Collective phenomena and shell structure far from stability

Frédéric Nowacki ${ }^{1}$

NUCLEAR PHYSICS AT THE EDGE OF STABILITY

04 July 2022 - 08 July 2022 Heridmixd

Nuclear Physics at the edge of stabilityECT*, Trento, July 4-8 ${ }^{\text {th }}$-2022 ${ }^{1}$ Strasbourg-Madrid Shell-Model collaboration \square 回

Nuclear Physics at the edge of stabilityECT ${ }^{*}$, Trento, July 4-8 ${ }^{\text {th }}$-2022

- New gaps: ${ }^{24} \mathrm{O},{ }^{48} \mathrm{Ni},{ }^{54} \mathrm{Ca},{ }^{78} \mathrm{Ni},{ }^{100} \mathrm{Sn}$
- Vanishing of shell closure: ${ }^{12} \mathrm{Be},{ }^{32} \mathrm{Mg},{ }^{42} \mathrm{Si},{ }^{64} \mathrm{Cr},{ }^{80} \mathrm{Zr}$...
- Island of deformation around $\mathrm{A} \sim 32$, A ~ 64
- Low-lying dipole excitations in Ne , Ni isotopes
z - Variety of phenomena dictated by shell structure
- Close connection between collective behaviour and underlying shell structure
- Interplay between
- Monopole field (spherical mean field)
- Multipole correlations (pairing, Q.Q, ...)
"Pairing plus Quadrupole propose, Monopole disposes"
A. Zuker, Coherent and Random Hamiltonians, CRN Preprint 1994

Nuclear Physics at the edge of stabilityECT*, Trento, July 4-8 ${ }^{\text {th }}$-2022

Development of deformation at $\mathrm{N}=8,20,40,70$

${ }^{12} \mathrm{Be}$

${ }^{32} \mathrm{Mg}$

- Magic numbers are associated to enegy gaps in the spherical mean field. Therefore, to promote particles above the Fermi levels costs energy
- However some intruders configurations can overwhelm their loss of monopole energy with their huge gain in correlation energy
- Several examples of this phenomenon exist in stable magic nuclei (as in ${ }^{40} \mathrm{Ca}$ nucleus) in the form of coexisting spherical, deformed and superdeformed states in a very narrow energy range
- At the very neutron rich or very proton rich edges, the $\mathrm{T}=0$ and $\mathrm{T}=1$ channels of the effective nuclear interaction weight very differently than they do at the stability line. Therefore the effective single particle structure may suffer important changes, leading in some cases to the vanishing of established shell closures or to the appearance of new ones

Development of deformation at $N=8,20,40,70$

${ }^{114} \mathrm{Ru}$

Nuclear Physics at the edge of stabilityECT*, Trento, July 4-8 ${ }^{\text {th }}$-2022

Shell Model: Physics Goals

Collective excitations:

- Deformation, Superdeformation,

Dipole/M1 resonances

- Superfluidity
- Symmetries

Weak processes:

- β decay
- $\beta \beta$ decay
$\geqslant 1$
- define Effective Interaction
- $\mathcal{H}_{\text {eff }} \Psi_{\text {eff }}=E \Psi_{\text {eff }}$
- build and diagonalize Energy matrix

Shell evolution far from stability:

- Vanishing of shell closures
- New magic numbers

Ab Initio calculations:

- Chiral EFT realistic interactions
- 3N forces

Shell Model: Giant Computations

- exponential growth of basis dimensions:

$$
D \sim\binom{d_{\pi}}{p} \cdot\binom{d_{\nu}}{n}
$$

In pf shell :
${ }^{48} \mathrm{Cr} \quad 1,963,461$
${ }^{56} \mathrm{Ni} \quad 1,087,455,228$
In pf-sdg space :
${ }_{78} \mathrm{Ni} \quad 210,046,691,518$

- Actual limits in limits in giant diagonalizations: 0.210^{12} for ${ }^{114} \mathrm{Sn}$ core excitations
- Some of the largest diagonalizations ever are performed in Strasbourg with relatively modest computationnal ressources:
Phys. Rev. C82 (2010) 054301, ibidem 064304
- m scheme ANTOINE code
- coupled scheme NATHAN code

[^0]
Shell Model: Giant Computations

- exponential growth of basis dimensions:

$$
D \sim\binom{d_{\pi}}{p} \cdot\binom{d_{\nu}}{n}
$$

In pf shell :
${ }^{48} \mathrm{Cr} \quad 1,963,461$
${ }^{56} \mathrm{Ni} \quad 1,087,455,228$
In pf-sdg space :
${ }_{78} \mathrm{Ni} \quad 210,046,691,518$

