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1. Introduction
• The QCD phase space 
• Stages of a heavy ion collision 

2. Initial conditions: the Color-Glass Condensate
• The Color Glass Condensate effective theory 
• Initial conditions for the field in the forward light-cone. 

3. Correlators of the Energy-Momentum tensor at
• One-point function 
• Two-point function 

4. Preliminary results: Nc expansion

5. Conclusions

Outline

⌧= 0+

hTµ⌫(x?)i
hTµ⌫(x?)T

µ⌫(y?)i

 2



Glasma calculation of energy-momentum tensor
correlations at early times

Pablo Guerrero Rodriguez

December 15, 2017

Pablo Guerrero Rodriguez (UGR) Glasma hTµ⌫
x

T

µ⌫
y

i calculation at ⌧ = 0

+

December 15, 2017 1 / 13Rodríguez /40May 21, 2018Initial correlations of the EMT of Glasma

1. Introduction

 3



Glasma calculation of energy-momentum tensor
correlations at early times

Pablo Guerrero Rodriguez

December 15, 2017

Pablo Guerrero Rodriguez (UGR) Glasma hTµ⌫
x

T

µ⌫
y

i calculation at ⌧ = 0

+

December 15, 2017 1 / 13Rodríguez /40May 21, 2018Initial correlations of the EMT of Glasma  4

The QCD phase space

Quark Gluon Plasma

• QCD behaves differently depending on conditions of temperature and 
baryon density 

• Low temperature and densities: hadronic phase (confinement and 
spontaneously broken chiral symmetry)

• Lattice simulations indicate a transition at high temperature to a 
deconfined, chiral-symmetric phase: The QUARK-GLUON PLASMA
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• This state of matter can be accessed in particle colliders through 
Heavy Ion Collision experiments

• Performed at Brookhaven National Laboratory’s Relativistic Heavy Ion 
Collider (RHIC) and CERN’s Large Hadron Collider (ALICE 
experiment)

The QCD phase space
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Stages of a heavy ion collision

Quark Gluon Plasma Cooling down

Finally observed particles (hadrons)

• After the collision, matter goes through different phases as it cools down 
• In the last part, it reaches the hadronic phase, and this is how it appears in 

the detectors

GLASMA

x
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Quark Gluon Plasma

• There is a theoretical gap between the description of the early phase and 
the simulations of the expansion of the QGP

Finally observed particles (hadrons)

Stages of a heavy ion collision

Quasi-ideal relativistic
hydrodynamics

Classical dynamics: CGC
Early phase of the collision

Theoretical gap}GLASMA
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Quark Gluon Plasma

Finally observed particles (hadrons)

Stages of a heavy ion collision

Quasi-ideal relativistic
hydrodynamics

Classical dynamics: CGC
Early phase of the collision

Theoretical gap}GLASMA

• There is a theoretical gap between the description of the early phase and 
the simulations of the expansion of the QGP 

• Solid theoretical results are needed to mediate between both frameworks 
• We provide an exact analytical calculation of the following object:
Cov[T

µ⌫
](⌧ = 0

+
;x?, y?) ⌘ hTµ⌫

0 (x?)T
�⇢
0 (y?)i � hTµ⌫

0 (x?)ihT �⇢
0 (y?)i

In the classical approximation (MV model)
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+
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2. Initial conditions: the Color-Glass Condensate
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Highly Energetic Heavy Ion Collisions
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Fig. 5. Parton distributions in a proton, measured in Deep Inelastic Scattering at HERA.2

parton distributions at high energy/small x is that the gluons are outnumbering
all the other parton species – the valence quarks are completely negligible in this
kinematical region, and the sea quarks are suppressed by one power of the coupling
↵

s

, since they are produced from the gluons by the splitting g ! qq.

Fig. 6. Left: typical process in a hadronic collision in the dilute regime. Right: typical process in
the dense regime.

This increase of the gluon distribution at small x leads to a major complication
when applying QCD to compute processes in this regime. Indeed, the usual tools of
perturbation theory are well adapted to the situation where the parton distributions
are small (see the left figure 6) and where a fairly small number of graphs contribute
at each order. On the contrary, when the parton distributions increase, processes
involving many partons become more and more important, as illustrated in the
right panel of the figure 6. The extreme situation arises when the gluon occupation
number is of order 1/↵

s

: in this case, an infinite number of graphs contribute at each
order. This regime of high parton densities is non-perturbative, even if the coupling
constant is weak – the non-perturbative features arise from the fact that the large

• At high energies (or equivalently, low x) the 
partonic content of protons and neutrons is 
vastly dominated by a high density of 
gluons
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Highly Energetic Heavy Ion Collisions

• Relativistic kinematics: at high energies, 
the nuclei appear almost two-dimensional 
in the laboratory frame due to Lorentz 
contraction
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Fig. 5. Parton distributions in a proton, measured in Deep Inelastic Scattering at HERA.2

parton distributions at high energy/small x is that the gluons are outnumbering
all the other parton species – the valence quarks are completely negligible in this
kinematical region, and the sea quarks are suppressed by one power of the coupling
↵

s

, since they are produced from the gluons by the splitting g ! qq.

