Distinction between larger values of τ_m need higher energies (HE-LHC) and/or

unquenched $\tau_m = 1.0 \text{ fm/c}$ $\tau_m=5 \text{ fm/c}$ quenched $\tau_m = 2.5 \text{ fm/c}$ $\tau_m = 10 \text{ fm/c}$ 80 HE-LHC $\sqrt{s_{NN}} = 11 \text{ TeV}$ LHC $\sqrt{s_{NN}} = 5.5 \text{ TeV}$ $2 \text{ fb}^{-1} \text{ pp}$ 2 fb⁻¹ pp m^{reco} [GeV/c²] 75 Νσ 70 15% quenching 65 20 30 30 10 50 70 100 10 20 50 70 100 200 PbPb lumi [nb⁻¹]

We can estimate now the maximum τ_m that can be distinguished at 2σ from the baseline full quenched result

luminosities

(Include the best p_T cut that maximizes the $N\sigma$)

Maximum Timescales

- Translate previous results into:
 - Maximum brick time, τ_m, that can be distinguished (from full quenching) with 2σ, as a function of L_{equiv}^{PbPb:}

Lighter Ions: KrKr

- Successful XeXe run at LHC:
 - higher nucleonic luminosity possible with lighter ions
 - For QGP tomography:
 - Smaller timescales than PbPb (more accessible with top quarks);
 - Smaller energy loss

Simple estimate (based on N_{part}): $\Delta E_{PbPb}/E_{PbPb} \sim 0.15$ $\Rightarrow \Delta E_{KrKr}/E_{KrKr} \sim 0.1$

Consistent with STAR (2010)!

Lighter Ions: KrKr

- Successful XeXe run at LHC:
 - higher nucleonic luminosity possible with lighter ions
 - For QGP tomography:
 - Smaller timescales than PbPb (more accessible with top quarks);
 - Smaller energy loss
- Simple estimate (based on N_{part}): $\Delta E_{PbPb}/E_{PbPb} \sim 0.15$ $\Rightarrow \Delta E_{KrKr}/E_{KrKr} \sim 0.1$

Lighter Ions: KrKr

- Successful XeXe run at LHC:
 - higher nucleonic luminosity possible with lighter ions
 - For QGP tomography:
 - Smaller timescales than PbPb (more accessible with top quarks);
 - Smaller energy loss

Simple estimate (based on N_{part}): $\Delta E_{PbPb}/E_{PbPb} \sim 0.15$ $\Rightarrow \Delta E_{KrKr}/E_{KrKr} \sim 0.1$

Consistent with STAR (2010)!

 Top quarks and their decays has a unique potential to resolve the time evolution of the QGP

- Top quarks and their decays has a unique potential to resolve the time evolution of the QGP
- A first attempt along this line of research (proof of concept):
 - Energy loss fluctuations, statistical significance assessment based on a "true-sized" sample (event reconstruction efficiency, b-tagging efficiency, ...), but no underlying event background or sophisticated energy loss model...

- Top quarks and their decays has a unique potential to resolve the time evolution of the QGP
- A first attempt along this line of research (proof of concept):
 - Energy loss fluctuations, statistical significance assessment based on a "true-sized" sample (event reconstruction efficiency, b-tagging efficiency, ...), but no underlying event background or sophisticated energy loss model...
- Promising results:
 - FCC energies: should be possible to assess the QGP density evolution (control over timescales can be done via p_T dependence)
 - HE/HL-LHC: still able to distinguish different medium-duration scenarios/ quenching dominated regions from the inclusive top sample

- Top quarks and their decays has a unique potential to resolve the time evolution of the QGP
- A first attempt along this line of research (proof of concept):
 - Energy loss fluctuations, statistical significance assessment based on a "true-sized" sample (event reconstruction efficiency, b-tagging efficiency, ...), but no underlying event background or sophisticated energy loss model...
- Promising results:
 - FCC energies: should be possible to assess the QGP density evolution (control over timescales can be done via p_T dependence)
 - HE/HL-LHC: still able to distinguish different medium-duration scenarios/ quenching dominated regions from the inclusive top sample

Thank you!

