A four-neutron system probed via alpha knockout from ⁸He

TECHNISCHE UNIVERSITÄT DARMSTADT

Meytal Duer July 7th, ECT* Trento, Italy

"Observation of a correlated free four-neutron system" MD et al., Nature 606, 678 (June 2022)

A 60-year quest

XX century:

- fission of uranium e.g. Schiffer & Vandenbosch, Phys. Lett. 5 (1963)
- transfer reactions e.g. Cerny et al., Phys. Lett. 53B (1974)
- double-charge-exchange ⁴He(π⁻,π⁺) reaction
 e.g. Ungar et al., Phys. Lett. B 144 (1984)

A 60-year quest

XX century:

- fission of uranium e.g. Schiffer & Vandenbosch, Phys. Lett. 5 (1963)
- transfer reactions e.g. Cerny et al., Phys. Lett. 53B (1974)
- double-charge-exchange ⁴He(π⁻,π⁺) reaction
 e.g. Ungar et al., Phys. Lett. B 144 (1984)

XXI century:

- radioactive-ion beams
 - > 3 positive signals:
 - ★ GANIL 2002, RIKEN 2016, Munich 2022

Indications for a tetra-neutron

GANIL 2002

Breakup on a C target: ${}^{14}\text{Be} \rightarrow {}^{10}\text{Be} + {}^{4}\text{n}$

6 candidates: bound ⁴n or

low-energy resonance ($E_r < 2 \text{ MeV}$)

RIKEN 2016

Double-charge-exchange: ⁸He(⁴He,⁸Be)

4 candidates for ⁴n resonance: E_r=0.8±1.4 MeV, Γ<2.6 MeV

4.9σ significance

Munich 2022

~10 candidates for bound ⁴n: BE=0.42±0.16 MeV

3σ significance

Marqués et al., PRC 65 (2002) Marqués et al., arXiv:nucl-ex/0504009 (2005)

 2σ significance

Indications for a tetra-neutron

GANIL 2002

Breakup on a C target: ${}^{14}\text{Be} \rightarrow {}^{10}\text{Be} + {}^{4}\text{n}$

RIKEN 2016

Double-charge-exchange: ⁸He(⁴He,⁸Be)

6 candidates: bound 4^{n} or low-energy resonance (Er<2 MeV)

 2σ significance

Marqués et al., PRC 65 (2002) Marqués et al., arXiv:nucl-ex/0504009 (2005) 4 candidates for ⁴n resonance: $E_r=0.8\pm1.4$ MeV, Γ <2.6 MeV

 4.9σ significance

Kisamori et al., PRL 116 (2016)

Munich 2022

~10 candidates for bound ⁴n: BE=0.42±0.16 MeV

 3σ significance

5

Indications for a tetra-neutron

GANIL 2002

Breakup on a C target: ${}^{14}\text{Be} \rightarrow {}^{10}\text{Be} + {}^{4}\text{n}$

RIKEN 2016

Double-charge-exchange: ⁸He(⁴He,⁸Be)

6 candidates: bound 4^{n} or low-energy resonance (Er<2 MeV)

 2σ significance

Marqués et al., PRC 65 (2002) Marqués et al., arXiv:nucl-ex/0504009 (2005) 4 candidates for ⁴n resonance: $E_r=0.8\pm1.4$ MeV, Γ <2.6 MeV

 4.9σ significance

Munich 2022

~10 candidates for bound ⁴n: BE=0.42±0.16 MeV

 3σ significance

Method: ⁸He(p,p⁴He) quasi-elastic knockout

- High-energy 156 MeV/nucleon
- 4n energy spectrum via missing mass: precise measurement of charged particles

Method: ⁸He(p,p⁴He) quasi-elastic knockout

- High-energy 156 MeV/nucleon
- 4n energy spectrum via missing mass: precise measurement of charged particles
- ⁸He is a good starting point:
 - > most n-rich bound isotope
 - \succ pronounced α -core structure
 - > large overlap <⁸He|α⊗4n>

Method: ⁸He(p,p⁴He) quasi-elastic knockout

- High-energy 156 MeV/nucleon
- 4n energy spectrum via missing mass: precise measurement of charged particles
- ⁸He is a good starting point:
 - most n-rich bound isotope
 - > pronounced α-core structure
 - > large overlap <⁸He|α⊗4n>

"sudden removal of an α -particle from ⁸He"

- Five-body (⁴He+4n) COSMA model:
 - initial structure (⁸He)
 - reaction mechanism
 - + final-state interaction (FSI) overlap probability ~30%

Zhukov et al., PRC (1994); Grigorenko et al., EPJA (2004)

10

Method: ⁸He(p,p⁴He) quasi-elastic knockout

- High-energy 156 MeV/nucleon
- 4n energy spectrum via missing mass: precise measurement of charged particles
- Large momentum transfer
 - "recoil-less" production
- p- α elastic scattering known