Fig. 6. Left: typical process in a hadronic collision in the dilute regime. Right: typical process in
the dense regime.

This increase of the gluon distribution at small x leads to a major complication
when applying QCD to compute processes in this regime. Indeed, the usual tools of
perturbation theory are well adapted to the situation where the parton distributions
are small (see the left figure 6) and where a fairly small number of graphs contribute
at each order. On the contrary, when the parton distributions increase, processes
involving many partons become more and more important, as illustrated in the
right panel of the figure 6. The extreme situation arises when the gluon occupation
number is of order 1/↵

s

: in this case, an infinite number of graphs contribute at each
order. This regime of high parton densities is non-perturbative, even if the coupling
constant is weak – the non-perturbative features arise from the fact that the large

• At high energies (or equivalently, low x) the 
partonic content of protons and neutrons is 
vastly dominated by a high density of 
gluons
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Highly Energetic Heavy Ion Collisions
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Fig. 5. Parton distributions in a proton, measured in Deep Inelastic Scattering at HERA.2

parton distributions at high energy/small x is that the gluons are outnumbering
all the other parton species – the valence quarks are completely negligible in this
kinematical region, and the sea quarks are suppressed by one power of the coupling
↵

s

, since they are produced from the gluons by the splitting g ! qq.

Fig. 6. Left: typical process in a hadronic collision in the dilute regime. Right: typical process in
the dense regime.

This increase of the gluon distribution at small x leads to a major complication
when applying QCD to compute processes in this regime. Indeed, the usual tools of
perturbation theory are well adapted to the situation where the parton distributions
are small (see the left figure 6) and where a fairly small number of graphs contribute
at each order. On the contrary, when the parton distributions increase, processes
involving many partons become more and more important, as illustrated in the
right panel of the figure 6. The extreme situation arises when the gluon occupation
number is of order 1/↵

s

: in this case, an infinite number of graphs contribute at each
order. This regime of high parton densities is non-perturbative, even if the coupling
constant is weak – the non-perturbative features arise from the fact that the large

• Relativistic kinematics: at high energies, 
the nuclei appear almost two-dimensional 
in the laboratory frame due to Lorentz 
contraction

• QCD becomes non-linear and non-perturbative!
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parton distributions at high energy/small x is that the gluons are outnumbering
all the other parton species – the valence quarks are completely negligible in this
kinematical region, and the sea quarks are suppressed by one power of the coupling
↵

s

, since they are produced from the gluons by the splitting g ! qq.

Fig. 6. Left: typical process in a hadronic collision in the dilute regime. Right: typical process in
the dense regime.

This increase of the gluon distribution at small x leads to a major complication
when applying QCD to compute processes in this regime. Indeed, the usual tools of
perturbation theory are well adapted to the situation where the parton distributions
are small (see the left figure 6) and where a fairly small number of graphs contribute
at each order. On the contrary, when the parton distributions increase, processes
involving many partons become more and more important, as illustrated in the
right panel of the figure 6. The extreme situation arises when the gluon occupation
number is of order 1/↵

s

: in this case, an infinite number of graphs contribute at each
order. This regime of high parton densities is non-perturbative, even if the coupling
constant is weak – the non-perturbative features arise from the fact that the large

• At high energies (or equivalently, low x) the 
partonic content of protons and neutrons is 
vastly dominated by a high density of 
gluons
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• We use an approximation of QCD for high gluon densities where we 
replace the gluons with a classical field generated by the valence 
quarks
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Fig. 5. Parton distributions in a proton, measured in Deep Inelastic Scattering at HERA.2

parton distributions at high energy/small x is that the gluons are outnumbering
all the other parton species – the valence quarks are completely negligible in this
kinematical region, and the sea quarks are suppressed by one power of the coupling
↵

s

, since they are produced from the gluons by the splitting g ! qq.

Fig. 6. Left: typical process in a hadronic collision in the dilute regime. Right: typical process in
the dense regime.

