ECT* workshop 'Nuclear Physics at the edge of stability' 06/07/22

Search for hydrogen 7 and its four neutron decay at RIKEN

Cyril Lenain

UNIVERSITÉ NORMANDIE

			⁹ C	¹⁰ C	¹¹ C	¹² C	¹³ C
	⁶ В	⁷ B	⁸ B	⁹ B	¹⁰ B	¹¹ B	¹² B
	⁵ Be	⁶ Be	⁷ Be	⁸ Be	⁹ Be	¹⁰ Be	¹¹ Be
³ Li	⁴ Li	⁵ Li	⁶ Li	⁷ Li	⁸ Li	⁹ Li	¹⁰ Li
	³ He	⁴ He	⁵ He	⁶ He	⁷ He	⁸ He	⁹ He
¹Н	² H	³ Н	⁴ H	⁵ H	⁶ Н	⁷ H	
	1n	²n	³ n	⁴ n			

Introduction

¹⁰He

- Test bench for theoretical models
- Ab-initio calculations tractable
- Constraining multi-neutron (3- & 4- body) interactions

•	1n		³ n	⁴ n			
¹Н	² H	³ Н	⁴ H	⁵ H	⁶ H	⁷ H	•
	³ He	⁴ He	⁵ He	⁶ He	⁷ He	⁸ He	⁹ He
³ Li	⁴ Li	⁵ Li	⁶ Li	⁷ Li	⁸ Li	⁹ Li	¹⁰ Li
	⁵ Be	⁶ Be	⁷ Be	⁸ Be	9Be	¹⁰ Be	¹¹ Be
	бВ	⁷ B	⁸ B	9B	¹⁰ B	¹¹ B	¹² B
			⁹ C	¹⁰ C	¹¹ C	¹² C	¹³ C

Introduction

¹⁰He

- Test bench for theoretical models
- Ab-initio calculations tractable
- Constraining multi-neutron (3- & 4- body) interactions

			⁹ C	¹⁰ C	¹¹ C	¹² C	¹³ C
	⁶ В	⁷ B	⁸ B	⁹ B	¹⁰ B	¹¹ B	¹² B
	⁵Be	⁶ Be	⁷ Be	⁸ Be	⁹ Be	¹⁰ Be	¹¹ Be
³ Li	⁴ Li	⁵ Li	⁶ Li	⁷ Li	⁸ Li	⁹ Li	¹⁰ Li
	³ He	⁴ He	⁵ He	⁶ He	⁷ He	⁸ He	⁹ He
¹Н	² H	ЗH	4H	5⊢¦	⁶ Н	⁷ H	
	¹ n		³ n	⁴ n			

Introduction

¹⁰He

- Test bench for theoretical models
- Ab-initio calculations tractable
- Constraining multi-neutron (3- & 4- body) interactions

1. Introduction The multineutron quest Helium-7 Hydrogen-7

3. First results Helium-7 & 3n decay Hydrogen-7 & 4n decay

Outline

2. Samurai 34 Experimental Approach Multineutron detection

Extreme environmement

Lost in a large quantity of isotopes

14N(4n,n)17N16Al(4n,t)28Mg... since the 1960s ... Where ? How ?

Extreme environmement

Lost in a large quantity of isotopes

14N(4n,n)17N16Al(4n,t)28Mg...

- since the 1960s ... Where ? How ?
 - Extreme reaction
 - Direct production

DCX, SCX ... $\sigma \sim 10^{-12} \ barn$

Extreme environmement

Lost in a large quantity of isotopes

14N(4n,n)17N16Al(4n,t)28Mg...

Tetraneutron

Korsheninnikov et al. PRL (1999)

⁷H a hot but difficult topic ...

Introduction: Hydrogene-7, state of play

1. Introduction The multineutron quest Helium-7 Hydrogen-7

3. First results Helium-7 & 3n decay Hydrogen-7 & 4n decay

Outline

2. Samurai 34 Experimental Approach Multineutron detection

SAMURAI 034 : Experimental approach LPC (FM. Marques) / RIKEN (Z. Yang)

Complete kinematics : Invariant mass FWHM ~ 0.1 MeV: main goal

Missing mass FWHM ~ 7 MeV: complementary cross-check

SAMURAI 34 : a challenging setup

SAMURAI 34 : setup

Samurai 034: Tetraneutron emission ?

Samurai 034: Tetraneutron emission ?

Samurai 034: ⁷He(gs), benchmark ⁽¹ⁿ⁾

Samurai 034: ⁷He(gs), benchmark ⁽¹ⁿ⁾

- (E_R , Γ) in agreement with literature
- Validated analyses & response function

Absence of 6He+n excited state !

Optimization

Step 1: Clustering $D_{max} = 400 \text{ mm}$ Step 2: Cleaning Step 3: Crosstalk test $\beta_1 > \beta_{12}$? Fake events rejected: 98% True 2n events rejected: 34%

Samurai 034: ⁶He*(2⁺), benchmark ⁶2n²

Samurai 034: ⁶He*(2⁺), benchmark ⁶2n²

 8 He(p,p2n) 6 He* \rightarrow 4 He + 2n

1. Introduction The multineutron quest Helium-7 Hydrogen-7

3. First results Helium-7 & 3n decay Hydrogen-7 & 4n decay

Outline

2. Samurai 34 Experimental Approach Multineutron detection

Counts/200 keV

Results : Helium-7

Counts/200 keV

Results : Helium-7

Results : Helium-7

Results : Helium-7 decay

counts/50 keV

Results : Helium-7 decay

_	_	
		ĺ
	_	ĺ
	_	ĺ
_		ĺ
	_	ĺ
	-	Í
	_	ĺ
	_	ĺ
_		ĺ
	_	ĺ
		ļ
		ĺ
	_	ĺ
		ĺ
_	_	ĺ
	-	ĺ
	_	ĺ
	1	
	_	ĺ
	_	ļ
_	_	ĺ
		ĺ
	_	ĺ
		ĺ
	_	ĺ
_		ĺ
	_	ĺ
		ĺ
	_	ĺ
	1	
	_	ĺ
_		ĺ
	-	ĺ
		ļ
	_	ĺ
		ĺ
	1	
_	_	ĺ
		ĺ
	_	ĺ
		ĺ
	_	ĺ
_		
_		ĺ
	_	ĺ
<u> </u>		Í

Results: Helium-7 decay, angular correlations

Results: Hydrogen-7

Results: Hydrogen-7

Results: Hydrogen-7

Results: Hydrogen-7 decay, neutron correlations

Counts/280 keV

Results: Hydrogen-7 decay, angular correlations

CM frame

SAMURAI 34 experiment

- High intensity beam
- High luminosity target
- High multi-neutron efficiency

- Multi detectors (DC, TPC, Neutron walls, Spectrometer)
- Analysis algorithms (tracking, crosstalk...)

⁸He

• Simulations of differents detectors (MINOS-TPC, DALI, NeuLAND/NEBULA) • Setup validation on physics: ⁷He g.s. & ⁶He*

Summary

⁷He & ³n:

- Clear absence of any (⁶He+n) excited state
- First observation of 7He* by IM measurement
- First observation of **direct 3n** emission ? (To be confirmed)
- No significant **trineutron** signal

7H & 4n:

- First high acceptance+resolution+statistics experiment
- Observation of broad structure at $E(^{7}H) \sim 7 \text{ MeV}$
- No clear sign of any resonant-like structure ... ?

Summary

(T. 1.

cs experiment ~ 7 MeV

