

Slow antiproton collisions with deuterium

R. Lazauskas (IPHC, Strasbourg), J. Carbonell (IJCLab, Orsay)

Revival of Low-energy antiproton physics at CERN

Introduction of ELENA antiproton decelerator revives the physics of interface between the antimatter & standard matter, and offers unique possibility to study properties of the antimatter.

ELENA

Rich experimental program with 9 dedicated experimental programs

Antiproton interactions with atomic nucleus PUMA project

T. Aumann, ..,<u>A Obertelli</u>et al., Eur.Phys.J.A **58** (2022) 5, 88

PUMA project

T. Aumann, ...,<u>A Obertelli</u>et al., Eur.Phys.J.A **58** (2022) 5, 88

The goal of PUMA project is to measure nuclear neuron skins from the \bar{p} annihilation data:

- 1) $\bar{p}n/\bar{p}p$ annihilation ratio
- 2) Orbit from which \overline{p} is captured

PUMA project

T. Aumann, ..., A Obertelli et al., Eur. Phys. J.A 58 (2022) 5, 88

The goal of PUMA project is to measure nuclear neuron skins from the $\bar{p}A$ annihilation data. We have to answer:

- If the exp. data lead to unambiguous conclusion?
- Can we interpret the data?
- If yes, how and how well?

Accuracy of the solutions, quality of the input, model dependence, ..

p

Our aim is to provide the «best» solutions for the accessible systems and use this knowledge to build «antiproton-nucleus» potentials for the rich-neutron systems of experimental realm

PUMA project

Provide the « best possible » solution for the NR Schrödinger eq. \widehat{U}

$$\widehat{H}|\Psi\rangle = E|\Psi\rangle; \ \widehat{H} = \widehat{H_0} + V$$

The problem is extremely complex:

- Relativity and annihilation dynamics
- Complexity of the $\bar{p}N$ interaction and $\bar{p}A$ dynamics
- Presence and coupling between the very different physical scales: atomic (Coulomb), nuclear (\bar{p} A), subatomic (annihilation) !!

THE FACTS

There are two main sources of experimental info: scattering and protonium

SCATTERING

from $\bar{p}p$ one can measure three contributions to the total cross section

$$\sigma_t = \sigma_e + \sigma_a + \sigma_{ce}$$

- σ_e elastic
- σ_a annihilation: everything produced beyond $\bar{p}p$ ($\bar{n}n$) channels
- σ_{ce} charge-exchange

 $\bar{p} + p \to \bar{n} + n$

from $\bar{n}p$ one gain some interesting low energy results on σ_e and σ_a . One is able to isolate the isospin T=1 component of the interaction and study it by avoiding complications brought by Coulomb interaction. Difficult measurement for it uses the ce to produce the secondary antineutron beam.

- At low energy (p_L<400 MeV/c) dominated by annihilation $\sigma_a/\sigma_e \simeq 2$
- Partial wave cross sections close to unitary limit $\sigma_a^{(L)}=(2L+1)\pi/k_{cm}^2$
- Cannot be reduced to a black sphere model (for which $\sigma_{\rm a}{=}\sigma_{\rm e}$) : the strong force of nuclear origin plays a crucial role

THE FACTS

There are two main sources of experimental info: scattering and protonium PROTONIUM

In absence of strong interaction $\bar{p}p$ would form an H-like

$$E_c = -\frac{1}{4} \frac{m_p \alpha^2}{n^2} = -\frac{12.5 \ keV}{n^2}$$

with Bohr radius a_0 = 57 fm (a 1000x reduced H-atom)

Strong interaction shifts and broadens the pure Coulomb levels

- Difference $\Delta E = \Delta E_R + i\Gamma/2$ is meeasured for low lying states (1s,2p)
- This difference is related to the scattering length $a_{\bar{p}p} = f_{\bar{p}p}(E=0)$

A priviledged open door to $\overline{N}N$ forces at low energy (controlled initial state)

Many other $\bar{p}A$ atoms have been measured. It is however very difficult to extract useful information to construct $\bar{p}N$ models;

THE FACTS

- Coulomb levels are shifted up/down w.r.t. QED, depending on the state:
- Energy shifts $\Delta E = \Delta E_R$ and lifetime $i\Gamma/2$ (energy spread) are measured

There are two approaches for $\overline{N}N$ interaction:

• « traditional » meson exchange approach of Nuclear Physics

• χEFT

- In order to account for $\overline{N}N$ annihilation
- Add phenomenological negative imaginary part (optical potetnial)
- Introduce coupled $\overline{N}N/\overline{X}X$ channels

The « traditional » meson exchange approach in Nuclear Physics

 $V_{NN} = +V_{\pi} + V_{\eta} + V_{\rho} + V_{\omega} + V_{\sigma_0} + V_{\sigma_1}$

Thouhg outfashioned – it is still remains the most employed model (most of existing calculations are performed based on these models).