This increase of the gluon distribution at small x leads to a major complication
when applying QCD to compute processes in this regime. Indeed, the usual tools of
perturbation theory are well adapted to the situation where the parton distributions
are small (see the left figure 6) and where a fairly small number of graphs contribute
at each order. On the contrary, when the parton distributions increase, processes
involving many partons become more and more important, as illustrated in the
right panel of the figure 6. The extreme situation arises when the gluon occupation
number is of order 1/↵

s

: in this case, an infinite number of graphs contribute at each
order. This regime of high parton densities is non-perturbative, even if the coupling
constant is weak – the non-perturbative features arise from the fact that the large

A

µ(x)

• Dynamics of the field described by Yang-Mills classical equations:

[Dµ, F
µ⌫ ] = J

⌫ / ⇢(x)

Fµ⌫ = @µA⌫ � @⌫Aµ � ig [Aµ, A⌫ ]

J

⌫,a = �

⌫+
⇢

a(x�
, x?)

Color Glass Condensate: McLerran-Venugopalan model
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• We use an approximation of QCD for high gluon densities where we 
replace the gluons with a classical field generated by the valence 
quarks
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Fig. 5. Parton distributions in a proton, measured in Deep Inelastic Scattering at HERA.2

parton distributions at high energy/small x is that the gluons are outnumbering
all the other parton species – the valence quarks are completely negligible in this
kinematical region, and the sea quarks are suppressed by one power of the coupling
↵

s

, since they are produced from the gluons by the splitting g ! qq.

Fig. 6. Left: typical process in a hadronic collision in the dilute regime. Right: typical process in
the dense regime.

This increase of the gluon distribution at small x leads to a major complication
when applying QCD to compute processes in this regime. Indeed, the usual tools of
perturbation theory are well adapted to the situation where the parton distributions
are small (see the left figure 6) and where a fairly small number of graphs contribute
at each order. On the contrary, when the parton distributions increase, processes
involving many partons become more and more important, as illustrated in the
right panel of the figure 6. The extreme situation arises when the gluon occupation
number is of order 1/↵

s

: in this case, an infinite number of graphs contribute at each
order. This regime of high parton densities is non-perturbative, even if the coupling
constant is weak – the non-perturbative features arise from the fact that the large

A

µ(x)

• Dynamics of the field described by Yang-Mills classical equations:

• Calculation of observables: average over background classical fields

[Dµ, F
µ⌫ ] = J

⌫ / ⇢(x)

hO [⇢]i =
Z

[d⇢] exp

⇢
�
Z

dxTr

⇥
⇢

2
⇤�O [⇢]

Color Glass Condensate: McLerran-Venugopalan model
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• We use an approximation of QCD for high gluon densities where we 
replace the gluons with a classical field generated by the valence 
quarks

4 François Gelis

-310

-210

-110

1

10

-410
-3

10 -210 -110 1

-310

-210

-110

1

10

 HERAPDF1.0

 exp. uncert.

 model uncert.

 parametrization uncert.

 

x

x
f

2 = 10 GeV2Q

vxu

vxd

xS 

xg 

                H1 and ZEUS

-310

-210

-110

1

10

Fig. 5. Parton distributions in a proton, measured in Deep Inelastic Scattering at HERA.2

parton distributions at high energy/small x is that the gluons are outnumbering
all the other parton species – the valence quarks are completely negligible in this
kinematical region, and the sea quarks are suppressed by one power of the coupling
↵

s

, since they are produced from the gluons by the splitting g ! qq.

Fig. 6. Left: typical process in a hadronic collision in the dilute regime. Right: typical process in
the dense regime.

This increase of the gluon distribution at small x leads to a major complication
when applying QCD to compute processes in this regime. Indeed, the usual tools of
perturbation theory are well adapted to the situation where the parton distributions
are small (see the left figure 6) and where a fairly small number of graphs contribute
at each order. On the contrary, when the parton distributions increase, processes
involving many partons become more and more important, as illustrated in the
right panel of the figure 6. The extreme situation arises when the gluon occupation
number is of order 1/↵

s

: in this case, an infinite number of graphs contribute at each
order. This regime of high parton densities is non-perturbative, even if the coupling
constant is weak – the non-perturbative features arise from the fact that the large

A

µ(x)

• Dynamics of the field described by Yang-Mills classical equations:

• Calculation of observables: average over background classical fields

[Dµ, F
µ⌫ ] = J

⌫ / ⇢(x)

• Basic building block: 2-point correlator

Color Glass Condensate: McLerran-Venugopalan model

h⇢a(x�
, x?)⇢

b(y�, y?)i = µ

2(x�)�ab�(x� � y

�)�(2)(x? � y?)



