发TRIUMF

${ }^{10} \mathrm{C}$ and ${ }^{10} \mathrm{Be}$: Effects of including the continuum

Michael Gennari

TRIUMF and University of Victoria

Supervisor: Petr Navrátil
Collaborators: Guillaume Hupin

What is the problem?

- Ab initio approach to many-body Schrödinger equation for bound states and narrow resonances [1]
- Non-relativistic with point-like nucleons active degrees of freedom

$$
\begin{gathered}
H\left|\Psi_{A}^{J^{\pi} T}\right\rangle=E^{J^{\pi} T}\left|\Psi_{A}^{J^{\pi} T}\right\rangle \\
\left|\Psi_{A}^{J^{\pi} T}\right\rangle=\sum_{N=0}^{N_{\max }} \sum_{\alpha} c_{N \alpha}^{J^{\pi} T}\left|\Phi_{N \alpha}^{J^{\pi} T}\right\rangle
\end{gathered}
$$

$-\mathrm{NN}+3 \mathrm{~N}$ interactions are sole input
$-\mathrm{NN}-\mathrm{N}^{4} \mathrm{LO}(500)$ [2] $+3 \mathrm{~N}_{\text {|n| }}[3]$

Anti-symmetrized products of
many-body HO states

Limitations of NCSM

Limitations of NCSM

Non-convergent features in
 NCSM wave functions

E. Caurier, ${ }^{1}$ P. Navrátil, ${ }^{2}$ W. E. Ormand, ${ }^{2}$ and J. P. Vary ${ }^{3}$
${ }^{1}$ Institut de Recherches Subatomiques (IN2P3-CNRS-Université Louis Pasteur), Batiment 27/1, 67037 Strasbourg Cedex 2, France ${ }^{2}$ Lawrence Livermore National Laboratory, L-414, P.O. Box 808, Livermore, California 94551 ${ }^{3}$ Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011

Limitations of NCSM

- HO expansion incompatible with reaction theory
i. imprecise asymptotics
ii. missing correlations in excited states
iii. description of scattering states not feasible
- Combine NCSM with resonating group method (RGM) [4]
- ability to deal with scattering states and reactions
- combine microscopic A-nucleon Hamiltonians and clustering description

NCSM/RGM

- Combine NCSM with RGM [4]
- $(A-a)$-target and a-nucleon projectile in ${ }^{2 s+1} l_{J}$ relative motion waves
$-\hat{r}_{A-a, a}$ connects c.m. of each cluster

$$
\begin{aligned}
& \left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle=\left[\left(\left|A-a \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right\rangle \otimes\left|a \alpha_{2} I_{2}^{\pi_{2}} T_{2}\right\rangle\right)^{(s T)} Y_{l}\left(\hat{r}_{A-a, a}\right)\right]^{\left(J^{\pi} T\right)} \frac{\delta\left(r-r_{A-a, a}\right)}{r r_{A-a, a}} \\
& H^{(A-a)}\left|\Psi_{A-a}^{I_{1}^{\pi_{1}} T_{1}}\right\rangle=E^{I_{1}^{\pi_{1}} T_{1}}\left|\Psi_{A-a}^{I_{1}^{\pi_{1}} T_{1}}\right\rangle \quad H^{(a)}\left|\Psi_{a}^{I_{2}^{\pi_{2}} T_{2}}\right\rangle=E^{I_{2}^{\pi_{2}} T_{2}}\left|\Psi_{a}^{I_{2}^{\pi_{2}} T_{2}}\right\rangle
\end{aligned}
$$

NCSM/RGM

- Combine NCSM with RGM [4]
- $(A-a)$-target and a-nucleon projectile in ${ }^{2 s+1} l_{J}$ relative motion waves
$-\hat{r}_{A-a, a}$ connects c.m. of each cluster

$$
\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle=\left[\left(\left|A-a \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right\rangle \otimes\left|a \alpha_{2} I_{2}^{\pi_{2}} T_{2}\right\rangle\right)^{(s T)} Y_{l}\left(\hat{r}_{A-a, a}\right)\right]^{\left(J^{\pi} T\right)} \frac{\delta\left(r-r_{A-a, a}\right)}{r r_{A-a, a}}
$$

- Require anti-symmetrization to preserve Pauli principle

$$
\hat{\mathcal{A}}_{\nu}=\sqrt{\frac{(A-a)!a!}{A!}}\left(1+\sum_{P \neq 1}(-1)^{p} P_{\nu}\right) \longrightarrow \begin{gathered}
\text { Antisymmetrize } \\
\text { between clusters }
\end{gathered}
$$

NCSM/RGM

- Combine NCSM with RGM [4]
$-(A-a)$-target and a-nucleon projectile in ${ }^{2 s+1} l_{J}$ relative motion waves
$-\hat{r}_{A-a, a}$ connects c.m. of each cluster

$$
\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle=\left[\left(\left|A-a \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right\rangle \otimes\left|a \alpha_{2} I_{2}^{\pi_{2}} T_{2}\right\rangle\right)^{(s T)} Y_{l}\left(\hat{r}_{A-a, a}\right)\right]^{\left(J^{\pi} T\right)} \frac{\delta\left(r-r_{A-a, a}\right)}{r r_{A-a, a}}
$$

