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Motivations

Our goal is to study QCD in the saturation regime
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Qs
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The production of forward particles is a crucial tool to probe small x values

Saturation e�ects stronger in pA collisions (Q2
s ∼ A1/3)

Here we study the inclusive production of forward hadrons in proton-nucleus
collisions: pA→ hX
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Forward hadron production at LO

Single inclusive forward hadron production at LO in the q → q channel:

P+

P−

xpP
+

xgP
−+k⊥

p⊥ = zk⊥, yPDF FF

UGD

Dilute projectile: xp =
k⊥√
s
ey, described by collinear PDFs

Dense target: xg =
k⊥√
s
e−y � 1, described by unintegrated gluon distribution S

LO quark multiplicity:
dN

d2p dy
∝ PDF⊗ S ⊗ FF

(
dσ

d2p dy
=

∫
d2b

dN

d2p dy

)
S is the Fourier transform of the dipole correlator S(r):

S(k⊥) =

∫
d2re−ik·rS(r) , S(r = x− y) =

〈
1

Nc

TrV (x)V †(y)

〉
Rapidity (or x) dependence of S : governed by the Balitsky-Kovchegov equation
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Forward hadron production at LO

Using these LO expressions together with dipole correlators constrained by
HERA DIS data (Lappi, Mäntysaari):
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STAR y = 4 π0 ×0.01

p + p→ π0/h− + X,
√
s = 200 GeV, K = 2.5

Reasonable description of the trend of the data (but large K factor needed)

This is only leading order. What about NLO corrections?
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Forward hadron production at NLO

NLO corrections to the impact factor for this process: Chirilli, Xiao, Yuan

Example of real q → q contribution:
P+

P−

xpP
+

XP−+q⊥

p⊥ = zk⊥, y
kµq

kµg

Example of virtual q → q contribution:
P+

P−

xpP
+

XP−+k⊥

p⊥ = zk⊥, y
kµq

kµg

1− ξ =
k+g

xpP+ is the momentum fraction of the incoming quark carried by the gluon

5 / 35



Forward hadron production at NLO

First numerical implementation of these expressions (Sta±to, Xiao, Zaslavsky):
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BRAHMS η = 2.2, 3.2

LO
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Negative cross section above some p⊥ ∼ Qs

Many works devoted to solving this issue, using for example the kinematical
constraint / Io�e time cuto� (Altinoluk, Armesto, Beuf, Kovner, Lublinsky).
Numerical implementation: Watanabe, Xiao, Yuan, Zaslavsky. Can extend the
positivity range but doesn't solve the problem completely.

1307.4057

It turned out that the cause of the negativity is the subtraction of the LO
contribution from the NLO corrections
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LO vs. NLO

Balitsky-Kovchegov (BK) evolution: resummation of (αs ln 1/x)n,
corresponding to any number of soft gluons already at LO

LO: all gluons are soft:

soft (ξ ∼ 1)

....

NLO impact factor: the �rst gluon can be hard:

exact (any ξ)

....

The case where the �rst gluon is soft is already included in the leading order
⇒ Need to avoid double counting between LO and NLO
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LO vs. NLO

Two possible solutions to avoid double counting:

1) Subtract the case where the gluon in the NLO impact factor is soft
Chirilli, Xiao, Yuan ('CXY')

2) Rearrange the terms to avoid doing a subtraction
Iancu, Mueller, Triantafyllopoulos

+

exact

....

These two choices should be equivalent
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The NLO cross section

The expression for the (quark production) multiplicity at NLO reads

dNpA→qX

d2kdy
= xpq(xp)

S(k⊥, x0)

(2π)2
← Lowest order

+
αs
2π2

∫ ξmax

xp

dξ
1 + ξ2

1− ξ
xp
ξ
q

(
xp
ξ

){
CFI(k⊥, ξ,X(ξ)) +

Nc

2
J (k⊥, ξ,X(ξ))

}
← real

− αs
2π2

∫ ξmax

0

dξ
1 + ξ2

1− ξ xpq (xp)

{
CFIv(k⊥, ξ,X(ξ)) +

Nc

2
Jv(k⊥, ξ,X(ξ))

}
← virt.

with e.g.