Glasma calculation of energy-momentum tensor
correlations at early times

Pablo Guerrero Rodriguez

December 15, 2017

Pablo Guerrero Rodriguez (UGR) Glasma hTµ⌫
x

T

µ⌫
y

i calculation at ⌧ = 0

+

December 15, 2017 1 / 13Rodríguez /40May 21, 2018Initial correlations of the EMT of Glasma  16

• We use an approximation of QCD for high gluon densities where we 
replace the gluons with a classical field generated by the valence 
quarks
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Fig. 5. Parton distributions in a proton, measured in Deep Inelastic Scattering at HERA.2

parton distributions at high energy/small x is that the gluons are outnumbering
all the other parton species – the valence quarks are completely negligible in this
kinematical region, and the sea quarks are suppressed by one power of the coupling
↵

s

, since they are produced from the gluons by the splitting g ! qq.

Fig. 6. Left: typical process in a hadronic collision in the dilute regime. Right: typical process in
the dense regime.

This increase of the gluon distribution at small x leads to a major complication
when applying QCD to compute processes in this regime. Indeed, the usual tools of
perturbation theory are well adapted to the situation where the parton distributions
are small (see the left figure 6) and where a fairly small number of graphs contribute
at each order. On the contrary, when the parton distributions increase, processes
involving many partons become more and more important, as illustrated in the
right panel of the figure 6. The extreme situation arises when the gluon occupation
number is of order 1/↵

s

: in this case, an infinite number of graphs contribute at each
order. This regime of high parton densities is non-perturbative, even if the coupling
constant is weak – the non-perturbative features arise from the fact that the large

A

µ(x)

• Dynamics of the field described by Yang-Mills classical equations:

• Calculation of observables: average over background classical fields

[Dµ, F
µ⌫ ] = J

⌫ / ⇢(x)

• Basic building block: (generalized) 2-point correlator

Color Glass Condensate: McLerran-Venugopalan model

Non-Gaussianities
h⇢a(x�

, x?)⇢
b(y�, y?)i = µ

2(x�)h(b?)�
ab
�(x� � y

�)f(x? � y?)
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Initial conditions for the field in the forward light-cone 4

FIG. 1. (color online) The z-t-plane with the two currents J1 and J2 given on the x

+- and x

�-axes, and the four regions given
by the solution (8). The theoretical limit of the classical approximation in the forward light cone at ⌧ = ⌧0 and the approximate
thermalization time ⌧th are shown schematically.

Equations (9) through (11) together with the condi-
tions (13) and (14) pose the boundary value problem to
be solved. An analytic solution in closed form is not
known for the most general case. The weak field or
abelian limit was first treated in [24] and will be repro-
duced below. Several groups have discussed numerical
solutions [16, 33–35], usually focusing on the plane ⌘ = 0.

A di↵erent approach to solve the problem was first ad-
vocated by some of us in [19, 29]. The basic idea is as
follows. Since the classical approach to CGC loses its
applicability very soon after the collision, it will be su�-
cient to focus on the near-field, or small proper times ⌧ .
In that case one can utilize a systematic expansion of the
Yang-Mills equation in a power series in ⌧ [30, 36] . We
can expect to find the leading terms in such an expan-
sion analytically. The natural scale for the convergence of
such series should be given by the only time scale in the
problem, namely, 1/Q

s

. We will see that this is indeed
the case.

B. ⌧-Expansion and Recursive Solution

Let us define the power series

A(⌧, ~x?) =
1X

n=0

⌧nA(n)(~x?), (15)

Ai

?(⌧, ~x?) =
1X

n=0

⌧nAi

?(n)(~x?) , (16)

for the fields parameterizing the gauge potential in the
forward light cone. We devise equivalent power series for
the field strength tensor, covariant derivatives and the
energy-momentum tensor. We do not include any diver-
gent (1/⌧n) or logarithmic (ln ⌧) terms in ⌧ . While the
field equations themselves can have divergent solutions
they have to be discarded because of the boundary con-
ditions (13) and (14).
We can discuss this point in more detail for the abelian-

ized version of the equations. In the case of weak fields
the non-linear terms in the Yang-Mills equations are usu-
ally neglected, leading to a greatly simplified abelian ver-
sion of the boundary value problem. The analytic so-
lution in closed form can be readily found [24]. After
applying a Fourier transformation of the transverse co-
ordinate, @i ! �iki?, Eqs. (9) and (11) take the form of
Bessel equations

1

z

d2

dz2
zA+

1

z2
d

dz
zA+

1

z
zA� 1

z3
zA = 0 , (17)

z2
d2

dz2
Ai

? + z
d

dz
Ai

? + z2Ai

? = 0 , (18)

where z = k?⌧ . A physical polarization riAi

? = 0 has
been chosen for the transverse field. There are two inde-
pendent sets of solutions, Bessel functions of the first kind
A ⇠ J1(z)/z, Ai

? ⇠ J0(z) which are regular at ⌧ = 0, and
Neumann functions A ⇠ N1(z)/z, Ai

? ⇠ N0(z) which
lead to singular solutions A ⇠ z�2, Ai

? ⇠ ln ⌧ for ⌧ ! 0.
The solution with Neumann functions is not compatible
with Eq. (10) which imposes @/@⌧Ai

? = 0. The singular
solution therefore has to be excluded.

