

## Dihadron angular correlation

Shu-yi Wei (魏树一) Ecole Polytechnique shu-yi.wei@polytechnique.edu

L. Chen, G.Y. Qin, S.Y. Wei, B.W. Xiao, H.Z. Zhang (arXiv:1607.01932) A. Stasto, S.Y. Wei, B.W. Xiao, F. Yuan (arXiv: 1805.05712)

# Contents

## ☑ Introduction

- Motivation
- Sudakov Resummation
- Dihadron angular correlation
  - Middle Rapidity (jet quenching)
  - Forward Rapidity (small-x physics)
- Summary







### Dijet angular correlation in *pp* with perturbative expansion approach



**M** NLO calculation can describe the experimental data very well.

Shu-yi Wei

Shu-yi Wei



### Dijet angular correlation in *pp* with perturbative expansion approach



- **I** Find leading and sub-leading jets ☑ Only keep the events with |y|<1.1
- Find (sub-)leading jets that you can observe Only keep the events with |y|<1.1





### Dijet angular correlation in *pp* with perturbative expansion approach



| Perturbative Expansion                                                                  | Resummation                                                                                                                                           |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\sigma_0 \sum_{i=0}^n \left( (\alpha_s \operatorname{Log})^i + \alpha_s^i C_i \right)$ | $\sigma_0 \sum_{i=0}^n \left( (\alpha_s \operatorname{Log})^i \right) \\ + \sigma_0 \sum_{n+1}^\infty \left( (\alpha_s \operatorname{Log})^i \right)$ |

- $\mathbf{V}$  Perturbative Expansion:  $\alpha_s$  is small
- Resummation: large logs

#### Shu-yi Wei



### Dijet angular correlation in *pp* with Resummation approach



#### Shu-yi Wei



### Dijet angular correlation in *pp* with Resummation approach



Universal / Gaussian form / Extracted from experiments

Shu-yi Wei





Shu-yi Wei



Dihadron production in *pp* collisions

$$p + p \rightarrow h_1 + h_2 + X$$

$$\frac{d\sigma}{d\Delta\phi} = \sum_{\text{all channels}} \int p_T^{h_1} dp_T^{h_1} \int p_T^{h_2} dp_T^{h_2} \int \frac{dz_c}{z_c^2} \int \frac{dz_d}{z_d^2} \int \frac{d^2b}{2\pi} e^{-i\vec{q}_\perp \cdot \vec{b}} e^{-S(Q,b)}$$

$$x_a f_a(x_a, \mu_b) x_b f_b(x_b, \mu_b) \frac{1}{\pi} \frac{d\sigma_{ab \to cd}}{d\hat{t}} D_c(z_c, \mu_b) D_d(z_d, \mu_b)$$
Global universality is gone.
Try to find some local universality.

Collins, Qiu, PRD 75, 2007 Rogers, Mulders, PRD81, 2010

**Hope** we could find an universal parameterization for Dihadron production at different CMEs and different  $p_T$  ranges.

Shu-yi Wei





Shu-yi Wei

QCD - 2018 (Trento, Italy)

11







### Dihadron and hadron-jet in *pp* and *AA* collisions



Shu-yi Wei



### Forward dihadron angular correlation in *pp* and *pA* collisions

rcBK: Albacete, Giacalone, Marquet, Matas, 1805.05711

$$\mathcal{F}_{qg}^{(a)}(x,q_{\perp}) = \int \frac{d^2b}{(2\pi)^2} \mathcal{F}_{qg}^{(a)}(x,b_{\perp}) e^{-iq_{\perp}b_{\perp}}$$



$$\frac{d\sigma^{qg \to gq \to h_1 h_2}}{dy_1 dy_2 d^2 p_{1\perp} d^2 p_{2\perp}} = \int \frac{dz_1}{z_1^2} \int \frac{dz_2}{z_2^2} \left\{ D_{h/g}(z_1) D_{h/q}(z_2) x q(x) H_{qg} \left[ (1-z)^2 \mathcal{F}_{qg}^{(a)}(x_g, q_\perp) + \mathcal{F}_{qg}^{(b)}(x_g, q_\perp) \right] + [1 \leftrightarrow 2] \right\}$$

