High-energy factorization beyond leading order

Edmond Iancu IPhT Saclay & CNRS

w/ A.H. Mueller and D.N. Triantafyllopoulos, arXiv:1608.05293

Introduction

- The CGC formalism is about to be promoted to NLO
 - NLO versions for the BK and B-JIMWLK equations (Balitsky and Chirilli, 2008, 2013; Kovner, Lublinsky, and Mulian, 2013)
 - NLO impact factor for particle production in *pA* collisions (*Chirilli, Xiao, and Yuan, 2012; Mueller and Munier, 2012*)
 - NLO impact factor for DIS (Balitsky and Chirilli, 2010-2013; Beuf, 2016-17)
- But the strict NLO approximations turn out to be problematic
- The NLO BK equation is unstable ... which calls for all-order "collinear" resummations (cf. the previous talk by Dionysis T.)
- Negative NLO cross-section for particle production in *pA* (and for DIS) (*Stasto, Xiao, and Zaslavsky, 2013*)

Particle production in pA collisions

ullet Good agreement at low p_\perp $\ensuremath{\textcircled{\odot}}$... but negative cross-section at larger p_\perp $\ensuremath{\textcircled{\odot}}$

BRAHMS $\eta = 2.2, 3.2$

- NLO calculation by CXY, 2012
- Numerics by Stasto, Xiao, and Zaslavsky, 2013
- The problem occurs for semi-hard momenta $p_\perp \sim Q_s$
- CGC is expected to apply there

Particle production in pA collisions

• Good agreement at low p_{\perp} \bigcirc ... but negative cross-section at larger p_{\perp} \oslash

• Various proposals which alleviate the problem (pushed to higher p_{\perp})

- Kang, Vitev, and Xing, arXiv:1403.5221
- Altinoluk, Armesto, Beuf, Kovner, and Lublinsky, arXiv:1411.2869
- Watanabe, Xiao, Yuan, Zaslavsky, arXiv:1505:05183
- Ducloué, Lappi, and Zhu, arXiv:1604.00225

Particle production in pA collisions

• Good agreement at low p_\perp \bigcirc ... but negative cross-section at larger p_\perp \oslash

- An artefact of the ' k_T -factorization' commonly used at high energy
- New factorization scheme which avoids this problem (E.I., A. Mueller and D. Triantafyllopoulos, 2016)
- Positive cross-section (see also the next talk by Bertrand Ducloué)

ECT*, Trento, May 2018

High-energy factorization at NLO

Forward quark production in pA collisions

• A quark initially collinear with the proton acquires a transverse momentum p_{\perp} via multiple scattering off the saturated gluons

- η : quark rapidity in the COM frame
- x_p : longitudinal fraction of the quark in the proton
- X_g : longitudinal fraction of the gluon in the target

• Gluons in the nucleus have a typical transverse momentum $k_{\perp} \sim Q_s(X_q)$

Multiple scattering

- Multiple scattering can be resummed in the eikonal approximation
 - fixed transverse coordinate & color precession

Wilson line:
$$V(\boldsymbol{x}_{\perp}) = P \exp\left\{ig \int dx^{+} A_{a}^{-}(x^{+}, \boldsymbol{x}_{\perp})t^{a}\right\}$$

• A_a^- : color field representing small-x gluons in the nucleus

Multiple scattering

- Average over the color fields A^- in the target (CGC)
- Two Wilson lines at different transverse coordinates, traced over color

ECT*, Trento, May 2018

High-energy factorization at NLO

Dipole picture

• Equivalently: the elastic S-matrix for a $q\bar{q}$ color dipole

• F. transform $\mathcal{S}(\mathbf{k}, X_g)$: "unintegrated gluon distribution", or "dipole TMD"

The target average: CGC

$$\left\langle \operatorname{tr}\left(V_{\boldsymbol{x}}V_{\boldsymbol{y}}^{\dagger}\right)\right\rangle_{X_{g}} = \int \left[DA^{-}\right] \mathcal{W}_{X_{g}}[A^{-}] \operatorname{tr}\left(V_{\boldsymbol{x}}V_{\boldsymbol{y}}^{\dagger}\right)$$