1 2
3

• As the fields in  1  and  2  are not in causal 
contact, they can be obtained independently.

Before the collision:

1 2

0

• In      we take the fields as 0.0
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Initial conditions for the field in the forward light-cone 4

FIG. 1. (color online) The z-t-plane with the two currents J1 and J2 given on the x

+- and x

�-axes, and the four regions given
by the solution (8). The theoretical limit of the classical approximation in the forward light cone at ⌧ = ⌧0 and the approximate
thermalization time ⌧th are shown schematically.

Equations (9) through (11) together with the condi-
tions (13) and (14) pose the boundary value problem to
be solved. An analytic solution in closed form is not
known for the most general case. The weak field or
abelian limit was first treated in [24] and will be repro-
duced below. Several groups have discussed numerical
solutions [16, 33–35], usually focusing on the plane ⌘ = 0.

A di↵erent approach to solve the problem was first ad-
vocated by some of us in [19, 29]. The basic idea is as
follows. Since the classical approach to CGC loses its
applicability very soon after the collision, it will be su�-
cient to focus on the near-field, or small proper times ⌧ .
In that case one can utilize a systematic expansion of the
Yang-Mills equation in a power series in ⌧ [30, 36] . We
can expect to find the leading terms in such an expan-
sion analytically. The natural scale for the convergence of
such series should be given by the only time scale in the
problem, namely, 1/Q

s

. We will see that this is indeed
the case.

B. ⌧-Expansion and Recursive Solution

Let us define the power series

A(⌧, ~x?) =
1X

n=0

⌧nA(n)(~x?), (15)

Ai

?(⌧, ~x?) =
1X

n=0

⌧nAi

?(n)(~x?) , (16)

for the fields parameterizing the gauge potential in the
forward light cone. We devise equivalent power series for
the field strength tensor, covariant derivatives and the
energy-momentum tensor. We do not include any diver-
gent (1/⌧n) or logarithmic (ln ⌧) terms in ⌧ . While the
field equations themselves can have divergent solutions
they have to be discarded because of the boundary con-
ditions (13) and (14).
We can discuss this point in more detail for the abelian-

ized version of the equations. In the case of weak fields
the non-linear terms in the Yang-Mills equations are usu-
ally neglected, leading to a greatly simplified abelian ver-
sion of the boundary value problem. The analytic so-
lution in closed form can be readily found [24]. After
applying a Fourier transformation of the transverse co-
ordinate, @i ! �iki?, Eqs. (9) and (11) take the form of
Bessel equations

1

z

d2

dz2
zA+

1

z2
d

dz
zA+

1

z
zA� 1

z3
zA = 0 , (17)

z2
d2

dz2
Ai

? + z
d

dz
Ai

? + z2Ai

? = 0 , (18)

where z = k?⌧ . A physical polarization riAi

? = 0 has
been chosen for the transverse field. There are two inde-
pendent sets of solutions, Bessel functions of the first kind
A ⇠ J1(z)/z, Ai

? ⇠ J0(z) which are regular at ⌧ = 0, and
Neumann functions A ⇠ N1(z)/z, Ai

? ⇠ N0(z) which
lead to singular solutions A ⇠ z�2, Ai

? ⇠ ln ⌧ for ⌧ ! 0.
The solution with Neumann functions is not compatible
with Eq. (10) which imposes @/@⌧Ai

? = 0. The singular
solution therefore has to be excluded.

1 2
3

• As the fields in  1  and  2  are not in causal 
contact, they can be obtained independently.

Before the collision:

1 2

0

• In      we take the fields as 0.0

We need to solve Yang-Mills equation with 
one source which, along with the covariant 
conservation of the current: 

Gives us:

@

@x

+
J

+ = ig

⇥
A

�
, J

+
⇤

Where:

@

2
?G(x? � y?) = �(x? � y?) Green function of 2-D laplacian

U
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�
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�
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"
ig

Z
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�1
dz

�
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2
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(z

�
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abc

#
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i
1,2 = ✓(x±)

Z 1

�1
dz

± @

i
⇢̃

a(z±, x?)

r2
?