- Actual limits in limits in giant diagonalizations: 0.210^{12} for ${ }^{114} \mathrm{Sn}$ core excitations
- Some of the largest diagonalizations ever are performed in Strasbourg with relatively modest computationnal ressources:
Phys. Rev. C82 (2010) 054301, ibidem 064304
- m scheme ANTOINE code
- coupled scheme NATHAN code

[^1]
Shell Model: Giant Computations

- exponential growth of basis dimensions:

$$
D \sim\binom{d_{\pi}}{p} \cdot\binom{d_{\nu}}{n}
$$

In $p f$ shell :
${ }^{48} \mathrm{Cr} \quad 1,963,461$
${ }^{56} \mathrm{Ni} \quad 1,087,455,228$
In pf-sdg space :
${ }_{78} \mathrm{Ni} \quad 210,046,691,518$

- Actual limits in limits in giant diagonalizations: 0.210^{12} for ${ }^{114} \mathrm{Sn}$ core excitations
- Some of the largest diagonalizations ever are performed in Strasbourg with relatively modest computationnal ressources:
Phys. Rev. C82 (2010) 054301, ibidem 064304
- m scheme ANTOINE code
- coupled scheme NATHAN code

[^2]Shell Model: Giant Computations

- exponential growth of basis dimensions:

$$
D \sim\binom{d_{\pi}}{p} \cdot\binom{d_{\nu}}{n}
$$

In $p f$ shell :

$$
\begin{array}{cl}
{ }^{48} \mathrm{Cr} & 1,963,461 \\
{ }^{56} \mathrm{Ni} & 1,087,455,228 \\
\text { In pf-sdg space : } \\
{ }^{78} \mathrm{Ni} & 210,046,691,518
\end{array}
$$

- Actual limits in limits in giant diagonalizations: 0.210^{12} for ${ }^{114} \mathrm{Sn}$ core excitations
- Some of the largest diagonalizations ever are performed in Strasbourg with relatively modest computationnal ressources:
Phys. Rev. C82 (2010) 054301, ibidem 064304
- m scheme ANTOINE code
- coupled scheme NATHAN code

Shell Model: Giant Computations

Nuclear structure within a discrete nonorthogonal shell model approach: New frontiers
D. D. Dao and F. Nowacki

Université de Strasbourg, CNRS, IPHC UMR7178, 23 rue du Loess, F-67000 Strasbourg, France
(a) (Received 8 March 2022; accepted 6 May 2022; published 23 May 2022)

First "SM" calculations for superheavies !!!

The nuclear interaction: the simple view

J. Miro, art

A. Zuker, physics

Separation of the effective Hamiltonian

Monopole and multipole

From the work of M. Dufour and A. Zuker (PRC 541996 1641) Separation theorem:

Any effective interaction can be split in two parts:

$$
H=H_{\text {monopole }}+H_{\text {multipole }}
$$

$H_{\text {monopole }}$: spherical mean-field
-responsible for the global saturation properties and for the evolution of the spherical single particle levels.
$H_{\text {multipole }}$: correlator
pairing, quadrupole, octupole...
Important property:

$$
\left.\langle C S \pm 1| H|C S \pm 1\rangle=\underset{\text { Nuclear Physics at the edge of stabilityECT*, Tre }}{\langle C S} 1\left|H_{\text {monopole }}\right| C S \pm 1\right\rangle
$$

$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (all the realistic interactions give similar values) and scale simply with the mass number

	$\mathrm{pp}(\mathrm{JT})$				$\operatorname{ph}(\lambda \tau)$			
	10	01	21	20	40	10	11	
KB	-5.83	-4.96	-3.21	-3.53	-1.38	+1.61	+3.00	
USD-A	-5.62	-5.50	-3.17	-3.24	-1.60	+1.56	+2.99	
CCEI	-6.79	-4.68	-2.93	-3.40	-1.39	+1.21	+2.83	
NN+NNN-MBPT	-6.40	-4.36	-2.91	-3.28	-1.23	+1.10	+2.43	
NN-MBPT	-6.06	-4.38	-2.92	-3.35	-1.31	+1.03	+2.49	

$H_{\text {multipole }}$ can be written in two representations, particle-particle and $p \varepsilon$. Pairing regime: spherical nuclei When ground state $=$ pairs of like-particles coupled at $\mathrm{J}=0$ (seniority $\mathrm{v}=0$) cohere $\quad 2^{+}$state (break of pair; $v=2$) at high energy

- $L=$
- Ell
- $\vec{\sigma} \bar{\tau}$
- Oc
superfluid nucleus:

Besid

 similar Typical example: Tin isotopes

- Quadrupole regime: deformed nuclei

KB prolate nucleus:

Typical example: open shell $\mathrm{N}=\mathrm{Z}$ nuclei

$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (all the realistic interactions give similar values) and scale simply with the mass number

	$\mathrm{pp}(\mathrm{JT})$			$\mathrm{ph}(\lambda \tau)$			
	10	01	21	20	40	10	11
KB	-5.83	-4.96	-3.21	-3.53	-1.38	+1.61	+3.00
USD-A	-5.62	-5.50	-3.17	-3.24	-1.60	+1.56	+2.99
CCEI	-6.79	-4.68	-2.93	-3.40	-1.39	+1.21	+2.83
NN+NNN-MBPT	-6.40	-4.36	-2.91	-3.28	-1.23	+1.10	+2.43
NN-MBPT	-6.06	-4.38	-2.92	-3.35	-1.31	+1.03	+2.49

$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (all the realistic interactions give similar values) and scale simply with the mass number

		$\mathrm{pp}(\mathrm{JT})$			$\mathrm{ph}(\lambda \tau)$			
	10	01	21	20	40	10	11	
KB	-5.83	-4.96	3.21	-3.53	-1.38	+1.61	+3.00	
USD-A	-5.62	-5.50	3.17	-3.24	-1.60	+1.56	+2.99	
CCEI	-6.79	-4.68	2.93	-3.40	-1.39	+1.21	+2.83	
NN+NNN-MBPT	-6.40	-4.36	2.91	-3.28	-1.23	+1.10	+2.43	
NN-MBPT	-6.06	-4.38	2.92	-3.35	-1.31	+1.03	+2.49	

$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (all the realistic interactions give similar values) and scale simply with the mass number

	pp(JT)				$\mathrm{ph}(\lambda \tau)$		
	10	01	21	20	40	10	11
KB	-5.83	-4.96	-3.21	-3.53	-1.38	+1.61	+3.00
USD-A	-5.62	-5.50	-3.17	-3.24	-1.60	+1.56	+2.99
CCEI	-6.79	-4.68	-2.93	-3.40	-1.39	+1.21	+2.83
NN+NNN-MBPT	-6.40	-4.36	-2.9	-3.28	-1.23	+1.10	+2.43
NN-MBPT	-6.06	-4.38	-2.92	-3.35	-1.31	+1.03	+2.49

$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (even from modern abinitio derivations, all the realistic interactions give similar values) and scale simply with the mass number

particle-particle		Interaction	particle-hole		
$J T=01$	$J T=10$		$\lambda \tau=20$	$\lambda \tau=40$	$\lambda \tau=11$
-5.42	-5.43	KLS	-2.90	-1.61	+2.38
-5.48	-6.24	BONNB	-2.82	-1.39	+3.64
-5.69	-5.90	USD	-3.18	-1.60	+3.08
-4.75	-4.46	KB3	-2.79	-1.39	+2.46
-5.06	-5.08	FPD6	-3.11	-1.67	+3.17
-4.07	-5.74	GOGNY	-3.23	-1.77	+2.46

$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (even from modern abinitio derivations, all the realistic interactions give similar values) and scale simply with the mass number

particle-particle	Interaction	particle-hole			
$J T=01$	$J T=10$		$\lambda \tau=20$	$\lambda \tau=40$	$\lambda \tau=11$
-5.42	-5.43	KLS	-2.90	-1.61	+2.38
-5.48	-6.24	BONNB	-2.82	-1.39	+3.64
-5.69	-5.90	USD	-3.18	-1.60	+3.08
-4.75	-4.46	KB3	-2.79	-1.39	+2.46
-5.06	-5.08	FPD6	-3.11	-1.67	+3.17
-4.07	-5.74	GOGNY	-3.23	-1.77	+2.46

$H_{\text {multipole }}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- $L=0$ isovector and isoscalar pairing
- Elliott's quadrupole
- $\vec{\sigma} \vec{\tau} \cdot \vec{\sigma} \vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (even from modern abinitio derivations, all the realistic interactions give similar values) and scale simply with the mass number

particle-particle		Interaction	particle-hole		
$J T=01$	$J T=10$		$\lambda \tau=20$	$\lambda \tau=40$	$\lambda \tau=11$
-5.42	-5.43	KLS	-2.90	-1.61	+2.38
-5.48	-6.24	BONNB	-2.82	-1.39	+3.64
-5.69	-5.90	USD	-3.18	-1.60	+3.08
-4.75	-4.46	KB3	-2.79	-1.39	+2.46
-5.06	-5.08	FPD6	-3.11	-1.67	+3.17
-4.07	-5.74	GOGNY	-3.23	-1.77	+2.46

Nuclear Physics at the edge of stabilityECT*, Trento, July 4-8 ${ }^{\text {th }}$-2022