V. Comparat et al., PRC (1975)

RIKEN: ¹⁸O campaign at SAMURAI

RIKEN: ¹⁸O campaign at SAMURAI

A dedicated silicon tracker

 μm thick strips

A dedicated silicon tracker

Sumuru

S

17

ا ب ک

Benchmark measurement

⁶He(p,p⁴He) quasi-elastic knockout

- Two-neutron relative-energy spectrum is expected to be well described by thoery
- Di-neutron is known to be unbound by ~100 keV

Theoretical input:

- w/o FSI: three-body (⁴He+2n) cluster model for ground-state wavefunction
- > w/ FSI: + nn final-state interaction
- M. Göbel et al., "Neutron-neutron scattering length from the ${}^{6}He(p,p\alpha)nn$ reaction", PRC 104 (2021)

 $a_{nn}^{(+)} = -16.7 \text{ fm}, \quad a_{nn}^{(0)} = -18.7 \text{ fm}, \quad a_{nn}^{(-)} = -20.7 \text{ fm}.$

M. Göbel et al., "Neutron-neutron scattering length from the ⁶He(p, $p\alpha$)nn reaction", PRC 104 (2021)

experimental data

dashed: $d + \pi^- \rightarrow \gamma + n + n$ solid: $d + n \rightarrow p + n + n$ dotted: $d + d \rightarrow {}^{2}\text{He} + n + n$

M. Göbel et al., "Neutron-neutron scattering length from the ⁶He(p, $p\alpha$)nn reaction", PRC 104 (2021)

 $a_{nn}^{(+)} = -16.7 \text{ fm}, \quad a_{nn}^{(0)} = -18.7 \text{ fm}, \quad a_{nn}^{(-)} = -20.7 \text{ fm}.$

M. Göbel et al., "Neutron-neutron scattering length from the ${}^{6}He(p,p\alpha)$ nn reaction", PRC 104 (2021)

experimental data

dashed: $d + \pi^- \rightarrow \gamma + n + n$ solid: $d + n \rightarrow p + n + n$ dotted: $d + d \rightarrow {}^{2}\text{He} + n + n$

Determination of the nn scattering length

[T. Aumann et al., NP2012-SAMURAI55R1]

$$a_{nn}^{(+)} = -16.7 \text{ fm}, \quad a_{nn}^{(0)} = -18.7 \text{ fm}, \quad a_{nn}^{(-)} = -20.7 \text{ fm}.$$

M. Göbel et al., "Neutron-neutron scattering length from the ⁶He(p, $p\alpha$)nn reaction", PRC 104 (2021)

HIME: High-resolution detector for Multi-neutron Events

- 100 (length) X 4 (width) X 2 (depth) cm³ bars
- Demonstrator 40X40 cm² (T. Nakamura et al.)
- Full detector 100X100 cm² (being built at TUDa)
- Resolution:
 - timing: 100 ps (rms)
 - energy: better than 25 keV (for Enn<100 keV)</p>
- Goal: overall uncertianty of ~1%
 - determination of a_{nn} within ± 0.2 fm

Benchmark measurement

⁶He(p,p⁴He) quasi-elastic knockout

- Two-neutron relative-energy spectrum is expected to be well described by thoery
- Di-neutron is known to be unbound by ~100 keV

Theoretical input:

- w/o FSI: three-body (⁴He+2n) cluster model for ground-state wavefunction
- > w/ FSI: + nn final-state interaction
- M. Göbel et al., "Neutron-neutron scattering length from the ${}^{6}He(p,p\alpha)nn$ reaction", PRC 104 (2021)

B Smear simulated data by internal resolutions

4 Analyze same way as experimental data

3 Smear simulated data by internal resolutions

Analyze same way as experimental data

Results: 6 He missing mass spectrum

- Very good agreement:
 - confirms the expected di-neutron low-energy peak ~100 keV
 - > systematic uncertainy 0.4 MeV (energy) 0.3 MeV (width)
- No events in unphysical region
- Very low background contribution ~1%

Results: ⁸He missing mass spectrum

Two components:

- low-energy peak !
- broad distribution at higher energies

 continuum from direct decay

MD et al., Nature 606, 678 (2022)

Direct decay part

Four-body continuum response

- Five-body (⁴He+4n) COSMA model:
 - > source term depends on ⁸He strcuture
 - \succ sensitive to the hyperradius ρ
 - ✤ 5.6 fm reproduces ⁸He radius
 - wide distribution centered ~30 MeV

Zhukov et al., PRC (1994); Grigorenko et al., EPJA (2004)

Background contribution

MD et al., Nature 606, 678 (2022)

Background contribution

One-step vs. two-step reactions

MD et al., Nature 606, 678 (2022)

Results: ⁸He missing mass spectrum

- Fit energy spectrum with continuum from direct decay & experimental background
- Resonance like-structure consistent with a tetra-neutron state near threshold

E_r = 2.37±0.38(stat.)±0.44(sys.) MeV

- Γ = 1.75±0.22(stat.)±0.30(sys.) MeV
- Low-energy peak with significance well beyond 5σ

Overall consensus: no bound tetra-neutron

PHYSICAL REVIEW LETTERS

week ending 27 JUNE 2003

Can Modern Nuclear Hamiltonians Tolerate a Bound Tetraneutron?