J (k⊥, ξ,X(ξ)) =

∫
d2q

(2π)2
2(k− ξq) · (k− q)

(k− ξq)2(k− q)2
S(q⊥, X(ξ))

−
∫

d2q

(2π)2
d2l

(2π)2
2(k− ξq) · (k− l)

(k− ξq)2(k− l)2
S(q⊥, X(ξ))S(l⊥, X(ξ))

Jv(k⊥, ξ,X(ξ)) =

∫
d2q

(2π)2
2(ξk− q) · (k− q)

(ξk− q)2(k− q)2
S(k⊥, X(ξ))

−
∫

d2q

(2π)2
d2l

(2π)2
2(ξk− q) · (l− q)

(ξk− q)2(l− q)2
S(k⊥, X(ξ))S(l⊥, X(ξ))
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The NLO cross section

In the previous expressions:

xpq(xp)
S(k⊥, x0)

(2π)2
represents the lowest order contribution

(no phase space for BK evolution. x0: initial condition)

X(ξ) is the rapidity scale at which the dipole correlators are evaluated

At LO: the P− fraction needed from the target is
k⊥√
s
e−y ≡ xg

At NLO:

xpP
+

XP−+q⊥

kµq

k+g = (1− ξ)xpP+

X =
k⊥√
s
e−y

(
1 +

ξ

1− ξ
(q⊥ − k⊥)2

k2⊥

)
≈ xg

1− ξ ≡ X(ξ) when k⊥ & Qs

The limit ξ < 1− xg
x0
≡ ξmax enforces X(ξ) < x0

The 'CXY' approximation corresponds to making the replacements X(ξ) → xg
and ξmax → 1
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CF terms

The terms proportional to CF in the cross section involve the integrals

I(k⊥, ξ,X(ξ)) =

∫
d2q

(2π)2

[
k− q

(k− q)2
− k− ξq

(k− ξq)2

]2
S(q⊥, X(ξ))

Iv(k⊥, ξ,X(ξ)) =

∫
d2q

(2π)2

[
k− q

(k− q)2
− ξk− q

(ξk− q)2

]2
S(k⊥, X(ξ))

Both I and Iv vanish in the limit ξ → 1. Thus the integral over ξ is not
logarithmic and the CF terms are a pure αs correction

However these terms are divergent when the additional gluon at NLO is
collinear to the initial or �nal state quark

These divergences are absorbed in the DGLAP evolution of the PDFs and
fragmentation functions
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CF terms

After using dimensional regularization to subtract the corresponding 1/ε poles,
I and Iv are replaced by

I�nite(k⊥, ξ,X(ξ)) =

∫
d2r

4π
S(r, X(ξ)) ln

c20
r2µ2

(
e−ik·r +

1

ξ2
e
−i k

ξ
·r
)

−2

∫
d2q

(2π)2
(k− ξq) · (k− q)

(k− ξq)2(k− q)2
S(q⊥, X(ξ))

I�nitev (k⊥, ξ,X(ξ)) =
S(k⊥, X(ξ))

2π

(
ln
k2⊥
µ2

+ ln(1− ξ)2
)

One can show that with these expressions the CF terms still vanish when ξ → 1
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CF terms

Results for the LO+CF NLO corrections at �xed coupling (αs = 0.2):
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The 'CXY' approximation corresponds to replacing X(ξ)→ xg and ξmax → 1

In both cases the NLO corrections proportional to CF are positive
→ not the cause of the negativity
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Nc terms

We can write the sum of the LO and Nc terms as

dNLO+Nc

d2kdy
= xpq(xp)

S(k⊥, x0)

(2π)2
+ αs

∫ 1−xg/x0

0

dξ

1− ξK(k⊥, ξ,X(ξ)) ≡ dNLO+Nc,unsub

d2kdy
,

K(k⊥, ξ,X) =
Nc

(2π)2
(1 + ξ2)

[
θ(ξ − xp)

xp
ξ
q

(
xp
ξ

)
J (k⊥, ξ,X)− xpq (xp)Jv(k⊥, ξ,X)

]
J and Jv do not vanish when ξ → 1
The second term contains both the LL evolution and NLO corrections

Using the integral BK equation,

S(k⊥, xg) = S(k⊥, x0) + 2αsNc

∫ 1−xg/x0

0

dξ

1− ξ [J (k⊥, 1, X(ξ))− Jv(k⊥, 1, X(ξ))]

the LO+Nc cross section can be rewritten as

dNLO+Nc,sub

d2kdy
= xpq(xp)

S(k⊥, xg)

(2π)2
+ αs

∫ 1−xg/x0

0

dξ

1− ξ [K(k⊥, ξ,X(ξ))−K(k⊥, 1, X(ξ))]