In the valence space of two major shells

EFFECTIVE INTERACTION: SDPF-U-MIX (update 2020)

- At the neutron drip line, the ESPE's of ${ }^{28} \mathrm{O}$ are completely at variance with those of ${ }^{40} \mathrm{Ca}$ at the stability valley. The change from the standard ESPE's of ${ }^{16} \mathrm{O}$ to the anomalous ones in ${ }^{28} \mathrm{O}$ is totally due to the interactions of $s d$ shell neutrons among themselves
- Notice that the sd shell orbits remain always below th pf shell with the $\nu 0 f_{\frac{7}{2}}$ and $\nu 0 p_{\frac{3}{2}}$ orbitals DO get inverted
- The monopole part of the neutron-proton interaction restores the $\mathrm{N}=20$ shell gap when the valley of stability is approached
- Spin-Tensor decomposition shows it is mainly a Central and Tensor effect

- At the neutron drip line, the ESPE's of ${ }^{28} \mathrm{O}$ are completely at variance with those of ${ }^{40} \mathrm{Ca}$ at the stability valley. The change from the standard ESPE's of ${ }^{16} \mathrm{O}$ to the anomalous ones in ${ }^{28} \mathrm{O}$ is totally due to the interactions of $s d$ shell neutrons among themselves
- Notice that the sd shell orbits remain always below th pf shell with the $\nu 0 f_{\frac{7}{2}}$ and $\nu 0 p_{\frac{3}{2}}$ orbitals DO get inverted
- The monopole part of the neutron-proton interaction restores the $\mathrm{N}=20$ shell gap when the valley of stability is approached
- Spin-Tensor decomposition shows it is mainly a Central and Tensor effect

- Let us consider the configurations with closed $\mathrm{N}=20$ $[s d]^{12, Z}$ (normal filling) and the ones with two neutrons blocked in the pf shell $[s d]^{10, Z}[p f]^{2,0}$ (intruder)
- And calculate the energy of the ground states at fixed configuration, with and without correlations

Correlations energies: normal vs $2 p-2 h$ intruder

Nuclear Physics at the edge of stabilityECT*, Trento, July 4-8 ${ }^{\text {th }}$-2022

Gaps: normal vs 2p-2h intruder

Nuclear Physics at the edge of stabilityECT*, Trento, July 4-8 ${ }^{\text {th }}-2022$

- it is evident that the occurence of the "island of inversion" depends on subtle cancellations between monopole losses and correlations gains by the intruder states
- Notice that the correlations energies can be huge. For instance, in ${ }^{32} \mathrm{Mg}$, the correlation energy of the lowest 0^{+} state in the $0 p-0 h, 2 p-2 h$ and $4 p-4 h$ configurations is respectively, 1.5 MeV (spherical), 12.5 MeV (deformed) and 21 MeV !!! (superdeformed)

Spherical, Deformed and Superdeformed states in ${ }^{32} \mathrm{Mg}$

- Four protons away from doubly magic ${ }^{40} \mathrm{Ca},{ }^{34} \mathrm{Si}$ is a new doubly magic nucleus because the normal filling configuration dominates the ground state with the deformed $2 \mathrm{p}-2 \mathrm{~h}$ being the first excited state at 2.7 MeV . The first excited 2^{+}at 3.33 MeV is also of $2 \mathrm{p}-2 \mathrm{~h}$ nature
- To go even more neutron rich, one needs to remove protons from the $0 d_{\frac{5}{2}}$ orbit
- This causes a small reduction of the $\mathrm{N}=20$ neutron gap, and an increase of the correlation energy of the intruder which is enough to make it the ground state
- In this way we suddenly land in the Island of Inversion in which Deformed Intruder states become ground states, as in ${ }^{32} \mathrm{Mg},{ }^{31} \mathrm{Na}$ and ${ }^{30} \mathrm{Ne}$

Inverse shape coexistence Shell closure in ${ }^{32 \mathrm{Mg}}$

- ${ }^{30} \mathrm{Mg}$
- $0_{g s}^{+} 0 p-0 h 77 \%$... 2p-2h (ND) 22\%
- $0_{\text {ex }}^{+} 0 p-0 h 18 \%$... 2p-2h (ND) 77\%
- ${ }^{32} \mathrm{Mg}$
- $0_{g s}^{+} 0 p-0 h 12 \% \ldots 2 p-2 h(N D) 56 \% ~ . . .4 p-4 h(S D) 31 \%$
- $0_{e x}^{+} 0 p-0 h 42 \% \ldots 2 p-2 h(N D) 08 \% \ldots 4 p-4 h(S D) 50 \%$
- ${ }^{34} \mathrm{Mg}$
- $0_{g s}^{+} 0 p-0 h 89 \%$... 2p-2h (ND) 11%
- $0_{\text {ex }}^{+} 0 p-0 h$ 06\% ... $2 p-2 h(N D) 87 \%$