 $V_{N\overline{N}}$ (real part, T-symmetry) follows from V_{NN} by a G-parity transfomation of the meson-N vertex, providing multiplicative factor:

 $G = C(-)^{T}$ $V_{N\overline{N}} = -V_{\pi} + V_{\eta} + V_{\rho} - V_{\omega} + V_{\sigma_{0}} - V_{\sigma_{1}}$

<u>Consequences are dramatic</u>: V_{NN} repulsive core – due to ω - change its sign and becomes strongly attractive (in most of the S-T channels) and the tensor force becomes huge There should exist a rich « quasi-bound » and resonant statesthat have never been directly observed during LEAR time (specifically built to this aim !!!) despite some intriguing « evidences » ...just before it closes.

PW examples of G-parity transform for a meson exchange $V_{\mbox{\tiny NN}}$

 χ EFT approach: at first glance EFT philosophy seems to contradict $V_{\overline{N}N}$ physics (Q>M), still somemodels based on χ EFT have been succesfully developped in the recent years:X. W. Kang, J. Haidenbauer and U.-G. Meißner, JHEP 1402 (2014) 113L.Y.. Dai, J. Haidenbauer, Ulf-G. Meißner, JHEP 2017 (2017) 78

These potentials are built in p-space and are strongly non-local what makes difficult direct comparison.

In χEFT , one retains only π (at most!) and so the G-parity rule does not apply here in its full glory. The other terms are regularized contact terms whose constants are fited to $N\overline{N}$ phase shifts.

As in traditional models fully phenomenological imaginary part (optical pot.) is added in order to account for $N\overline{N}$ annihilation

Big advantage: possibility of the systematic error estimation

 $V_{\overline{N}N}$ constructed in this way does not account the annihilation part:. There are two phenomenological ways to incorporate it: optical and/or coupled channel models

Optical models:

Add to V_{NN} a complex potential $V \rightarrow V_{NN} + W_R - iW_i$ Which allows us to compute the « annihilation density »

In this description, *NN* particles disapear from the flux, go nowhere and never return: **SS*<1** (not unitary approach)

The form of W is « guessed » and its parameters detemined by phenomenology.

Quite successful despite its bare simplicity (probably thanks to the poor data)

- Annihilation dynamics is the same for all (T,S,L,J) states !
- Bad analytic properties (mainly in resonances)
- Depressed wave function due to absence of « re-annihilation »

 $V_{\overline{N}N}$ constructed in this way does not account the annihilation part:. There are two phenomenological ways to incorporate it: optical and/or coupled channel models

Coupled channel models:

Fig. 4 Complex energy trajectory of a ${}^{11}S_0$ state as a function of the annihilation strength in optical a unitary coupled channel models

E. Ydrefors, J.C : Eur. Phys. J. A. 57 (2021) 303

Fig. 14 Protonium annihilation density for the ${}^{1}S_{0}$ state described with the UCCM (in red) and with OM (in blue). Both models reproduce the same experimental complex level shift ΔE value of Table 3.

Protonium: level shifts/widths

Quite good agreement within the models!! And an acceptable comparison with data S-waves (eV) (*)

329

		$\operatorname{Exp}[34]$	\mathbf{KW}	DR1	DR2
-	ΔE_{1S_0}	$440 {\pm} 075$	500	540	580
	$\Gamma_{^{1}S_{0}}$	$1200{\pm}250$	1260	1020	1040
-	$\Delta E_{{}^3S_1}$	$785 {\pm} 035$	780	770	820
	Γ_{3S_1}	$940 {\pm} 080$	980	900	920
*J.	Carbonell,	G. Ihle, J.M. Ric	hard, Z. I	Phys. A 3	34 (1989)

Protonium: level shifts/widths

Quite good agreement within the models!! And an acceptable comparison with data P-waves (meV) (*)

	\mathbf{KW}		DR1		DR2		Exp	
State	ΔE_R	$\frac{\Gamma}{2}$	ΔE_R	$\frac{\Gamma}{2}$	ΔE_R	$\frac{\Gamma}{2}$	ΔE_R	$\frac{\Gamma}{2}$
$^{-1}P_{1}$	-29.	13.	-26.	13.	-24.	14.		
${}^{3}P_{0}$	-69	48	-74	57	-62	40	-139 ± 28	60 ± 13
${}^{3}P_{1}$	+29.	11.	+36.	10.	+36.	8.8		
$^{3}PF_{2}$	-8.5	18.	-4.8	15.	-5.9	16.		