The 'CXY' approximation corresponds to making the replacements X(ξ)→ xg
and ξmax → 1 in this subtracted version
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Nc terms

Results for the LO+Nc NLO corrections at �xed coupling (αs = 0.2):
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The 'subtracted' and 'unsubtracted' expressions give the same (positive) results

The 'CXY' approximation leads to negative results for k⊥ & 5 GeV
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Total NLO multiplicity

Total (LO+CF+Nc) multiplicity (αs = 0.2):
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Similar conclusions (the CF terms are positive at large k⊥)
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Conclusions at �xed coupling

The negativity issue observed in the �rst implementation of the NLO impact
factor can be attributed to approximations made in the LO subtraction

In the 'subtracted' formulation, we add and subtract a large contribution. If we
use the CXY approximation what we add and subtract is no longer the same
which can make the �nal result negative

Without this approximation the cross section has a physical behavior at all k⊥
⇒ Problem solved? No!

So far we discussed only the �xed coupling case. But the running of the
coupling is an important e�ect that has to be taken into account in realistic
calculations
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Running coupling

The equivalence between the 'subtracted' and 'unsubtracted' formulations
holds only if one uses the same coupling αs when computing the cross section
and when solving the BK equation

In practice the BK equation is usually solved in coordinate space, while the
cross section is written in momentum space

Fixed coupling BK equation:

∂S(r, X)

∂ lnX
= 2αsNc

∫
d2x

(2π)2
r2

x2(r− x)2
[
S(r, X)− S(x, X)S(r− x, X)

]
In QCD one usually expects the hardest scale to determine the running of the
coupling. This leads to the smallest dipole prescription:

∂S(r, X)

∂ lnX
= 2Nc

∫
d2x

(2π)2
r2

x2(r− x)2
αs(r

2
min)

[
S(r, X)− S(x, X)S(r− x, X)

]
with rmin ≡ min{|r|, |x|, |r− x|}

On the other hand the only natural choice in momentum space is αs(k
2)
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Running coupling

Many phenomenological studies use instead Balitsky's prescription:

∂S(r, X)

∂ lnX
=2αs(r

2)Nc

∫
d2x

(2π)2
[
S(r, X)− S(x, X)S(r− x, X)

]
×
[

r2

x2(r− x)2
+

1

x2

(
αs(x

2)

αs((r− x)2)
− 1

)
+

1

(r− x)2

(
αs((r− x)2)

αs(x2)
− 1

)]

which reduces to the smallest dipole prescription when one of the three dipoles
is much smaller than the other two

Here we use the dipole correlators obtained by solving the rcBK equation with
Balitsky's prescription and constrained by HERA DIS data (Lappi, Mäntysaari)
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Running coupling

Using these dipole correlators and αs(k
2) in the cross section:
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The 'subtracted' and 'unsubtracted' expressions are no longer equivalent since
we don't use exactly the same αs in the cross section and when solving BK

'Subtracted' version: very di�erent results compared to �xed coupling, becomes
negative again at large k⊥

'Unsubtracted' version: physical results but does not have the correct LO limit
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Running coupling

The LO limit of the 'subtracted' cross section is simply obtained by αs → 0:

dNLO+Nc,sub

d2kdy
= xpq(xp)

S(k⊥, xg)

(2π)2
+ αs

∫ 1−xg/x0

0

dξ

1− ξ [K(k⊥, ξ,X(ξ))−K(k⊥, 1, X(ξ))]

For the 'unsubtracted' formulation it is obtained by setting ξ → 1:

dNLO+Nc,unsub

d2kdy
= xpq(xp)

S(k⊥, x0)

(2π)2
+ αs

∫ 1−xg/x0

0

dξ

1− ξK(k⊥, ξ,X(ξ))

If we don't use the same αs when solving BK and in the cross section, the
'eikonal' limit of the unsubtracted formulation is not the correct LO result:
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Coordinate space formulation

For these reasons it would be preferable to use the same coupling everywhere

Possible way to do that: rewrite the cross section expression in coordinate space

We write J =
∫
d2re−ik·rJ̃ and Jv =

∫
d2re−ik·rJ̃v, with

J̃ (r, ξ,X)= 2

∫
d2x

(2π)2
x · (x− r)

x2(r− x)2
[
S(r− (1− ξ)x, X)− S(ξx, X)S(r− x, X)