U

ab(z±, x?)t
b ⌘ ✓(x±)↵i

1,2(x?)
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Initial conditions for the field in the forward light-cone 4

FIG. 1. (color online) The z-t-plane with the two currents J1 and J2 given on the x

+- and x

�-axes, and the four regions given
by the solution (8). The theoretical limit of the classical approximation in the forward light cone at ⌧ = ⌧0 and the approximate
thermalization time ⌧th are shown schematically.

Equations (9) through (11) together with the condi-
tions (13) and (14) pose the boundary value problem to
be solved. An analytic solution in closed form is not
known for the most general case. The weak field or
abelian limit was first treated in [24] and will be repro-
duced below. Several groups have discussed numerical
solutions [16, 33–35], usually focusing on the plane ⌘ = 0.

A di↵erent approach to solve the problem was first ad-
vocated by some of us in [19, 29]. The basic idea is as
follows. Since the classical approach to CGC loses its
applicability very soon after the collision, it will be su�-
cient to focus on the near-field, or small proper times ⌧ .
In that case one can utilize a systematic expansion of the
Yang-Mills equation in a power series in ⌧ [30, 36] . We
can expect to find the leading terms in such an expan-
sion analytically. The natural scale for the convergence of
such series should be given by the only time scale in the
problem, namely, 1/Q

s

. We will see that this is indeed
the case.

B. ⌧-Expansion and Recursive Solution

Let us define the power series

A(⌧, ~x?) =
1X

n=0

⌧nA(n)(~x?), (15)

Ai

?(⌧, ~x?) =
1X

n=0

⌧nAi

?(n)(~x?) , (16)

for the fields parameterizing the gauge potential in the
forward light cone. We devise equivalent power series for
the field strength tensor, covariant derivatives and the
energy-momentum tensor. We do not include any diver-
gent (1/⌧n) or logarithmic (ln ⌧) terms in ⌧ . While the
field equations themselves can have divergent solutions
they have to be discarded because of the boundary con-
ditions (13) and (14).
We can discuss this point in more detail for the abelian-

ized version of the equations. In the case of weak fields
the non-linear terms in the Yang-Mills equations are usu-
ally neglected, leading to a greatly simplified abelian ver-
sion of the boundary value problem. The analytic so-
lution in closed form can be readily found [24]. After
applying a Fourier transformation of the transverse co-
ordinate, @i ! �iki?, Eqs. (9) and (11) take the form of
Bessel equations

1

z

d2

dz2
zA+

1

z2
d

dz
zA+

1

z
zA� 1

z3
zA = 0 , (17)

z2
d2

dz2
Ai

? + z
d

dz
Ai

? + z2Ai

? = 0 , (18)

where z = k?⌧ . A physical polarization riAi

? = 0 has
been chosen for the transverse field. There are two inde-
pendent sets of solutions, Bessel functions of the first kind
A ⇠ J1(z)/z, Ai

? ⇠ J0(z) which are regular at ⌧ = 0, and
Neumann functions A ⇠ N1(z)/z, Ai

? ⇠ N0(z) which
lead to singular solutions A ⇠ z�2, Ai

? ⇠ ln ⌧ for ⌧ ! 0.
The solution with Neumann functions is not compatible
with Eq. (10) which imposes @/@⌧Ai

? = 0. The singular
solution therefore has to be excluded.

1 2
3

• As the fields in  1  and  2  are not in causal 
contact, they can be obtained independently.

Before the collision:

1 2

0

• In      we take the fields as 0.0

A

i
1 = ✓(x�)↵i

1(x?) A

i
2 = ✓(x+)↵i

2(x?)

‘After’ the collision:
• Yang-Mills equations with two sources, 
• We calculate the gauge fields at                               
•  To do so we propose the following ansatz:

A

±=±x

±
↵(⌧, x?)

A

i =↵

i(⌧, x?)

3
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2x+
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� = 0+
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+
, x?)

A±
1 = 0 A±
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Initial conditions for the field in the forward light-cone
In the entire space-time:

A

+ = ✓(x+)✓(x�)x+
↵(⌧, x?)

A

� = �✓(x+)✓(x�)x�
↵(⌧, x?)

A

i = ✓(x�)✓(�x

+)↵i
1(x?) + ✓(x+)✓(�x

�)↵i
2(x?) + ✓(x+)✓(x�)↵i(⌧, x?)

To relate our ansatz with the gluon fields of each nuclei:
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Initial conditions for the field in the forward light-cone
In the entire space-time:

A

+ = ✓(x+)✓(x�)x+
↵(⌧, x?)

A

� = �✓(x+)✓(x�)x�
↵(⌧, x?)