- Require anti-symmetrization to preserve Pauli principle
- Use anti-symmetrized channel states as continuous basis ansatz

$$
\left|\Psi^{J^{\pi} T}\right\rangle=\sum_{\nu} \int d r r^{2} \mathcal{A}_{\nu}\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle \frac{\left[\mathcal{N}^{-\frac{1}{2}} \cdot \chi\right]_{\nu}^{J^{\pi} T}(r)}{r}
$$

Solving RGM equations

- Solve orthogonalized RGM equations

Linear variational amplitudes

$$
\sum_{\nu^{\prime}} \int d r^{\prime} r^{\prime 2}\left[\mathcal{N}^{-\frac{1}{2}} \mathcal{H} \mathcal{N}^{-\frac{1}{2}}\right]_{\nu \nu^{\prime}}^{J^{\pi} T}\left(r, r^{\prime}\right) \frac{\chi_{\nu^{\prime}}^{J^{\pi} T}\left(r^{\prime}\right)}{r^{\prime}}=E \frac{\chi_{\nu}^{J^{\pi} T}(r)}{r}
$$

$$
\mathcal{H}_{\nu^{\prime} \nu}^{J^{\pi} T}\left(r^{\prime}, r\right)=\left\langle\Phi_{\nu^{\prime} r^{\prime}}^{J^{\pi} T}\right| \hat{\mathcal{A}}_{\nu^{\prime}} \mathcal{H} \hat{\mathcal{A}}_{\nu}\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle \quad \mathcal{N}_{\nu^{\prime} \nu}^{J^{\pi} T}\left(r^{\prime}, r\right)=\left\langle\Phi_{\nu^{\prime} r^{\prime}}^{J^{\pi} T}\right| \hat{\mathcal{A}}_{\nu^{\prime}} \hat{\mathcal{A}}_{\nu}\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle
$$

Solving RGM equations

- Solve orthogonalized RGM equations

$$
\sum_{\nu^{\prime}} \int d r^{\prime}{r^{\prime}}^{2}\left[\mathcal{N}^{-\frac{1}{2}} \mathcal{H} \mathcal{N}^{-\frac{1}{2}}\right]_{\nu \nu^{\prime}}^{J^{\pi} T}\left(r, r^{\prime}\right) \frac{\chi_{\nu^{\prime}}^{J^{\pi} T}\left(r^{\prime}\right)}{r^{\prime}}=E \frac{\chi_{\nu}^{J^{\pi} T}(r)}{r}
$$

- Norm and Hamiltonian kernels primary computational challenge

$$
\mathcal{H}_{\nu^{\prime} \nu}^{J^{\pi} T}\left(r^{\prime}, r\right)=\left\langle\Phi_{\nu^{\prime} r^{\prime}}^{J^{\pi} T}\right| \hat{\mathcal{A}}_{\nu^{\prime}} \mathcal{H} \hat{\mathcal{A}}_{\nu}\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle \quad \mathcal{N}_{\nu^{\prime} \nu}^{J^{\pi} T}\left(r^{\prime}, r\right)=\left\langle\Phi_{\nu^{\prime} r^{\prime}}^{J^{\pi} T}\right| \hat{\mathcal{A}}_{\nu^{\prime}} \hat{\mathcal{A}}_{\nu}\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle
$$

Hamiltonian kernels

Well established solutions of multi-channel Schrödinger equations

Solving RGM equations

$$
\sum_{\nu^{\prime}} \int d r^{\prime}{r^{\prime}}^{2}\left[\mathcal{N}^{-\frac{1}{2}} \mathcal{H} \mathcal{N}^{-\frac{1}{2}}\right]_{\nu \nu^{\prime}}^{J^{\pi} T}\left(r, r^{\prime}\right) \frac{\chi_{\nu^{\prime}}^{J^{\pi} T}\left(r^{\prime}\right)}{r^{\prime}}=E \frac{\chi_{\nu}^{J^{\pi} T}(r)}{r}
$$

- Solve coupled channel nonlocal integro-differential equations [5-7]
- split configuration space by large matching radius r_{0}
- require continuity of wave function and derivative

Internal region
$\chi_{\nu}^{J^{\pi} T}(r)=\frac{i}{2 v_{\nu}}\left[\delta_{\nu i} H_{l}^{-}\left(\kappa_{\nu} r\right)-S_{\nu i}^{J^{\pi} T} H_{l}^{+}\left(\kappa_{\nu} r\right)\right]$

- Coulomb functions
- Expand over square integrable Lagrange functions

External region

$$
\chi_{\nu}^{J^{\pi} T}(r)=C_{\nu}^{J^{\pi} T} W_{l}\left(\kappa_{\nu} r\right)
$$