Silicium and Magnesium chains

A

- At the neutron drip line, the ESPE's of ${ }^{28} \mathrm{O}$ are completely at variance with those of ${ }^{40} \mathrm{Ca}$ at the stability valley. The change from the standard ESPE's of ${ }^{16} \mathrm{O}$ to the anomalous ones in ${ }^{28} \mathrm{O}$ is totally due to the interactions of $s d$ shell neutrons among themselves
- Notice that the sd shell orbits remain always below th pf shell with the $\nu 0 f_{\frac{7}{2}}$ and $\nu 0 p_{\frac{3}{2}}$ orbitals DO get inverted
- The monopole part of the neutron-proton interaction restores the $\mathrm{N}=20$ shell gap when the valley of stability is approached
- Shell Evolution favors natural geometry for low-lying M1 excitations

$$
\begin{aligned}
& \nu 1 s_{\frac{1}{2}} \\
& \nu 0 d_{\frac{3}{2}}
\end{aligned} \otimes \begin{aligned}
& \nu 1 p_{\frac{3}{2}} \\
& \nu 1 p_{\frac{1}{2}}
\end{aligned}
$$

Further away from Stability

- At the neutron drip line, the ESPE's of ${ }^{28} \mathrm{O}$ are completely at variance with those of ${ }^{40} \mathrm{Ca}$ at the stability valley. The change from the standard ESPE's of ${ }^{16} \mathrm{O}$ to the anomalous ones in ${ }^{28} \mathrm{O}$ is totally due to the interactions of $s d$ shell neutrons among themselves
- Notice that the sd shell orbits remain always below th pf shell with the $\nu 0 f_{\frac{7}{2}}$ and $\nu 0 p_{\frac{3}{2}}$ orbitals DO get inverted
- The monopole part of the neutron-proton interaction restores the $\mathrm{N}=20$ shell gap when the valley of stability is approached
- Shell Evolution favors natural geometry for low-lying M1 excitations

$$
\begin{aligned}
& \nu 1 s_{\frac{1}{2}} \\
& \nu 0 d_{\frac{3}{2}}
\end{aligned} \otimes \begin{aligned}
& \nu 1 p_{\frac{3}{2}} \\
& \nu 1 p_{\frac{1}{2}}
\end{aligned}
$$

- Neons isotopes behave like magnesium isotopes
- SM in psdpf model space
- full sd diagonalization + full $1 \hbar \omega$ excitations
- Exact removal of COM components

Nuclear Physics at the edge of stabilityECT*, Trento, July 4-8 ${ }^{\text {th }}$-2022

- SM in psdpf model space
- full sd diagonalization + full $1 \hbar \omega$ excitations
- Exact removal of COM components

- SM in psdpf model space
- full sd diagonalization + full $1 \hbar \omega$ excitations
- Exact removal of COM components

Nuclear Physics at the edge of stabilityECT*, Trento, July 4-8 ${ }^{\text {th }}$-2022

- SM in psdpf model space
- full sd diagonalization + full $1 \hbar \omega$ excitations
- Exact removal of COM components

Nuclear Physics at the edge of stabilityECT*, Trento, July 4-8 ${ }^{\text {th }}$-2022

J. Gibelin et al., Phys. Rev. Lett. 101 (2008) 212503

Complex wave function
Major contribution from $\nu s_{1 / 2}^{-1} p_{3 / 2}^{1}, \nu s_{1 / 2}^{-1} p_{1 / 2}^{1}$ in agreement with QRPA results M. Martini, S. Péru, and M. Dupuis, Phys. Rev. C 83, 034309 (2011)

- SM in psdpf model space
- full sd diagonalization + full $1 \hbar \omega$ excitations
- Exact removal of COM components

Nuclear Physics at the edge of stabilityECT*, Trento, July 4-8 ${ }^{\text {th }}$-2022

- SM in sd-pf model space
- t=4 sd-pf diagonalization for GS + 1p1h
- COM spuriosity $\sim 1 \%$

Nuclear Physics at the edge of stabilityECT*, Trento, July 4-8 ${ }^{\text {th }}$-2022

- SM in sd-pf model space
- t=4 sd-pf diagonalization for GS + 1p1h
- COM spuriosity $\sim 1 \%$

Nuclear Physics at the edge of stabilityECT*, Trento, July 4-8 ${ }^{\text {th }}$-2022

- The low lying strength moves up in energy in the island of inversion

nn interaction: Oxygen masses

Nuclear Physics at the edge of stabilityECT*, Trento, July 4-8 ${ }^{\text {th }}$-2022

nn interaction: Oxygen masses

Nuclear Physics at the edge of stabilityECT*, Trento, July 4-8 ${ }^{\text {th }}$-2022

nn interaction: Oxygen masses

Nuclear Physics at the edge of stabilityECT*, Trento, July 4-8 ${ }^{\text {th }}$-2022

nn interaction: Oxygen masses

Microscopic sd-shell interactions from NCSM
N. Smirnova, B. R. Barrett et al.