- $\mathcal{W}_{X_g}[A^-]$: functional probability distribution for the target color fields
- High-energy evolution (JIMWLK) in presence of gluon saturation

• Each emission brings in a factor $\bar{\alpha}_s \ln(1/X_g) \gtrsim \mathcal{O}(1)$

LO Hybrid Factorization

(Dumitru, Hayashigaki, and Jalilian-Marian, arXiv:hep-ph/0506308).

$$\frac{\mathrm{d}\sigma_h}{\mathrm{d}\eta\mathrm{d}^2\boldsymbol{p}} = \int \frac{\mathrm{d}z}{z^2} \, x_p q(x_p,\mu^2) \left[\int_{\boldsymbol{x},\boldsymbol{y}} \mathrm{e}^{-\mathrm{i}(\boldsymbol{x}-\boldsymbol{y})\cdot\boldsymbol{k}} \, S(\boldsymbol{x},\boldsymbol{y};X_g) \right] D_{h/q}(z,\mu^2)$$

LO Hybrid Factorization

(Dumitru, Hayashigaki, and Jalilian-Marian, arXiv:hep-ph/0506308).

$$\frac{\mathrm{d}\sigma_h}{\mathrm{d}\eta\mathrm{d}^2\boldsymbol{p}} = \int \frac{\mathrm{d}z}{z^2} x_p q(x_p,\mu^2) \left[\int_{\boldsymbol{x},\boldsymbol{y}} \mathrm{e}^{-\mathrm{i}(\boldsymbol{x}-\boldsymbol{y})\cdot\boldsymbol{k}} S(\boldsymbol{x},\boldsymbol{y};X_g) \right] D_{h/q}(z,\mu^2)$$

• Collinear factorization for the incoming proton/outgoing hadron

• LO DGLAP evolution for quark distribution/ fragmentation

• High-energy (CGC) factorization for the quark-nucleus scattering

- LO JIMWLK (BK) for target gluon distribution (dipole S-matrix)
- Natural, but non-trivial already at leading order
 - one needs to prove the factorization of the two types of evolution
- The dipole picture is preserved by the high-energy evolution up to NLO (Kovchegov and Tuchin, 2002; Mueller and Munier, 2012)

Shifting to projectile evolution

- The LO evolution can be shared between dilute projectile and dense target
 - JIMWLK evolution in $X = p^{-}/P^{-}$ from X_0 down to X_f
 - BK evolution in $x = p^+/Q^+$ from x_0 down to x_f
 - energy-momentum conservation implies $X_f = X_g/x_f$

LO BK equation (1)

- Exchange graphs for the dipole:
 - the gluon crosses the shockwave (" N_c -terms"), or not (" C_F -terms")
- "Real gluon" correction to particle production: the gluon crosses the cut

LO BK equation (1)

- Exchange graphs for the dipole:
 - the gluon crosses the shockwave (" N_c -terms"), or not (" C_F -terms")
- Effectively a C_F -term (gluon not measured): $\tilde{V}(z)\tilde{V}^{\dagger}(z) = 1$

LO BK equation (2)

- Self-energy graphs for the dipole
 - the gluon crosses the shockwave (" N_c -terms"), or not (" C_F -terms")
- "Virtual" corrections to quark production: the gluon does not cross the cut

LO BK equation (2)

- Self-energy graphs for the dipole
 - the gluon crosses the shockwave (" N_c -terms"), or not (" C_F -terms")
- "Virtual" corrections to quark production: the gluon does not cross the cut

LO BK equation (3)

• Dipole evolution: the gluon crosses the shockwave, or not

• Evolution equation for the dipole S-matrix $S_{xy}(Y)$ with $Y \equiv \ln(1/x)$

$$\frac{\partial S_{\boldsymbol{x}\boldsymbol{y}}}{\partial Y} = \frac{\alpha_s N_c}{2\pi^2} \int d^2 \boldsymbol{z} \, \frac{(\boldsymbol{x} - \boldsymbol{y})^2}{(\boldsymbol{x} - \boldsymbol{z})^2 (\boldsymbol{y} - \boldsymbol{z})^2} \left[S_{\boldsymbol{x}\boldsymbol{z}} S_{\boldsymbol{z}\boldsymbol{y}} - S_{\boldsymbol{x}\boldsymbol{y}} \right]$$