]
J̃v(r, ξ,X)= 2

∫
d2x

(2π)2
1

x2

[
S(r + (1− ξ)x, X)− S(x, X)S(r− ξx, X)

]
(and similarly for the CF terms)

In these notations the BK equation reads

∂S(r, X)

∂ lnX
= −2αsNc

[
J̃ (r, 1, X)− J̃v(r, 1, X)

]
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Coordinate space formulation

Recall rcBK with Balitsky's prescription:

∂S(r, X)

∂ lnX
=2αs(r

2)Nc

∫
d2x

(2π)2
[
S(r, X)− S(x, X)S(r− x, X)

]
×
[

r2

x2(r− x)2
+

1

x2

(
αs(x

2)

αs((r− x)2)
− 1

)
+

1

(r− x)2

(
αs((r− x)2)

αs(x2)
− 1

)]

This can be generalized to ξ 6= 1 by replacing J̃v with

J̃ rc

v (r, ξ,X) = 2

∫
d2x

(2π)2
1

x2

αs(x
2)

αs((r− ξx)2)

[
S(r + (1− ξ)x, X)− S(x, X)S(r− ξx, X)

]
,

and by replacing the global αs factor by αs(r
2)

Not a unique choice but:

ξ = 1: recovers Balitsky's prescription

Fixed coupling results unchanged
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Coordinate space formulation

Results with this 'generalized' Balitsky prescription:
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The 'subtracted' expression gives the same results as the 'unsubtracted' one

Completely di�erent results compared to �xed coupling or αs(k⊥), absurdly
large NLO corrections
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Coordinate space formulation

The issue is not speci�c to our choice for the running coupling. Indeed it also
appears using the simple parent dipole prescription αs(r

2):

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

 0  5  10  15

k⊥ [GeV]

dN

d2kdy
[GeV−2]

LO
unsubtracted

subtracted
mom. space rc

25 / 35



Coordinate space formulation

To illustrate the problem, let's look at the following simple example:

Nk ≡ ᾱs(k⊥)S(k⊥) = ᾱs(k⊥)
∫
d2r e−ik·rS(r)

Nr ≡
∫
d2r ᾱs(r⊥)e−ik·rS(r)

These two quantities do not di�er by only a small factor. Indeed, using the

McLerran-Venugopalan model S(r⊥) = exp

(
−r

2
⊥Q

2
s

4
ln

1

r2⊥Λ2

)
, we �nd at large k⊥

Nk ∼
4πᾱs(k⊥)Q2

s

k4⊥
while Nr ∼ −

4π

b̄[ln(k2⊥/Λ
2)]2

1

k2⊥

which are opposite in sign and have di�erent tails

The choice of the running coupling prescription and the Fourier transform do
not 'commute'

Note that the problem comes from the perturbative region r → 0, not the IR region
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Coordinate space formulation

The problem comes from large daughter dipoles contributions x⊥ � r⊥.
Indeed, in this limit we have for example

J (k, ξ) ∼ ᾱs

2π2

∫
d2r e−ik·r

∫
d2x

x2
[S((1− ξ)x)− S(−ξx)S(x)]︸ ︷︷ ︸

r−independent

= 0 for k⊥ 6= 0

On the contrary, if we move the coupling under the integral and replace
αs → αs(r

2), we get a large contribution from the F.T. of the coupling

Numerically we can study how J and Jv are modi�ed when using αs(r
2)

instead of αs(k
2):
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Coordinate space formulation

However we know that such severe issues don't appear when solving BK with
these prescriptions. Why?

The BK equation involves the di�erence between J̃ and J̃v at ξ = 1:

∂S(r, X)

∂ lnX
= −2αsNc

[
J̃ (r, 1, X)− J̃v(r, 1, X)

]
Thus the spurious contributions generated by large daughter dipoles cancel:
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But in the cross section we have
[
J̃ × q(xp/ξ)− J̃v × q(xp)

]
⇒ No cancellation
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Coordinate space formulation

Based on this we expect that the daughter dipole prescription, αs(x
2), should

lead to physical results: the spurious contributions generated by large daughter
dipoles will remain independent of r, and will thus be eliminated by the Fourier
transform

With this prescription the cross section indeed has a physical behavior, similar
to the results with �xed or momentum space running coupling:
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⇒ By using the daughter dipole prescription we can get:

Physical results at all k⊥

Correct LO limit
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CF terms

So far we focused mostly on the Nc NLO corrections. Recall the NLO multiplicity:

dNpA→qX

d2kdy
= xpq(xp)