RESANET GT3 meeting, Saclay 13/11/2018

At the drip line

rapid communications 0

PHYSICAL REVIEW C 85, $011302(\mathrm{R})$ (2012)

Low-lying neutron fp-shell intruder states in ${ }^{27} \mathrm{Ne}$

S. M. Brown, ${ }^{1}$ W. N. Catford, ${ }^{1}$ J. S. Thomas, ${ }^{1}$ B. Fernández-Domínguez, ${ }^{2,3}$ N. A. Orr, ${ }^{2}$ M. Labiche, ${ }^{4}$ M. Rejmund, ${ }^{5}$ N. L. Achouri, ${ }^{2}$ H. Al Falou, ${ }^{2}$ N. I. Ashwood, ${ }^{6}$ D. Beaumel, ${ }^{7}{ }^{7}$ Y. Blumenfeld, ${ }^{7}$ B. A. Brown, ${ }^{8}$ R. Chapman, ${ }^{9}$ M. Chartier, ${ }^{3}$ N. Curtis, ${ }^{6}$ G. de France, ${ }^{5}$ N. de Sereville, ${ }^{7}$ F. Delaunay, ${ }^{2}$ A. Drouart, ${ }^{10}$ C. Force,, 5 S. Franchoo, ${ }^{7}$ J. Guillot, ${ }^{7}$ P. Haigh, ${ }^{6}$ F. Hammache, ${ }^{7}$ V. Lapoux, ${ }^{10}$ R. C. Lemmon,,${ }^{4}$ A. Leprince, ${ }^{2}$ F. Maréchal, ${ }^{7}$ X. Mougeot ${ }^{10}$ B. Mouginot, ${ }^{7}$ L. Nalpas, ${ }^{10}$ A. Navin, ${ }^{5}$ N. P. Patterson, ${ }^{1}$ B. Pietras, ${ }^{3}$ E. C. Pollacco, ${ }^{10}$ A. Ramus, ${ }^{7}$ J. A. Scarpaci, ${ }^{7}$ I. Stefan, ${ }^{7}$ and G. L. Wilson ${ }^{1}$

LOW-LYING NEUTRON $f p$-SHELL INTRUDER STATES . .

TABLE I. Comparison between experimental and calculated (see
text) excitation energies and spectroscopic factors for states in ${ }^{27} \mathrm{Ne}$. Experimental excitation energies are from [10] except for the 1.74Experimental excitation energies are from [10] except for the 1.74-
MeV state (present work). For $C^{2} S$, the errors include uncertainties from the reaction model.

J^{π}	$E_{\text {exp }}^{*}$	$E_{W B P-M}^{*}$		$C^{2} S$		
	(MeV)	(MeV)	Ref. [10]	Present	WBP-M	
$3 / 2^{+}$	0	0	$0.2(2)$	$0.42(22)$	0.63	
$3 / 2^{-}$	0.765	0.809	$0.6(2)$	$0.64(33)$	0.67	
$1 / 2^{+}$	0.885	0.869	$0.3(1)$	$0.17(14)$	0.17	
$7 / 2^{-}$	1.74	1.686	-	$0.35(10)$	0.40	

At the neutron drip line, the ESPE's of ${ }^{28} \mathrm{O}$ are completely at variance with those of ${ }^{40} \mathrm{Ca}$ at the stability valley. The change from the standard ESPE's of ${ }^{16} \mathrm{O}$ to the anomalous ones in ${ }^{28} \mathrm{O}$ is totally due to the interactions of $s d$ shell neutrons among themselves

- Notice that the sd shell orbits remain always below th pf shell with the $\nu 0 f_{\frac{7}{2}}$ and $\nu 0 p_{\frac{3}{2}}$ orbitals DO get inverted
- The monopole part of the neutron-proton interaction restores the $\mathrm{N}=20$ shell gap when the valley of stability is approached
- Evidence for shell inversion towards ${ }^{28} \mathrm{O}$