• Large N_c : gluon emission \approx dipole splitting and $C_F \simeq N_c/2$

• Non-linear extension of BFKL equation ensuring unitarity: $T \equiv 1 - S \leq 1$

LO BK equation (3)

• Dipole evolution: the gluon crosses the shockwave, or not

• Evolution equation for the dipole S-matrix $S_{xy}(Y)$ with $Y \equiv \ln(1/x)$

$$\frac{\partial S_{\boldsymbol{x}\boldsymbol{y}}}{\partial Y} = \frac{\alpha_s N_c}{2\pi^2} \int d^2 \boldsymbol{z} \, \frac{(\boldsymbol{x} - \boldsymbol{y})^2}{(\boldsymbol{x} - \boldsymbol{z})^2 (\boldsymbol{y} - \boldsymbol{z})^2} \left[S_{\boldsymbol{x}\boldsymbol{z}} S_{\boldsymbol{z}\boldsymbol{y}} - S_{\boldsymbol{x}\boldsymbol{y}} \right]$$

• Dipole kernel: probability for the dipole to emit a soft gluon at z

$$\frac{(\boldsymbol{x} - \boldsymbol{y})^2}{(\boldsymbol{x} - \boldsymbol{z})^2 (\boldsymbol{y} - \boldsymbol{z})^2} = \underbrace{\left[\underbrace{2 \frac{(x^i - z^i)(y^i - z^i)}{(\boldsymbol{x} - \boldsymbol{z})^2 (\boldsymbol{x} - \boldsymbol{z})^2}}_{\text{real}} \underbrace{-\frac{1}{(\boldsymbol{x} - \boldsymbol{z})^2} - \frac{1}{(\boldsymbol{z} - \boldsymbol{y})^2}}_{\text{virtual}} \right]$$

LO BK equation (3)

• Dipole evolution: the gluon crosses the shockwave, or not

• Evolution equation for the dipole S-matrix $S_{xy}(Y)$ with $Y \equiv \ln(1/x)$

$$\frac{\partial S_{\boldsymbol{x}\boldsymbol{y}}}{\partial Y} = \frac{\alpha_s N_c}{2\pi^2} \int d^2 \boldsymbol{z} \frac{(\boldsymbol{x}-\boldsymbol{y})^2}{(\boldsymbol{x}-\boldsymbol{z})^2 (\boldsymbol{y}-\boldsymbol{z})^2} \left[S_{\boldsymbol{x}\boldsymbol{z}} S_{\boldsymbol{z}\boldsymbol{y}} - S_{\boldsymbol{x}\boldsymbol{y}} \right]$$

• Dipole kernel: probability for the dipole to emit a soft gluon at z

$$\frac{(\boldsymbol{x}-\boldsymbol{y})^2}{(\boldsymbol{x}-\boldsymbol{z})^2(\boldsymbol{y}-\boldsymbol{z})^2} = \left[2\frac{(x^i-z^i)(y^i-z^i)}{(\boldsymbol{x}-\boldsymbol{z})^2(\boldsymbol{x}-\boldsymbol{z})^2} - \frac{1}{(\boldsymbol{x}-\boldsymbol{z})^2} - \frac{1}{(\boldsymbol{z}-\boldsymbol{y})^2}\right] \simeq \frac{r^2}{(\boldsymbol{x}-\boldsymbol{z})^4}$$

• The dominant large- z_{\perp} behavior cancels between "real" and "virtual" graphs

LO phenomenology: rcBK

(Albacete, Dumitru, Fujii, Nara, arXiv:1209:2001)

• Fit parameters: initial condition for the rcBK equation + K-factors

$$\frac{\mathrm{d}N_h}{\mathrm{d}\eta\,\mathrm{d}^2\boldsymbol{k}}\Big|_{\rm LO} = K_h \int_{x_p}^1 \frac{\mathrm{d}z}{z^2} \frac{x_p}{z} q\left(\frac{x_p}{z}\right) \mathcal{S}\left(\frac{\boldsymbol{k}}{z}, X_g\right) D_{h/q}(z)$$

• What about the (other) NLO corrections ?