Steven C. Pieper*

"our current very successful understanding of nuclear forces would have to be severly modified in ways that, at least to me, are not at all obvious"

Overall consensus: no bound tetra-neutron

What about a resonance?

"there might be a ⁴n resonance near 2 MeV, ... must be very broad"

Overall consensus: no bound tetra-neutron

What about a resonance?

"there might be a ⁴n resonance near 2 MeV, ... must be very broad"

Predictions for a resonance:

Shirokov PRL 117 (2016); Gandolfi PRL 118 (2017); Fossez PRL 119 (2017); Li PRC 100 (2019);

No resonant state:

...

Sofianos JPG 23 (1997); Deltuva PRL 123 (2019); Hiyama PRC 93 (2016); Lazauskas PTEP 073 (2017); 3-body force (T=3/2) Lazauskas PRC 72 (2005); 4-body force

Deltuva PLB 782 (2018); Higgins PRL 125 (2020); QM enhancements

Overall consensus: no bound tetra-neutron

What about a resonance?

• AV8 NN interaction + phenomenological 3-body force:

$$V_{ijk}^{3N} = \sum_{T=1/2}^{3/2} \sum_{n=1}^{2} W_n(T) \exp\left(-(r_{ij}^2 + r_{jk}^2 + r_{ki}^2)/b_n^2\right) \mathcal{P}_{ijk}(T),$$

with T = 1/2, T = 3/2 and strength parameters: W_1 (attractive) W_2 (repulsive)

- Adjust only the attractive $W_1(T = 3/2)$ channel
 - → huge strength parameter $W_1 \in [-36, -30]$ MeV
 - → 15 times larger than for T = 1/2, -2.04 MeV
 - ✤ inconsistent with data of light nuclei

Overall consensus: no bound tetra-neutron

What about a resonance?

Rigorous continuum calculation:

- AGS equations in momentum-space
- transition operator method for the $4\rightarrow 4$ process
 - absence of any ⁴n resonance
 - > **low-energy enhancement** of some $T_{\beta\alpha}$ transition operators
- might explain the signal in ⁸He(⁴He,⁸Be) reaction? (RIKEN 2016)
- depends on the specific kinematical configuration

Experiment - theory comparison

Predictions for a resonance:

- ★ No-core shell model (NCSM): Shirokov PRL 117 (2016)
- ↔ No-core Gamow shell model (NCGSM): Fossez PRL 119 (2017)
- Quantum Monte Carlo (QMC): Gandolfi PRL 118 (2017)

☆ NCGSM: Li PRC 100 (2019)

Pieper PRL 90 (2003): "might be a ⁴n resonance near 2 MeV... must be very broad"

MD et al., Nature 606, 678 (2022)

Experiment - theory comparison

Predictions for a resonance:

- ★ No-core shell model (NCSM): Shirokov PRL 117 (2016)
- ho No-core Gamow shell model (NCGSM): Fossez PRL 119 (2017)
- Quantum Monte Carlo (QMC): Gandolfi PRL 118 (2017)
- ☆ NCGSM: Li PRC 100 (2019)

Pieper PRL 90 (2003): "might be a ⁴n resonance near 2 MeV... must be very broad"

No resonant state:

. . .

Sofianos JPG 23 (1997); Deltuva PRL 123 (2019); Hiyama PRC 93 (2016); Lazauskas PTEP 073 (2017); 3-body force (T=3/2) Lazauskas PRC 72 (2005); 4-body force Deltuva PLB 782 (2018); Higgins PRL 125 (2020); QM enhancement

Further calculations are needed to understand the low-energy peak observed and its origin

MD et al., Nature 606, 678 (2022)