Nowacki/Poves 2014

- At the neutron drip line, the ESPE's of ${ }^{28} \mathrm{O}$ are completely at variance with those of ${ }^{40} \mathrm{Ca}$ at the stability valley. The change from the standard ESPE's of ${ }^{16} \mathrm{O}$ to the anomalous ones in ${ }^{28} \mathrm{O}$ is totally due to the interactions of sd shell neutrons among themselves
- Notice that the sd shell orbits remain always below th pf shell with the $\nu 0 f_{\frac{7}{2}}$ and $\nu 0 p_{\frac{3}{2}}$ orbitals DO get inverted
- The monopole part of the neutron-proton interaction restores the $\mathrm{N}=20$ shell gap when the valley of stability is approached
- "ill" behaviour mainly due to ${ }^{38} \mathrm{P}$ separation energy

Extending the Southern Shore of the Island of Inversion to ${ }^{28} \mathrm{~F}$
A. Revel, ${ }^{1,2}$ O. Sorlin, ${ }^{1}$ F. M. Marquése, ${ }^{2}$ Y. Kondo, ${ }^{3}$ J. Kahlbow, ${ }^{4,5}$ T. Nakamura, ${ }^{3}$ N. A. Orr, ${ }^{2}$ F. Nowacki, ${ }^{6,7}$

- At the neutron drip line, the ESPE's of ${ }^{28} \mathrm{O}$ are completely at variance with those of ${ }^{40} \mathrm{Ca}$ at the stability valley.
- Notice that the $s d$ shell orbits remain always below th pf shell with the $\nu 0 f_{\frac{7}{2}}$ and $\nu 0 p_{\frac{3}{2}}$ orbitals DO get inverted
- Recent evidence for intruder states in ${ }^{28} \mathrm{~F}$ low-lying spectrum
- In addition, extraction of 80% of "l=1" content in the GS

Continuum-coupling correction to binding

Nowacki/Poves 2020

- At the neutron drip line, the ESPE's of ${ }^{28} \mathrm{O}$ are completely at variance with those of ${ }^{40} \mathrm{Ca}$ at the stability valley. The change from the standard ESPE's of ${ }^{16} \mathrm{O}$ to the anomalous ones in ${ }^{28} \mathrm{O}$ is totally due to the interactions of $s d$ shell neutrons among themselves
- Notice that the sd shell orbits remain always below th pf shell with the $\nu 0 f_{\frac{7}{2}}$ and $\nu 0 p_{\frac{3}{2}}$ orbitals DO get inverted
- The monopole part of the neutron-proton interaction restores the $\mathrm{N}=20$ shell gap when the valley of stability is approached
- New ${ }^{30}$ F data from

NeuLAND-SAMOURAI collaboration (J. Kahlbow phD work)

- ${ }^{38} \mathrm{P}$ separation energy $+p_{3 / 2}-f_{7 / 2}$ splitting matches Fluorine chain S_{n} trend

Nowacki/Poves 2020

- At the neutron drip line, the ESPE's of ${ }^{28} \mathrm{O}$ are completely at variance with those of ${ }^{40} \mathrm{Ca}$ at the stability valley. The change from the standard ESPE's of ${ }^{16} \mathrm{O}$ to the anomalous ones in ${ }^{28} \mathrm{O}$ is totally due to the interactions of $s d$ shell neutrons among themselves
- Notice that the sd shell orbits remain always below th pf shell with the $\nu 0 f_{\frac{7}{2}}$ and $\nu 0 p_{\frac{3}{2}}$ orbitals DO get inverted
- The monopole part of the neutron-proton interaction restores the $\mathrm{N}=20$ shell gap when the valley of stability is approached
- New ${ }^{30}$ F data from

NeuLAND-SAMOURAI collaboration (J. Kahlbow phD work)

- ${ }^{38} \mathrm{P}$ separation energy $+p_{3 / 2}-f_{7 / 2}$ splitting matches Fluorine chain S_{n} trend

Nowacki/Poves 2020

- At the neutron drip line, the ESPE's of ${ }^{28} \mathrm{O}$ are completely at variance with those of ${ }^{40} \mathrm{Ca}$ at the stability valley. The change from the standard ESPE's of ${ }^{16} \mathrm{O}$ to the anomalous ones in ${ }^{28} \mathrm{O}$ is totally due to the interactions of $s d$ shell neutrons among themselves
- Notice that the sd shell orbits remain always below th pf shell with the $\nu 0 f_{\frac{7}{2}}$ and $\nu 0 p_{\frac{3}{2}}$ orbitals DO get inverted
- The monopole part of the neutron-proton interaction restores the $\mathrm{N}=20$ shell gap when the valley of stability is approached
- New ${ }^{30}$ F data from

NeuLAND-SAMOURAI collaboration (J. Kahlbow phD work)

- ${ }^{38} \mathrm{P}$ separation energy $+p_{3 / 2}-f_{7 / 2}$ splitting matches Fluorine chain S_{n} trend