A

i = ✓(x�)✓(�x

+)↵i
1(x?) + ✓(x+)✓(�x

�)↵i
2(x?) + ✓(x+)✓(x�)↵i(⌧, x?)

• We impose that the Yang-Mills equations must be regular, which gives us 
the following initial conditions for the fields in the forward light-cone:

↵(⌧ = 0+, x?) =
ig

2

⇥
↵

i
1(x?),↵

i
2(x?)

⇤

@⌧↵(⌧ = 0+, x?) = 0

↵

i(⌧ = 0+, x?) = ↵

i
1(x?) + ↵

i
2(x?).

@⌧↵
i(⌧ = 0+, x?) = 0

To relate our ansatz with the gluon fields of each nuclei:
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Initial conditions for the field in the forward light-cone
In the entire space-time:

A

+ = ✓(x+)✓(x�)x+
↵(⌧, x?)

A

� = �✓(x+)✓(x�)x�
↵(⌧, x?)

A

i = ✓(x�)✓(�x

+)↵i
1(x?) + ✓(x+)✓(�x

�)↵i
2(x?) + ✓(x+)✓(x�)↵i(⌧, x?)

• We impose that the Yang-Mills equations must be regular, which gives us 
the following initial conditions for the fields in the forward light-cone:

↵(⌧ = 0+, x?) =
ig

2

⇥
↵

i
1(x?),↵

i
2(x?)

⇤

@⌧↵(⌧ = 0+, x?) = 0

↵

i(⌧ = 0+, x?) = ↵

i
1(x?) + ↵

i
2(x?).

@⌧↵
i(⌧ = 0+, x?) = 0

• We can obtain the early-time energy-momentum tensor                                   
as: 

Tµ⌫(⌧ = 0+)

Tµ⌫ =
1

4
gµ⌫F↵�,aF a

↵� � Fµ↵,aF ⌫,a
↵

=�g2

2
(�ij�kl + ✏ij✏kl)

⇣
[↵i

1,↵
j
2][↵

k
1 ,↵

l
2]
⌘
⇥diag(1, 1, 1,�1)

⌘ ✏0⇥diag(1, 1, 1,�1)

To relate our ansatz with the gluon fields of each nuclei:

Maximum pressure anisotropy in the longitudinal direction!
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hTµ⌫(x?)i
• For the 1-point correlator of        :Tµ⌫

h✏0i=�g

2(�ij�kl + ✏

ij
✏

kl)
D

Tr
n

[↵i
1,↵

j
2][↵

k
1 ,↵

l
2]
oE

=�g

2(�ij�kl + ✏

ij
✏

kl)
D

↵

i,a
1 ↵

j,b
2 ↵

k,c
1 ↵

l,d
2

E

Tr
�⇥

t

a
, t

b
⇤ ⇥

t

c
, t

d
⇤ 

=
g

2

2
(�ij�kl + ✏

ij
✏

kl)fabm
f

cdm
D

↵

i,a
1 (x?)↵

k,c
1 (x?)

E

1

D

↵
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2 (x?)

E
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hTµ⌫(x?)i
• For the 1-point correlator of        :Tµ⌫
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• We momentarily take two different transverse coordinates:

⌦
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j,b(y?)

↵
=

Z 1
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hTµ⌫(x?)i
• For the 1-point correlator of        :Tµ⌫
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Luckily, Wilson lines and color source densities factorize
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hTµ⌫(x?)i
• For the 1-point correlator of        :Tµ⌫
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Where:
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• For the 2-point correlator of        : prepare for trouble and make it doubleTµ⌫
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3 terms 
(Wick’s theorem)

4 terms
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• Technical difficulties: 
- The expansion of the correlator                                                     is far more 
difficult than that of                           . Schematically: 

Computed by application of the diagrammatic rules derived in:
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- Instead of having to calculate the adjoint Wilson line dipole, we need the much 
more complex adjoint Wilson line quadrupole

Computed by application of the techniques outlined in:
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• Technical difficulties: 
- The expansion of the correlator                                                     is far more 
difficult than that of                           . Schematically:

h↵i a(x?)↵
k c(x?)↵

i0a0
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• Technical difficulties: 

- The expansion of the correlator                                                     is far more 
difficult than that of                           . Schematically:

h↵i a(x?)↵
k c(x?)↵

i0a0
(y?)↵

k0c0(y?)i

- Instead of having to calculate the adjoint Wilson line dipole, we need the much 
more complex adjoint Wilson line quadrupole

- The color structure of this object is frustratingly complex. Even with all parts 
analytically calculated, the contraction of the color indices demands a 
computational treatment (via FeynCalc)

h↵i a(x?)↵
k c(x?)↵

i0a0
(y?)↵

k0c0(y?)i = h⇢4ihU4i+ h⇢2ih⇢2U4ic
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4. Preliminary results: Nc expansion
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First orders of the Nc expansion:      and 

 0.998

 0.999

 1

 1.001

 0  2  4  6  8  10  12

R
at

io

r [GeV-1]

Sum of the first two orders of the N-
expansion of the energy density 
covariance for N=3 in the classical MV 
model.
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expansion, which turns out to be a 
very good approximation.