LO BK evolution in integral form

$$\frac{\mathrm{d}N}{\mathrm{d}\eta\mathrm{d}^{2}\boldsymbol{k}}\Big|_{\mathrm{LO}} = x_{p}q(x_{p})\,\mathcal{S}(\boldsymbol{k},X_{g})\,,\qquad \mathcal{S}(\boldsymbol{k},X_{g}) = \int\mathrm{d}^{2}\boldsymbol{r}\,\mathrm{e}^{-\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{r}}S(\boldsymbol{r},X_{g})$$

• $S(\boldsymbol{r}, X_g)$ is the solution to the LO BK equation and can be written as

$$S_{\boldsymbol{x}\boldsymbol{y}}(X_g) = S_{\boldsymbol{x}\boldsymbol{y}}(X_0) + \bar{\alpha}_s \int_{X_g}^1 \frac{\mathrm{d}x}{x} \int_{\boldsymbol{z}} \frac{(\boldsymbol{x}-\boldsymbol{y})^2}{(\boldsymbol{x}-\boldsymbol{z})^2 (\boldsymbol{y}-\boldsymbol{z})^2} \left[S_{\boldsymbol{x}\boldsymbol{z}} S_{\boldsymbol{z}\boldsymbol{y}} - S_{\boldsymbol{x}\boldsymbol{y}} \right] (X(x))$$

• The emission of the first gluon, with energy fraction x, is explicit.

NLO corrections to particle production

- $\mathcal{O}(\alpha_s)$ corrections to the evolution (i.e. to the dipole/BFKL kernel)
 - a pair of soft partons which are close in rapidity: $x_1 \sim x_2 \ll 1$
 - a contribution of $\mathcal{O}(\alpha_s^2 Y) \Rightarrow \mathcal{O}(\alpha_s)$ correction to the kernel

NLO corrections to particle production

- $\mathcal{O}(\alpha_s)$ corrections to the evolution (cf. the talk by Dionysis T.)
 - a pair of soft partons which are close in rapidity: $x_1 \sim x_2 \ll 1$
 - a contribution of $\mathcal{O}(\alpha_s^2 Y) \Rightarrow \mathcal{O}(\alpha_s)$ correction to the kernel

NLO corrections to particle production

- $\mathcal{O}(\alpha_s)$ corrections to the impact factor (*Chirilli*, Xiao, and Yuan, 2012)
 - the first emitted gluon is close in rapidity to the dipole: $x \sim \mathcal{O}(1)$
 - its emission must be computed with exact kinematics (beyond eikonal)

Just the impact factor

• The ensuing cross-section can be succinctly (but formally) written as

$$\frac{\mathrm{d}N}{\mathrm{d}\eta\mathrm{d}^{2}\boldsymbol{k}} \,=\, \mathcal{S}_{0}(\boldsymbol{k}) + \bar{\alpha}_{s} \int_{X_{g}}^{1} \frac{\mathrm{d}x}{x} \,\mathcal{K}(x) \,\mathcal{S}_{q\bar{q}g}\big(\boldsymbol{k}, X(x)\big)\,; \quad X(x) \simeq \frac{X_{g}}{x}$$

- $\mathcal{K}(x)$: kernel for emitting a gluon with exact kinematics (CXY)
- The evolution is evaluated at the floating scale X(x) : non-local in rapidity

Just the impact factor

• The ensuing cross-section can be succinctly (but formally) written as

$$\frac{\mathrm{d}N}{\mathrm{d}\eta\mathrm{d}^{2}\boldsymbol{k}} \,=\, \mathcal{S}_{0}(\boldsymbol{k}) + \bar{\alpha}_{s} \int_{X_{q}}^{1} \frac{\mathrm{d}x}{x} \,\mathcal{K}(x) \,\mathcal{S}_{q\bar{q}g}\big(\boldsymbol{k}, X(x)\big)\,; \quad X(x) \simeq \frac{X_{g}}{x}$$

- This is in fact our proposal for the NLO factorization (E.I., A. Mueller and D. Triantafyllopoulos, arXiv:1608.05293)
- Almost obviously right (by construction) & positive definite