Dominguez, Xiao, Yuan, PRL106, 2011 Dominguez, Marquet, Xiao, Yuan, PRD83, 2011

#### Shu-yi Wei



### Forward dihadron angular correlation in *pp* and *pA* collisions

rcBK: Albacete, Giacalone, Marquet, Matas, 1805.05711



$$\mathcal{F}_{qg}^{(a)}(x,q_{\perp}) = \int \frac{d^2b}{(2\pi)^2} \mathcal{F}_{qg}^{(a)}(x,b_{\perp}) e^{-iq_{\perp}b_{\perp}}$$

$$\downarrow$$

$$\mathcal{F}_{qg}^{(a)}(x,q_{\perp}) = \int \frac{d^2b}{(2\pi)^2} \mathcal{F}_{qg}^{(a)}(x,b_{\perp}) e^{-S_{\text{sudakov}}} e^{-iq_{\perp}b_{\perp}}$$

#### Mueller, Xiao, Yuan, PRL110, 2013 Sudakov resummation in small-x framework for higgs production

$$\begin{aligned} \frac{d\sigma^{qg \to gq \to h_1 h_2}}{dy_1 dy_2 d^2 p_{1\perp} d^2 p_{2\perp}} &= \int \frac{dz_1}{z_1^2} \int \frac{dz_2}{z_2^2} \left\{ D_{h/g}(z_1) D_{h/q}(z_2) x q(x) H_{qg} \left[ (1-z)^2 \mathcal{F}_{qg}^{(a)}(x_g, q_\perp) + \mathcal{F}_{qg}^{(b)}(x_g, q_\perp) \right] \right. \\ &\left. + [1 \leftrightarrow 2] \right\} \end{aligned}$$

Dominguez, Xiao, Yuan, PRL106, 2011 Dominguez, Marquet, Xiao, Yuan, PRD83, 2011

Shu-yi Wei



### Unintegrated gluon distributions

$$\begin{aligned} \mathcal{F}_{qg}^{(a)}(x_{g},b_{\perp}) &= \frac{-N_{c}S_{\perp}}{2\pi^{2}\alpha_{s}} \nabla_{b_{\perp}}^{2} S_{x_{g}}(b_{\perp}), \qquad S_{x_{g}}(b_{\perp}) = \exp\left(-\frac{1}{4}Q_{s}^{2}b_{\perp}^{2}\right) \\ \mathcal{F}_{qg}^{(b)}(x_{g},b_{\perp}) &= \frac{C_{F}S_{\perp}}{2\pi^{2}\alpha_{s}} \frac{\nabla_{b_{\perp}}^{2}\ln\tilde{S}_{x_{g}}(b_{\perp})}{\ln\tilde{S}_{x_{g}}(b_{\perp})} \left[1 - \tilde{S}_{x_{g}}(b_{\perp})\right] S_{x_{g}}(b_{\perp}). \\ \mathcal{F}_{gg}^{(a)}(x_{g},b_{\perp}) &= \frac{-N_{c}S_{\perp}}{2\pi^{2}\alpha_{s}} S_{x_{g}}(b_{\perp}) \left[\nabla_{b_{\perp}}^{2}S_{x_{g}}(b_{\perp})\right], \\ \mathcal{F}_{gg}^{(b)}(x_{g},b_{\perp}) &= \frac{N_{c}S_{\perp}}{2\pi^{2}\alpha_{s}} \left[\nabla_{b_{\perp}}S_{x_{g}}(b_{\perp})\right] \cdot \left[\nabla_{b_{\perp}}S_{x_{g}}(b_{\perp})\right], \\ \mathcal{F}_{gg}^{(c)}(x_{g},b_{\perp}) &= \frac{C_{F}S_{\perp}}{2\pi^{2}\alpha_{s}} \left[\nabla_{b_{\perp}}^{2}\ln\tilde{S}_{x_{g}}(b_{\perp})\right] \left[1 - \tilde{S}_{x_{g}}(b_{\perp})\right] S_{x_{g}}(b_{\perp})S_{x_{g}}(b_{\perp}). \end{aligned}$$

GBW model -> rcBK (together with Giuliano & Cyrille)

Shu-yi Wei



### Forward dihadron angular correlation in *pp* and *pA* collisions Small-*x* & Sudakov



Shu-yi Wei

Forward dihadron angular correlation in *pp* and *pA* collisions

 $\sqrt{s} = 200 \text{ GeV}$ 



Shu-yi Wei





- ☑ Dihadron, Dijet, Hadron-jet angular correlations in the middle rapidity can be described in the Sudakov resummation framework.
- The angular decorrelation can be used as a complementary method for the quantitative study of jet-medium interaction.

### Dihadron angular correlation in the forward rapidity

- $\checkmark$  Dihadron angular correlation in the forward rapidity can be described in the hybrid formalism of Sudakov resummation and small-x.
- $\mathbf{V}$  The angular correlations in pp and pA can be used to probe the small-x saturation physics.

### Thank you very much for your attention!

Shu-yi Wei

The End