Acknowledgements

Backup

and the second s

-

AREAS.

Jet Energy Loss

Average Jet Energy Loss:

Z+Jet: (CMS PRL 2017)

(Average momentum imbalance Z + Jet)

Jet Energy Loss

- Average Jet Energy Loss:
 - Z+Jet: (CMS PRL 2017)

Jet Energy Loss

- Average Jet Energy Loss:
 - Z+Jet: (CMS PRL 2017)

(Average momentum imbalance Z + Jet)

Taking into account the pairs that are lost (its pt falls below the pt cut): $\frac{\Delta E}{E} = -0.15$

Energy Loss fluctuations: Gaussian (at particle level) as $150\%/\sqrt{(pT)} \equiv 15\%$ at 100GeV

Simulation

- Monte Carlo Event Generator (POWHEG NLO ttbar production + pythia 8 showering with PDF4LHC15_nlo_30_PDF):
- Rescaling at parton level with Gaussian fluctuations like:
 - Q (1 + r $\sigma_{pt} / p_{t,i}$ + 1 GeV)^{1/2},
 - Q = Quenching factor (Q0 or Q(τ_{tot}))
 - + r = random number from Gaussian with σ = 1
 - + σ_{pt} = 1.5 GeV^{1/2} (≡ 15% at 100GeV, arXiv:1702.01060: CMS Z+jet)

W Mass Reconstruction

- W candidate reconstruction procedure:
 - $p_{T,\mu} > 25 \text{ GeV} + 2 \text{ bjets} + >= 2 \text{ non-bjets}$
 - Anti-k_T R = 0.3, p_T > 30 GeV, |η| < 2.5.
 (recluster with k_T, R = 1.0 and decluster with dcut = (20GeV)²)
 - W jets = 2 highest- p_T non-b jets.
 - W candidate is reconstructed by considering all pairs of non-b jets with m_{jj} < 130 GeV; the highest scalar p_T sum pair is selected
 - b-tagging efficiency of 70% (pPb events)

W Mass Reconstruction

- W candidate reconstruction procedure:
 - p_{T,µ} > 25 GeV + 2 bjets + >= 2 non-bjets
 - Anti-k_T R = 0.3, p_T > 30 GeV, |η| < 2.5.
 (recluster with k_T, R = 1.0 and decluster with dcut = (20GeV)²)
 - W jets = 2 highest- p_T non-b jets.
 - W candidate is reconstructed by considering all pairs of non-b jets with m_{jj} < 130 GeV; the highest scalar p_T sum pair is selected
 - b-tagging efficiency of 70% (pPb events)

Reconstruction procedures

- Our "old"
 - 1µ with p_T > 25 GeV
 and |η| < 2.5
 - Jet reconstruction with anti- $k_T R = 0.3$, $p_T >$ 30 GeV, $|\eta| < 2.5$ (recluster with k_T , R =1.0 and decluster with dcut = (20GeV)²)
 - "muonic" W candidate
 is the one closest to
 the muon in Delta R
 (ATLAS 1502.05923)

- Our "new"
 - 1µ with p_T > 25 GeV
 and |η| < 2.5
 - Jet reconstruction with anti-k_T R = 0.3, p_T > 30 GeV, |η| < 2.5 (recluster with k_T, R = 1.0 and decluster with dcut = (20GeV)²)
 - "hadronic" W candidate is reconstructed by considering all pairs of non-b jets with m_{jj} < 130 GeV; the highest scalar pt sum pair is selected

- CMS:
 - 1µ with with p_T > 30
 GeV and |η| < 2.1
 - Jet reconstruction with anti-k_T R = 0.4, pT > 25 GeV and $|\eta| < 2.5$
 - Reconstructed jets
 must be separated by
 at least ∆R = 0.3 from
 the selected muon
 - "hadronic" W candidate
 is reconstructed by
 considering the pair
 with the with the
 smallest separation in
 (η,φ) plane