ECT*, Trento, May 2018

High-energy factorization at NLO

Physical picture & kinematics

• The quark q_0^+ from the proton radiates a recoil gluon with energy fraction x while scattering off the target

• LC energy conservation:

$$\frac{k_{\perp}^2}{2(1-x)q_0^+} + \frac{p_{\perp}^2}{2xq_0^+} = XP^-$$

$$\implies X = X(x, p_{\perp})$$

• simplifies when $k_\perp \simeq p_\perp \gg Q_s$

$$X(x) \simeq \frac{k_{\perp}^2}{xs} = \frac{X_g}{x}$$

• $X \le 1 \Longrightarrow x \ge X_g$

• The final quark carries a longitudinal momentum $k^+ = (1-x)q_0^+ = x_pQ^+$

• The original quark has a longitudinal fraction $q_0^+/Q^+ = x_p/(1-x)$

ECT*, Trento, May 2018

High-energy factorization at NLO

19 / 34

The NLO impact factor: "real" terms

• The same graphs as for one-step evolution, but with exact kinematics

• Cyrille M. has computed quark-gluon production back in 2007

• "integrate out the gluon" $\int \mathrm{d}^2 p_\perp \implies z_\perp = ar{z}_\perp$

"Real" N_c-terms

• The same graphs as for one-step evolution, but with exact kinematics

- N.B. slight change in notations: $x \rightarrow r$, $y \rightarrow 0$ (translation invariance)
- $\boldsymbol{w} = x\boldsymbol{z} + (1-x)\boldsymbol{r}$, $\bar{\boldsymbol{w}} = x\boldsymbol{z}$: center of energy of the final qg pair

$$\bar{\alpha}_{s}(k_{\perp}) \int_{\boldsymbol{r}} e^{-i\boldsymbol{k}\cdot\boldsymbol{r}} \int_{\boldsymbol{z}} \int_{X_{g}}^{1} dx \, \frac{1+(1-x)^{2}}{2x} \, \frac{(\boldsymbol{z}-\boldsymbol{r})\cdot\boldsymbol{z}}{(\boldsymbol{z}-\boldsymbol{r})^{2}\boldsymbol{z}^{2}} \, S(\boldsymbol{r}-\boldsymbol{z})S(\boldsymbol{z}-\boldsymbol{\bar{w}})$$

• Same WW emission kernel as in the eikonal approx: gluon energy fraction x enters only via the coordinate \bar{w} of the parent quark

1

"Virtual" N_c-terms

• There are corresponding "virtual" graphs (first computed by CXY, 2012)

• Here, \boldsymbol{u} is defined by $\boldsymbol{r} \equiv x\boldsymbol{z} + (1-x)\boldsymbol{u}$

Putting "real" and "virtual" together

$$\bar{\alpha}_{s}(k_{\perp}) \int_{\boldsymbol{r}} e^{-i\boldsymbol{k}\cdot\boldsymbol{r}} \int_{\boldsymbol{z}} \int_{X_{g}}^{1} dx \, \frac{1+(1-x)^{2}}{2x} \\ \left\{ \frac{x_{p}}{1-x} q\left(\frac{x_{p}}{1-x}\right) \frac{(\boldsymbol{z}-\boldsymbol{r})\cdot\boldsymbol{z}}{(\boldsymbol{z}-\boldsymbol{r})^{2}\boldsymbol{z}^{2}} \, S(\boldsymbol{r}-\boldsymbol{z}) S(\boldsymbol{z}-\bar{\boldsymbol{w}}) - \frac{x_{p}q(x_{p})}{(\boldsymbol{z}-\boldsymbol{r})^{2}} \, S(\boldsymbol{u}-\boldsymbol{z}) S(\boldsymbol{z}) \right\}$$

• For generic x < 1, the "real" and "virtual" terms have

- different coordinate arguments for the S-matrices
- different weightings with the quark distribution
- For small $x \ll 1$: $\bar{w} = xz \to 0$ and $r = xz + (1-x)u \implies u \to r$