General remarks

- Trueman (Nucl. Phys. 26 (1961) 57) relation allows to express $\bar{p}A$ level shifts in terms of $\bar{p}A$ scattering lengths Simple and practical. Energy shifts of excited orbits are interrelated
 - This relation supposes $r_{strong} \sim a_{\bar{p}A} \ll a_{Coulomb}$: might be easily broken for heav nuclei but perfectly holds for protonium.
- The $\bar{n}n$ component is present together with $\bar{p}p$ one in wave function. But its effect on the energy is usually small.
- Non-perturbative! Despite the fact $\Delta E \ll E_{Coulomb}$ the strength of the annihilation potential strngly modifies the Coulomb wave function in the overlap region with nucleus ($r_{strong} \sim a_{\bar{p}A}$ domain).

	Exact	Perturbative
¹ S ₀ (eV) n=1	524-602i	-3030-3150i
n=2	65.1-77.8i	-379394i
n=3	19.3-23.3i	-112-117i
¹ P ₁ (meV) n=2	-28.1-13.0i	-34.5-7.3i
n=3	-9.9-4.6i	-12.1-2.6i
1D2 (neV) n=3	-3789.9i	-363-6.1i

Perturbative result is given by the overlap with the pure Coulomb wf.: $\Delta E = \langle \Psi_C | V_{pN}^{st} | \Psi_C \rangle$

$$\psi_{2} = G_{0}V_{2}\Psi \quad \text{or} \quad (E - H_{0} - V_{i})\psi_{i} = V_{i} \quad (\psi_{j} + \psi_{k}); \quad (ijk) = (123)$$

$$\psi_{3} = G_{0}V_{3}\Psi$$

Faddeev equations: [L.D. Faddeev, Sov. Phys.-JETP 12, 1014 (1961)]

- One gets Schrödinger equation by summing these three eqs with $\Psi = \psi_1 + \psi_2 + \psi_3$
- If particle 3 goes away $V_2 \& V_1 \to 0$ and thus $\psi_2 \& \psi_1 \to 0$; therefore $\psi_3 \to \Psi$. Adapted for scattering problems, since allows to separate assymptotes of (2)+1 particle channels
- Should be modified, when longue range interactions are present

Faddeev-Merkuriev equations: [S.P Merkuriev, S. P., Annals of Physics 130.2 (1980): 395-426]

- Specific separation of Coulomb interaction into long and short range parts, in order to guarantee separability of channel assymptotes
- One gets Schrödinger equation by summing these three eqs with $\Psi = \psi_1 + \psi_2 + \psi_3$
- FM equations allow to separate assymptotes of the binary scattering channels
- In general, FM components ψ_i are smoother functions than Ψ

Partial wave expansion to express angular dependence of FM components

$$\psi_{i}(\vec{x}_{i}, \vec{y}_{i}) = \frac{f_{i, l_{x} l_{y}}(x_{i}, y_{i})}{x_{i} y_{i}} \Big[Y_{\ell_{x}}(\hat{x}_{i}) \otimes Y_{\ell_{y}}(\hat{y}_{i}) \Big]_{LM}$$

 $|\vec{x}_3|$

- Lagrange-mesh method to express radial dependence $f_{i,l_xl_y}(x_i, y_i)$ and impose proper boundary conditions
- Iterative linear algebra methods to solve resulting large scale problem of linear equations
- Resonance positions might be found directly by applying complex-scaling method

NN model dependence:

						_ /		$\langle \rangle$
	MT13	AV18	INOY	I-N3LO	$-\epsilon_n^{(0)}$ (keV)] /		/
S-waves		ΔE	(keV)			1 /	р	
$S_{1/2}$, n=1	2.251-1.0045i	2.147-1.0440i	2.214-0.99433i	2.209-1.0509i	16.6662		9	
$S_{1/2}$, n=2	0.294-0.1406i	0.279-0.1454i	0.289-0.13892i	0.288-0.1468i	4.16655		n	R=43 fm
$S_{1/2}$, n=3	0.088-0.0433i	0.084-0.0446i	0.087-0.04271i	0.086-0.0451i	1.85180			,
-waves		ΔE	(meV)			1		
$P_{1/2}$, n=2	49.1-258.0i	-55.3-239.2i	-56.2-241.1i	-58.5-244.0i	4.16655			
$P_{1/2}$, n=2	24.4-194.8i	200.2-186.4i	200.2-188.2i	200.3-186.1i	4.16655			
$P_{1/2}$, n=3	16.1-90.6i	-14.0-83.94i	-14.2-84.57i	-15.0-85.61i	1.85180			
$P_{1/2}$, n=3	8.62-68.4i	59.4-65.51i	59.0-66.14i	58.4-65.36i	1.85180			
	i-waves $S_{1/2}$, n=1 $S_{1/2}$, n=2 $S_{1/2}$, n=3 i-waves $P_{1/2}$, n=2 $P_{1/2}$, n=2 $P_{1/2}$, n=3 $P_{1/2}$, n=3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Table 1: Complex $\bar{p}d$ energy shifts ΔE_n obtained for different NN interactions and the KW $\bar{N}N$ model.

- Quite good agreement between the realistic interaction NN model predictions
- MT13 lacks tensor force (ignoring presence of deuterons quadrupole moment) falls short for P-states

Comparison with experiment:

		MT13/ KW	AV18/ KW	Wycech ¹	Exp ^{2,3}
L=0	$\Delta E (eV)$	2297	2194	2170	1050+/-250
	Γ (eV)	1982	2129	1250	·
L=1	$\Delta E \ (meV)$	26.6	22.5	52	0.4 -
	Г (<i>meV</i>)	428	414	422	0.2

Comparison with pionner work (separable approxim ¹S. Wycech et al, Phys. Lett B152 (1985) 308 Experiment:

²D. Gotta et al., Nucl. Phys. A660 (1999) 283 ³M. Augsburger et al., Phys. Lett. B461 (1999) 417

$\overline{N}N$ model dependence :

	I-N3L0	O +KW	I-N3LO	+Jülich
	Ρ̈́р	p̄p + n̄n	₽p	p̄p + n̄n
${}^{2}S_{1/2}$, n=1 (keV)	2.179-1.024i	2.209-1.050 i	2.028-0.928i	2.108-1.085i
${}^{2}S_{1/2}$, n=2 (eV)	284-143i	288-147 i	264-128i	274- 151i
${}^{2}S_{1/2}$, n=3 (eV)	85.3-43.9i	86.4-45.1 i	79.1-39.3	82.0-46.3i
${}^{4}S_{3/2}$, n=1 (keV)	2.206-0.970i	2.306-1.045i	2.027-0.916i	2.321-1.216i
${}^{4}S_{3/2}$, n=2 (eV)	288-136i	302-147i	264-127i	302- 171i
${}^{4}S_{3/2}$, n=3 (eV)	86.6-41.7i	90.7-45.2i	79.1-38.8	90.7-52 .6i
${}^{2}P_{1/2}$, n=2 (meV)	-61.6-210i	-58.5-244 i	-105-194i	18.7-3291
${}^{4}P_{1/2}$, n=2 (meV)	214-158i	200-186 i	200-124	171-194i
${}^{2}P_{1/2}$, n=3 (meV)	-16.3-73.8i	-15.0-85.6 i	-31.9-68.3	13.2-120i
${}^{4}P_{1/2}$, n=3 (meV)	63.5-55.5i	58.4-65.4 i	59.1-43.5i	47.0-63.7i
${}^{2}P_{3/2}$, n=2 (meV)	-60.3-201i	-76.2-2261	-81.2-144i	<u>-108-2</u> 9/i
${}^{4}P_{3/2}$, n=2 (meV)	43.6-180i	35.0-191i	55.0-137i	40.4-160i
$^{2}P_{3/2}$, n=3 (meV)	-17.3-68.6i	-21.4-79.5i	-23.3-50.6i	-32.7-72.7i
${}^{4}P_{3/2}$, n=3 (meV)	13.8-63.2i	10.7-67.0i	17.8-48.3i	12.7-56.3i
${}^{4}P_{5/2}$, n=2 (meV)	57.6-185i	34.7-208i	7.1-132i	-21.6-205i
${}^{4}P_{5/2}$, n=3 (meV)	18.7-64.8i	10.7-72.9i	1.1-46.2i	-9.1-72.1i

Table 2: Complex level shifts (18) of atomic $\bar{p}d$ states calculated with the same I-N3LO NN interaction (for deuteron) and two different $\bar{N}N$ models: KW [15] and Julich [17].