Lighter lons

- How about lighter nuclei?
 - Lighter nuclei can go higher in luminosity.
 - Energy loss for lighter systems? CuCu (RHIC) or KrKr (LHC)
 - Glauber model: number of participants (N_p^{KrKr} ~ 110 [0-10]%; N_p^{PbPb} ~ 356 [0-10]%)
 - + BDMPS for an expanding medium ($\Delta E \sim L$)
 - + Estimate: $L \sim A^{1/3} \Rightarrow \Delta E^{KrKr} / E^{KrKr} \sim (N_p^{KrKr} / N_p^{PbPb})^{1/3} \Delta E_{PbPb} / E_{PbPb}$
 - $\Delta E_{PbPb}/E_{PbPb} \sim 0.15 \Rightarrow \Delta E_{KrKr}/E_{KrKr} \sim 0.1$

Lighter lons

- How about lighter nuclei?
 - Lighter nuclei can go higher in luminosity.

Large cross-sections for electromagnetic processes in ultra-peripheral collisions:

Bound-free e-e+ pair production creates secondary beams of Pb⁸¹⁺ ions emerging from the collision point;

Easy to avoid the bound by going lighter! But lose nucleon-nucleon luminosity as A². Radial wave function of $1s_{1/2}$ state of hydrogen-like atom in its rest frame $R_{10}(r) = \left(\frac{Z_1}{a_0}\right)^{3/2} 2 \exp\left(-\frac{Z_1 r}{a_0}\right)$ $\Rightarrow \Psi(0) \square Z_1^{3/2} \Rightarrow |\Psi(0)|^2 \square Z_1^3$

Pair production $\propto Z_1^2 Z_2^2$

 $Z_2 \qquad Z_2$ $(Z_1+e^-) k$ G. Baur et al, Phys. Rept. 364 (2002) 359

J. Jowet, Initial Stages 2016

Cross section for Bound-Free Pair Production (BFPP) (various authors) $Z_1 + Z_2 \rightarrow (Z_1 + e^z)_{1_{S_{1/2},...}} + e^* + Z_2$ has very strong dependence on ion charges (and energy) $\sigma_{PP} \propto Z_1^{-5}Z_2^{-2}[A\log \gamma_{CM} + B]$ $\propto Z^7[A\log \gamma_{CM} + B]$ for $Z_1 = Z_2$ $\begin{cases} 0.2 \text{ b for Cu-Cu RHIC} \\ 114 \text{ b for Au-Au RHIC} \\ 281 \text{ b for Pb-Pb LHC} \end{cases}$ Total C

Total cross-section $\Box Z_2^2 Z_1^5$
Particle Decay and Coherence Time

- To get an event-by-event estimate of the interaction start time each component has associated a randomly distributed exponential distribution with a mean and dispersion:
 - + $\langle \gamma_{t,top} | \tau_{top} \rangle \simeq 0.18 \text{ fm/c}$, $\langle \gamma_{t,W} | \tau_W \rangle \simeq 0.14 \text{ fm/c}$, $\langle \tau_d \rangle \simeq 0.34 \text{ fm/c}$

Reconstruction of the event (at parton level)

- + 1 μ with p_T > 25 GeV and $|\eta| < 2.5$
- Jet reconstruction with anti-k_T R = 0.3, p_T > 30 GeV, |η| < 2.5. (recluster with k_T, R = 1.0 and decluster with dcut = (20GeV)²)
- 2 b-jets + >= 2 non-bjets
- Quenching + energy loss fluctuations at parton level

 $\sqrt{s_{NN}}$ = 39 TeV vs $\sqrt{s_{NN}}$ = 20 TeV vs $\sqrt{s_{NN}}$ = 11 TeV

√ s_{NN} = 39 TeV vs √ s_{NN} = 20 TeV vs √ s_{NN} = 11 TeV

√ s_{NN} = 39 TeV vs √ s_{NN} = 20 TeV vs √ s_{NN} = 11 TeV

√ s_{NN} = 39 TeV vs √ s_{NN} = 20 TeV vs √ s_{NN} = 11 TeV