S(k⊥, x0)

(2π)2

+
αs
2π2

∫ ξmax

xp

dξ
1 + ξ2

1− ξ
xp
ξ
q

(
xp
ξ

){
CFI(k⊥, ξ,X(ξ)) +

Nc

2
J (k⊥, ξ,X(ξ))

}

− αs
2π2

∫ ξmax

0

dξ
1 + ξ2

1− ξ xpq (xp)

{
CFIv(k⊥, ξ,X(ξ)) +

Nc

2
Jv(k⊥, ξ,X(ξ))

}

The CF terms involve the integrals

I(k⊥, ξ,X(ξ)) =

∫
d2q

(2π)2

[
k− q

(k− q)2
− k− ξq

(k− ξq)2

]2
S(q⊥, X(ξ))

Iv(k⊥, ξ,X(ξ)) =

∫
d2q

(2π)2

[
k− q

(k− q)2
− ξk− q

(ξk− q)2

]2
S(k⊥, X(ξ))
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CF terms

After subtracting the collinear divergence, we should replace I and Iv by

I�nite(k⊥, ξ,X(ξ)) =

∫
d2r

4π
S(r, X(ξ)) ln

c20
r2µ2

(
e−ik·r +

1

ξ2
e
−i k

ξ
·r
)

−2

∫
d2q

(2π)2
(k− ξq) · (k− q)

(k− ξq)2(k− q)2
S(q⊥, X(ξ))

I�nitev (k⊥, ξ,X(ξ)) =
S(k⊥, X(ξ))

2π

(
ln
k2⊥
µ2

+ ln(1− ξ)2
)

With these expressions the CF terms still vanish when ξ → 1, i.e. they do not
generate a large longitudinal logarithm
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CF terms

From the previous expressions it is clear that I�nitev will be a�ected by the same
Fourier transform problem as the Nc terms. This is also the case of I�nite:
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But contrary to what happens with J and Jv the problem is still there if we
consider the di�erence I�nite − I�nitev

In addition to this Fourier-transform artefact, another problem is that if we use
for example αs(r

2), the CF terms will generate a spurious large longitudinal
logarithm
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CF terms

Anyway we can't solve the F.T. problem in the same way as for the Nc terms:
because of the collinear subtraction we have no control on the size of the
daughter dipoles anymore, so we cannot use the coupling αs(x

2)

I�nite(k⊥, ξ,X(ξ)) =

∫
d2r

[
S(r, X(ξ))

4π
ln

c20
r2µ2

(
e−ik·r +

1

ξ2
e
−i k

ξ
·r
)

−2e−ik·r
∫

d2x

(2π)2
x · (x + r)

x2(x + r)2
S(ξr− (1− ξ)x, X(ξ))

]

I�nitev (k⊥, ξ,X(ξ)) =

∫
d2re−ik·r

S(r, X(ξ))

2π

(
ln
k2⊥
µ2

+ ln(1− ξ)2
)

Therefore the only reasonable choice for these terms seems to be a coupling
running with a transverse scale, such as αs(k

2)

This is not as problematic as for the Nc terms: the CF terms are not related to
high energy evolution and are a pure αs correction

If one insists on using the same coupling everywhere, the most practical way
could be to perform the whole calculation in momentum space
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'Final' results

Results using αs(k
2) in the CF terms and αs(x

2) everywhere else:

 0.1

 1

 10

 0  5  10  15  20

k⊥ [GeV]

NLO/LO

LO+Nc+CF (ᾱs = 0.2)
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Same results for the 'subtracted' and 'unsubtracted' formulations

However it is not natural to use the daughter dipole prescription when solving BK
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Conclusions

The negativity problem at NLO originally observed for this process is now
understood and solved as long as �xed coupling is considered

Running coupling: additional complications appear

Mixed coordinate/momentum space calculation: mismatch between
'subtracted' and 'unsubtracted' formulations

'Naive' coordinate space formulation: non-physical results due to spurious
large daughter dipoles contributions which should cancel in the end

The problem can be avoided for the Nc terms by using the daughter dipole
prescription

The use of a momentum space running coupling seems mandatory for the
CF terms

Directions towards phenomenology:

Add the q → g, g → q and g → g channels + fragmentation functions

Use NLO BK for the rapidity evolution of the dipole correlators

The initial condition for the BK evolution of the target must be obtained
by a �t (e.g. to HERA DIS data) also performed at NLO accuracy
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