Article

Observation of a correlated free four-neutron system

M. Duer^{1⊠}, T. Aumann^{1,2,3}, R. Gernhäuser⁴, V. Panin^{2,5}, S. Paschalis^{1,6}, D. M. Rossi¹,
N. L. Achouri⁷, D. Ahn^{5,16}, H. Baba⁵, C. A. Bertulani⁸, M. Böhmer⁴, K. Boretzky², C. Caesar^{1,2,5},
N. Chiga⁵, A. Corsi⁹, D. Cortina-Gil¹⁰, C. A. Douma¹¹, F. Dufter⁴, Z. Elekes¹², J. Feng¹³, B. Fernánd
ez-Domínguez¹⁰, U. Forsberg⁶, N. Fukuda⁵, I. Gasparic^{1,5,14}, Z. Ge⁵, J. M. Gheller⁹, J. Gibelin⁷,
A. Gillibert⁹, K. I. Hahn^{15,16}, Z. Halász¹², M. N. Harakeh¹¹, A. Hirayama¹⁷, M. Holl¹, N. Inabe⁵,
T. Isobe⁵, J. Kahlbow¹, N. Kalantar-Nayestanaki¹¹, D. Kim¹⁶, S. Kim^{1,16}, T. Kobayashi¹⁸, Y. Kondo¹⁷,
D. Körper², P. Koseoglou¹, Y. Kubota⁵, I. Kuti¹², P. J. Li¹⁹, C. Lehr¹, S. Lindberg²⁰, Y. Liu¹³,
F. M. Marqués⁷, S. Masuoka²¹, M. Matsumoto¹⁷, J. Mayer²², K. Miki^{1,18}, B. Monteagudo⁷,
T. Nakamura¹⁷, T. Nilsson²⁰, A. Obertelli^{1,9}, N. A. Orr⁷, H. Otsu⁵, S. Y. Park^{15,16}, M. Parlog⁷,
P. M. Potlog²³, S. Reichert⁴, A. Revel^{7,9,24}, A. T. Saito¹⁷, M. Sasano⁵, H. Scheit¹, F. Schindler¹,
S. Shimoura²¹, H. Simon², L. Stuhl^{16,21}, H. Suzuki⁵, D. Symochko¹, H. Takeda⁵, J. Tanaka^{1,5},
Y. Togano¹⁷, T. Tomai¹⁷, H. T. Törnqvist^{1,2}, J. Tscheuschner¹, T. Uesaka⁵, V. Wagner¹, H. Yamada¹⁷,
B. Yang¹³, L. Yang²¹, Z. H. Yang⁵, M. Yasuda¹⁷, K. Yoneda⁵, L. Zanetti¹, J. Zenihiro^{5,25} &

Thank you!

678 | Nature | Vol 606 | 23 June 2022

Missing mass: ⁶He(p,p⁴He)

The GANIL 2002 result

Breakup of ¹⁴Be:

Marqués PRC 65 (2002) Marqués arXiv:nucl-ex/0504009 (2005)

The GANIL 2002 result

Breakup of ¹⁴Be:

Principle of measurement:

- E_p: recoil energy of proton from n-p elastic scattering
- E_n: energy per nucleon from time-of-flight measurement
- For $\ln E_p/E_n \le 1.4$ (>1 due to detector resolutions)

Marqués PRC 65 (2002) Marqués arXiv:nucl-ex/0504009 (2005)

"Indications for a bound tetraneutron"

⁷Li(⁷Li,¹⁰C) at 46 MeV, MP Tandem of Garching, Germany

7°

26

Concentration of other elements ⁷Li(¹⁶O, ¹⁰C)¹³B

- E* = 2.93(16) MeV, σ= 0.24(9) MeV:
 - ⁷Li(⁷Li,¹⁰C_{qs}) *tetraneutron resonance* E_r=2.93(16) MeV & extremely small width
 - ⁷Li(⁷Li, ¹⁰C*) ¹⁰C in 1st excited state 3.354 MeV + **bound tetraneutron** BE = 0.42(16) MeV
 - ~10 events \rightarrow statistical significance 3σ

Faestermann et al., PLB 824 (2022)

24

energy (¹⁰C) / MeV

E*(10C+4n) / MeV

15

10

5

0

20

22

counts/10mCb/200keV

50

Fig. 11. Continuum response of the ⁴n system in the MWS with a "Gaussian" source (13). Solid, dashed and dotted curves correspond to rms hyperradius $\langle \rho_{\text{sour}} \rangle$ of the source equal to 8.9, 7.3, and 5.6 fm, respectively. Panels are calculated with (a) no final-state interaction, (b) RT potential (the correct *n-n* scattering length). All calculations are normalized to unity at the peak.

Cluster Orbital Shell Model Approximation

 ^{4}n

Figure 11a shows the continuum responses which could be expected for sources of different sizes if no FSI was present in the ⁴n system. This is a benchmark case [40] which is mainly determined by the internal structure of the source. To take FSI into account, we used the Reichstein and Tang potential (RT) [41] which provides the correct low-energy behaviour in the *n*-*n* channel. The interaction

 $\sum_{i=1}^{n} r_i^2 = \rho^2 + 4r_{\rm cm}^2$.

Grigorenko et al., EPJA (2004)

Digital data packet

PaDiWa board

 \rightarrow discriminates the analogue signal

programmable gate arrays (FPGAs \rightarrow allow programming of logic gates)

- Used for trigger logic
- Better than 20 ps time precision