	MT13	AV18	INOY	I-N3LO	I-N3LO	Ref. [30]	Exp.
	+KW	+KW	+KW	+KW	+Jülich		
L=0 $\Delta E(eV)$	2297	2194	2268	2274	2250	2170	1050±250 [24, 25, 26]
L=0 Γ (eV)	1982	2129	1971	2095	2344	1250	1100±750 [24, 25, 26]
							2270±260 [25]
L=1 \triangle E (meV)	26.6	22.5	20.7	18.2	-1.1	52	243±26 [25]
L=1 Γ (meV)	428	414	420	420	416	422	489±30 [25]

Table 4: Spin-averaged level shifts (ΔE_R) and widths (Γ) compared to LEAR experimental results

- Coupling $\bar{p}p \leftrightarrow \bar{n}n$ has strong contribution for Jülich χ EFT compared to meson exchange potentials
- There is significant $\overline{N}N$ interaction model dependence

Trueman relation: ${}^{2}H - \overline{p}$

T.L. Trueman, Nucl. Phys. 26 (1961) 57

		MT13 +KW		
	a_0 (fm)	ΔE_1 (keV)	ΔE_2 (keV)	ΔE (keV)
${}^{2}S_{1/2}$ n=1	1.596-0.8569i	2.463-1.322i	2.259-1.014i	2.251-1.004i
${}^{4}S_{3/2}$ n=1	1.647-0.8419i	2.541-1.299i	2.316-0.987i	2.321-0.984i
	$a_1 ({\rm fm}^3)$	$\Delta E_1 \text{ (meV)}$	$\Delta E_2 \text{ (meV)}$	$\Delta E \text{ (meV)}$
${}^{4}P_{5/2}$ n=2	0.450-2.68i	34.8-207i	34.8-207i	26.2-215i
		AV18 +KW		
	a_0 (fm)	ΔE_1 (keV)	ΔE_2 (keV)	ΔE (keV)
${}^{2}S_{1/2}$ n=1	1.505-0.8779i	2.323-1.355i	2.155-1.057i	2.147-1.044i
${}^{4}S_{3/2}$ n=1	1.59-0.8771i	2.541-1.354	2.257-1.039i	2.218-1.075i
	$a_1 ({\rm fm}^3)$	$\Delta E_1 \text{ (meV)}$	$\Delta E_2 \text{ (meV)}$	$\Delta E \text{ (meV)}$
${}^{4}P_{5/2}$ n=2	0.469-2.57i	36.4-199i	36.4-199i	39.9-204i

Table 5: Atomic level shifts, calculated from $\bar{p}d$ scattering lengths (a_0 and a_1) employing Trueman relations at first order (ΔE_1) and second order (ΔE_2) are compared with the values obtained from direct binding energy calculations (ΔE).

- Trueman relation works well for spin uncoupled states, but is broken by longranged r⁻³ interactions (quadrupole & magnetic moment) for spin-coupled states.
- Magmetic Moment interaction terms should be considered to describe level shifts in l>0 states.

Annihilation densities: ${}^{2}H - \overline{p}$

Figure 3: $\bar{p}d$ annihilation densities γ_a for the 2S1/2 (left panel) and 4P5/2 (right panel) states calculated with the MT13+KW model. They are compared with the $\bar{p}p$ ¹S₀ and ¹P₁ γ_a 's in protonium and with corresponding deuteron matter density ρ_d .

Annihilation is peripheral for P-wave, however it is not a case for S-wave.

Conclusions perspectives

- Antiproton interface with matter is little explored and open field for exploration of new phenomena
- There are vast space for improving our understanding of NA interactions & dynamics, startind by NN interaction:
 ✓Inclusion of EM interaction in current models
 ✓Curing model dependence
 ✓More advanced models for annihilation
- Trueman relation might be applied to simplify calculation of level broadenings/shifts, but should be modified to take into account secondary EM long range interactions : quadrupole-charge, magnetic moments, ...
- Annihilation is peripheral for L>0 waves, however it is not a case for S-wave.