• for $x \ll 1$ one recovers the dipole kernel, hence LO BK, as expected

- For generic x, cancellations between "real" and "virtual" don't work anymore
- Complications for a running coupling: see the talk by Bertrand Ducloué

The C_F-terms: emergence of DGLAP

• The graphs in which the gluon is (effectively) non-interacting

• Large $z \gg r$ and $\xi \equiv 1 - x$: logarithmically IR-divergent integral over z, recognized as one step in DGLAP (here, for the quark distribution)

$$-\frac{\alpha_s C_F}{2\pi} \,\mathcal{S}(\boldsymbol{k}) \int_{x_p}^1 \mathrm{d}\xi \left(\frac{1+\xi^2}{1-\xi}\right)_+ \frac{x_p}{\xi} q\left(\frac{x_p}{\xi}\right) \int_r \frac{\mathrm{d}\boldsymbol{z}^2}{\boldsymbol{z}^2} \equiv x_p \Delta q(x_p, 1/r^2) \mathcal{S}(\boldsymbol{k})$$

Factorization at NLO

• Return to our compact but formal expression for the cross-section at NLO:

$$\frac{\mathrm{d}N}{\mathrm{d}\eta\mathrm{d}^{2}\boldsymbol{k}} = S_{0}(\boldsymbol{k}) + \bar{\alpha}_{s} \int_{X_{g}}^{1} \frac{\mathrm{d}x}{x} \mathcal{K}(\boldsymbol{x}) S_{q\bar{q}g}(\boldsymbol{k}, X(\boldsymbol{x})); \quad X(\boldsymbol{x}) \simeq \frac{X_{g}}{x}$$

- Quark distribution and fragmentation functions are implicit
- $\mathcal{K}(x)$ includes the N_c -terms and the finite pieces of the C_F -terms
- The evolution is evaluated at the floating scale X(x) : non-local in rapidity
- Where is the origin of the negativity problem by CXY ?

k_T -factorization

- CXY insisted in writing a k_T -factorized expression for the cross-section
 - explicitly separate LO and NLO contributions to the impact factor
 - $\bullet\,$ evaluate the NLO correction at the rapidity of the projectile: local in X
- This is indeed allowed to NLO accuracy ... at least formally
- ... But this is precisely the source of the problems !
 - separating LO and NLO contributions involves a high degree of fine-tuning
 - locality in X is merely an approximation, which becomes dangerous in this context: an over-subtraction

Recovering the LO result

• The LO result is readily obtained as the limit $x \ll 1$ of our factorization: $x \ll 1 \implies \mathcal{K}(x) \rightarrow \mathcal{K}(0)$

$$\frac{\mathrm{d}N}{\mathrm{d}\eta\mathrm{d}^{2}\boldsymbol{k}}\bigg|_{\scriptscriptstyle \mathrm{LO}} = \mathcal{S}_{0}(\boldsymbol{k}) + \bar{\alpha}_{s} \int_{X_{g}}^{1} \frac{\mathrm{d}x}{x} \,\mathcal{K}(0) \,\mathcal{S}_{q\bar{q}g}\big(\boldsymbol{k}, X(x)\big) = \mathcal{S}(\boldsymbol{k}, X_{g})$$

- This is just the BK equation in condensed notations
- One can of course subtract this LO piece from the NLO result

ECT*, Trento, May 2018

High-energy factorization at NLO

Subtracting the LO: why is this tricky

• A mathematical identity ... but potentially tricky in practice !

• one adds and subtracts a large, LO, contribution

• Not yet k_T -factorization: non-local in rapidity (X(x))

ECT*, Trento, May 2018

High-energy factorization at NLO

Recovering k_T -factorization

$$\frac{\mathrm{d}N}{\mathrm{d}\eta\mathrm{d}^{2}\boldsymbol{k}} = \mathcal{S}(\boldsymbol{k}, X_{g}) + \bar{\alpha}_{s} \int_{0}^{1} \frac{\mathrm{d}x}{x} \left[\mathcal{K}(x) - \mathcal{K}(0)\right] \mathcal{S}_{q\bar{q}g}(\boldsymbol{k}, \boldsymbol{X}_{g})$$

• To NLO accuracy, one can perform additional approximations:

- replace $\mathcal{S}(X(x)) \simeq \mathcal{S}(X_g)$ (since integral dominated by $x \sim 1$)
- set $X_g \rightarrow 0$ in the lower limit ('plus prescription')
- Local in rapidity : k_T -factorization as presented by CXY

Numerical results: Fixed coupling $\alpha_s = 0.2$

Ducloué, Lappi, Zhu, arXiv:1703.04962 (see the talk by Bertrand Ducloué)

- Large NLO correction: $\gtrsim 50\,\%$ for $k_\perp \geq 5~{
 m GeV}$
- The same results with and without subtracting the LO result
 - small oscillations in "subtracted" due to numerical errors
- k_{\perp} -factorization (CXY) rapidly becomes negative : over-subtraction

Numerical results: Running coupling

Ducloué, Lappi, Zhu, arXiv:1703.04962 (see the talk by Bertrand Ducloué)

- The running of the coupling renders the problem even more subtle:
 - already the "subtracted" result becomes negative
 - the "CXY" curve becomes negative even faster
- Mismatch between the running coupling prescriptions used ...
 - in coordinate space (for solving the BK equation)
 - ... and in momentum space (for computing the NLO impact factor)

Conclusions

- The hybrid factorization for *pA* collisions formally holds to NLO but this is rather subtle !
- On the nuclear side, one cannot 'automatically' apply k_T -factorization
 - one cannot enforce locality in rapidity in the NLO impact factor
 - with running coupling, the separation between LO and NLO contributions becomes dangerous
- But this is actually not needed: factorization is more general
 - no explicit separation between LO and NLO
 - non-local in rapidity
- Sensible physical results: positive cross-section, but smaller than at LO
- A similar strategy is necessary when computing DIS at NLO (dipole picture) Ducloué, Hänninen, Lappi, and Zhu, arXiv:1708.07328
- See the subsequent talk by Bertrand Ducloué !

ECT*, Trento, May 2018

High-energy factorization at NLO

Adding a running coupling

- The NLO impact factor is generally computed in momentum space
 - natural to use a running coupling $ar{lpha}_s(k_\perp^2)$ (at least for $k_\perp^2\gtrsim Q_s^2)$

$$\frac{\mathrm{d}N}{\mathrm{d}\eta\mathrm{d}^{2}\boldsymbol{k}} = \mathcal{S}_{0}(\boldsymbol{k}) + \bar{\boldsymbol{\alpha}}_{\boldsymbol{s}}(\boldsymbol{k}_{\perp}^{2}) \int_{X_{g}}^{1} \frac{\mathrm{d}x}{x} \,\mathcal{K}(x) \,\mathcal{S}_{q\bar{q}g}(\boldsymbol{k}, X(x))$$

- more generally: $\bar{lpha}_s(k_{
 m max}^2)$
- Dipole S-matrix is computed by solving rcBK in coordinate space

$$S_{\boldsymbol{x}\boldsymbol{y}}(X_g) = S_{\boldsymbol{x}\boldsymbol{y}}(X_0) + \int_{X_g}^1 \frac{\mathrm{d}x}{x} \int_{\boldsymbol{z}} \bar{\boldsymbol{\alpha}}_{\boldsymbol{s}}(\boldsymbol{r}_{\min}^2) \frac{(\boldsymbol{x}-\boldsymbol{y})^2}{(\boldsymbol{x}-\boldsymbol{z})^2(\boldsymbol{y}-\boldsymbol{z})^2} \left[S_{\boldsymbol{x}\boldsymbol{z}} S_{\boldsymbol{z}\boldsymbol{y}} - S_{\boldsymbol{x}\boldsymbol{y}} \right]$$

•
$$r_{\min} \equiv \min \{ |x - y|, |x - z|, |y - z| \}$$

• Running coupling and Fourier transform do not "commute" with each other

Completing the NLO evolution

(E.I., A. Mueller and D. Triantafyllopoulos, arXiv:1608.05293)

• Recall: the NLO BK evolution also involves 2-loop graphs

 K₂(0) : NLO correction to the BK kernel with collinear improvement (Balitsky and Chirilli, 2008; lancu et al, 2015)