Core excitations effects

- At the neutron drip line, the ESPE's of ${ }^{28} \mathrm{O}$ are completely at variance with those of ${ }^{40} \mathrm{Ca}$ at the stability valley. The change from the standard ESPE's of ${ }^{16} \mathrm{O}$ to the anomalous ones in ${ }^{28} \mathrm{O}$ is totally due to the interactions of $s d$ shell neutrons among themselves
- Notice that the sd shell orbits remain always below th pf shell with the $\nu 0 f_{\frac{7}{2}}$ and $\nu 0 p_{\frac{3}{2}}$ orbitals DO get inverted
- The monopole part of the neutron-proton interaction restores the $\mathrm{N}=20$ shell gap when the valley of stability is approached
- ${ }^{38} \mathrm{P}$ separation energy $+p_{3 / 2^{-}} f_{7 / 2}$ splitting matches Fluorine chain S_{n} trend

Core excitations effects

- At the neutron drip line, the ESPE's of ${ }^{28} \mathrm{O}$ are completely at variance with those of ${ }^{40} \mathrm{Ca}$ at the stability valley. The change from the standard ESPE's of ${ }^{16} \mathrm{O}$ to the anomalous ones in ${ }^{28} \mathrm{O}$ is totally due to the interactions of sd shell neutrons among themselves
- Notice that the sd shell orbits remain always below th pf shell with the $\nu 0 f_{\frac{7}{2}}$ and $\nu 0 p_{\frac{3}{2}}$ orbitals DO get inverted
- The monopole part of the neutron-proton interaction restores the $\mathrm{N}=20$ shell gap when the valley of stability is approached
- ${ }^{38} \mathrm{P}$ separation energy $+p_{3 / 2}-f_{7 / 2}$ splitting matches Fluorine chain S_{n} trend

Pairing effects

- Stronger pairing correlations closer to $\mathrm{Z}=8$ shell closure
- $\operatorname{In}{ }^{28} \mathrm{O}$, GS is dominated by $97 \% v=0$ components and more than 50\% sd-pf n-n excitations. This pair scattering regime also appears in real continuum coupling (see Witek's talk and K. Fossez et al. PRC 96, 024308 (2017)
- In ${ }^{29} \mathrm{~F}$, GS is dominated by $70 \% v=0$ components and more than 60% sd-pf $n-n$ excitations

Pairing effects

- Stronger pairing correlations closer to $\mathrm{Z}=8$ shell closure
- $\operatorname{In}{ }^{28} \mathrm{O}$, GS is dominated by $97 \% v=0$ components and more than 50\% sd-pf n-n excitations. This pair scattering regime also appears in real continuum coupling (see Witek's talk and K. Fossez et al. PRC 96, 024308 (2017)
- In ${ }^{29} \mathrm{~F}$, GS is dominated by $70 \% v=0$ components and more than 60% sd-pf $n-n$ excitations

Occupancies effects

- Stronger pairing correlations closer to $\mathrm{Z}=8$ shell closure
- In ${ }^{28} \mathrm{O}$, GS is dominated by $97 \% v=0$ components and more than 50\% sd-pf n-n excitations. This pair scattering regime also appears in real continuum coupling (see Witek's talk and K. Fossez et al. PRC 96, 024308 (2017)
- In ${ }^{29} \mathrm{~F}$, GS is dominated by $70 \% v=0$ components and more than 60% sd-pf $n-n$ excitations
- Monopole drift develops in all regions but the Interplay between correlations (pairing + quadrupole) and spherical mean-field (monopole field) determines the physics. It can vary from :
- island of deformation at $\mathrm{N}=20$ and $\mathrm{N}=40$
- deformation at $Z=14, N=28$ for ${ }^{42} \mathrm{Si}$ and shell weakening at $\mathrm{Z}=28, \mathrm{~N}=50$ for ${ }^{78} \mathrm{Ni}$
- The "islands of inversion" appear due to the effect of the correlations, hence they could also be called "islands of enhanced collectivity". As quadrupole correlations are dominant in this region, most of thei inhabitants are deformed rotors. Shape transitions and coexistence show up everywhere
- Quadrupole energies can be huge and understood in terms of symmetries
- even at the drip in fluorine isotopes, bound approximation holds
- strong superfluid regime with pair scattering from sd to pf shells
- odd-even Sn energies staggering does not seem to originate from continuum coupling
Special thanks to:
- A. Poves, S. Lenzi, K. Sieja
- O. Sorlin, A. Obertelli

[^0]: E. Caurier et al., Rev. Mod. Phys. 77 (2005) 427; ANTOINE website

[^1]: E. Caurier et al., Rev. Mod. Phys. 77 (2005) 427; ANTOINE website

[^2]: E. Caurier et al., Rev. Mod. Phys. 77 (2005) 427;

 ANTOINE website