• Due to the lengthy result, we will only show the first orders of the Nc expansion.
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First orders of the Nc expansion
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• Due to the lengthy result, we show the first orders of the Nc expansion.

• A remarkable aspect about our result is its highly non-trivial behavior in the limit of 
large correlation distances: a power-law decay.
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Conclusions
• We have performed an exact analytical calculation of the covariance of the 

energy momentum tensor of the Glasma at             , in the framework of the 
MV model. 

• We expect to be able to generalize this framework by introducing an 
impact parameter dependence and relaxing some of the original 
assumptions, which could potentially open the door to phenomenological 
applications. 

• The following steps are computing the time evolution of our result towards 
thermalization time, where it can serve as input for hydro QGP 
simulations.
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Conclusions
• We have performed an exact analytical calculation of the covariance of the 

energy momentum tensor of the Glasma at             , in the framework of the 
MV model. 

• We expect to be able to generalize this framework by introducing an 
impact parameter dependence and relaxing some of the original 
assumptions, which could potentially open the door to phenomenological 
applications. 

• The following steps are computing the time evolution of our result towards 
thermalization time, where it can serve as input for hydro QGP 
simulations.
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Thanks for your attention
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Back-up: Expressions of two first orders of Nc expansion
• Leading order:
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Back-up: More about the Color Glass Condensate

• Scale (in)dependence: JIMWLK equations
@W⇤

@ log⇤

= HW⇤

• Separation of ‘slow’ and ‘fast’ degrees of freedom

Fµ⌫ = @µA⌫ � @⌫Aµ � ig [Aµ, A⌫ ]

• Dynamic relation given by solution to classical Yang-Mills equations:
[Dµ, F

µ⌫,a] = J⌫,a

• Calculation of observable quantities: average over color sources
hOi =

Z
[D⇢]W⇤[⇢]O[⇢]

• McLerran-Venugopalan model:        is a Gaussian distribution

h⇢a(x�
, x?)⇢

b(y�, y?)i = µ

2(x�)�ab�2(x? � y?)�(x
� � y

�)

W⇤

22 François Gelis

The justification of this model is that, in a highly Lorentz contracted nucleus, there is
a large density of color charges at each impact parameter. The charges from di↵erent
nucleons are uncorrelated, and thus by the central limit theorem, the resulting
distribution should be approximately Gaussian for a large nucleus. The locality of
the correlations is also a consequence of the fact that charges in di↵erent nucleus
are not correlated.

z
k
-

P
-

Λ
-

0

fields sources

Fig. 11. Left: illustration of the McLerran-Venugopalan model for a large nucleus. Right: sepa-
ration in longitudinal momentum between fields and sources (here for a target moving in the �z

direction – hence the cuto↵ on the k

� component of the momentum).

3.3. Cuto↵ dependence and renormalization group evolution

The justification for treating the constituents of the target as static color sources is
Lorentz time dilation. Arguably, this is only justified if these partons have a large
enough longitudinal momentum. The partons that are too slow must be treated in
terms of the usual gauge fields (if they are gluons). Therefore, the CGC should be
viewed as an e↵ective theory with a cuto↵ ⇤+, such that

• Partons with k

+

> ⇤+ are treated as static sources, via eq. (55).
• Partons with k

+

< ⇤+ are treated as standard quantum fields.

Because these two types of degrees of freedom have well separated longitudinal mo-
menta, the interactions between them can be approximated by an eikonal coupling
J

µ

A

µ, and the action that describes the complete e↵ective theory is

S = �1

4

Z

F

µ⌫

F

µ⌫

| {z }

Yang-Mills

+

Z

J

µ

A

µ

| {z }

fast partons

. (59)

In the CGC framework, the expectation value of an observable is obtained by first
computing the observable for a fixed configuration ⇢ of the color sources of the
target, and then by averaging it with the distribution W [⇢],

hOi =
Z

[D⇢] W [⇢] O[⇢] . (60)

The cuto↵ ⇤+ that has been introduced to separate the fast and the slow partons
is arbitrary, and observable quantities should not depend on it. At leading order,

⇤

J

⌫,a = �

⌫+
⇢

a(x�
, x?)