- Whittaker function asymptotics
- Normalization constant $C_{v}^{J^{\pi} T}$

Solving RGM equations

$$
\sum_{\nu^{\prime}} \int d r^{\prime} r^{\prime 2}\left[\mathcal{N}^{-\frac{1}{2}} \mathcal{H} \mathcal{N}^{-\frac{1}{2}}\right]_{\nu \nu^{\prime}}^{J^{\pi} T}\left(r, r^{\prime}\right) \frac{\chi_{\nu^{\prime}}^{J^{\pi} T}\left(r^{\prime}\right)}{r^{\prime}}=E \frac{\chi_{\nu}^{J^{T} T}(r)}{r}
$$

- Solve coupled channel nonlocal integro-differential equations [5-7]
- split configuration space by large matching radius r_{0}
- require continuity of wave function and derivative
- Eigenstates and eigenenergies for bound states
- Scattering matrix and eigenstates for unbound states
- Ab initio description of scattering off light-nuclei

No-core shell model with continuum (NCSMC)

- Generalize NCSM/RGM expansion with discrete NCSM eigenstates [8]

$$
\left|\Psi^{J^{\pi} T}\right\rangle=\sum_{\alpha} c_{\alpha}^{J^{\pi} T}\left|A \alpha J^{\pi} T\right\rangle+\sum_{\nu} \int d r r^{2} \mathcal{A}_{\nu}\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle \frac{\left[\mathcal{N}^{-\frac{1}{2}} \cdot \chi\right]_{\nu}^{J^{\pi} T}(r)}{r}
$$

- Solve coupled equations

$$
\left(\begin{array}{cc}
\mathbb{E} & \bar{h} \\
\bar{h} & \mathcal{H}
\end{array}\right)\binom{c}{\chi}=E\left(\begin{array}{cc}
\mathbb{1} & \bar{g} \\
\bar{g} & \mathcal{I}
\end{array}\right)\binom{c}{\chi}
$$

No-core shell model with continuum (NCSMC)

$$
\left|\Psi^{J^{\pi} T}\right\rangle=\sum_{\alpha} c_{\alpha}^{J^{\pi} T}\left|A \alpha J^{\pi} T\right\rangle+\sum_{\nu} \int d r r^{2} \mathcal{A}_{\nu}\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle \frac{\left[\mathcal{N}^{-\frac{1}{2}} \cdot \chi\right]_{\nu}^{J^{\pi} T}(r)}{r}
$$

- Generalize NCSM/RGM expansion with discrete NCSM eigenstates [8]
- Determine $c_{\alpha}^{j^{\pi_{T}}}$ and

Discrete basis
$\chi_{v}^{J^{\pi} T}(r)$ simultaneously by solving coupled equations

Continuous basis
$-\operatorname{comel}^{10}$

No-core shell model with continuum (NCSMC)

$$
\left|\Psi^{J^{\pi} T}\right\rangle=\sum_{\alpha} c_{\alpha}^{J^{\pi} T}\left|A \alpha J^{\pi} T\right\rangle+\sum_{\nu} \int d r r^{2} \mathcal{A}_{\nu}\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle \frac{\left[\mathcal{N}^{-\frac{1}{2}} \cdot \chi\right]_{\nu}^{J^{\pi} T}(r)}{r}
$$

Discrete basis

- Generalize NCSM/RGM expansion with discrete NCSM eigenstates [8]
- Determine $c_{\alpha}^{j^{\pi_{T}}}$ and $\chi_{v}^{\pi^{\pi} T}(r)$ simultaneously by solving coupled equations

Continuous basis

き TRIUMF

${ }^{10} \mathrm{C}$ and ${ }^{10} \mathrm{Be}$ in the NCSMC

${ }^{10} \mathrm{C}$ structure

$$
\left|{ }^{10} \mathrm{C}\right\rangle=\sum_{\alpha} c_{\alpha}\left|{ }^{10} \mathrm{C}, \alpha\right\rangle_{\mathrm{NCSM}}+\sum_{\nu} \int d r \gamma_{\nu}^{J^{\pi} T}(r) \mathcal{A}_{\nu}\left|{ }^{9} \mathrm{~B}+\mathrm{p}, \nu\right\rangle
$$

- Treat as mass partition of proton plus ${ }^{9} \mathrm{~B}$
- Use $3 / 2^{-}$and $5 / 2^{-}$states of ${ }^{9}$ B
- Known bound states captured by NCSMC

State	$\mathrm{E}_{\text {NCSM }}(\mathrm{MeV})$	$\mathrm{E}(\mathrm{MeV})$	$\mathrm{E}_{\exp }(\mathrm{MeV})$
0^{+}	-3.09	-3.46	-4.006
2^{+}	+0.40	-0.03	-0.652

${ }^{10} \mathrm{C}$ structure

$$
\left|{ }^{10} \mathrm{C}\right\rangle=\sum_{\alpha} c_{\alpha}\left|{ }^{10} \mathrm{C}, \alpha\right\rangle_{\mathrm{NCSM}}+\sum_{\nu} \int d r \gamma_{\nu}^{J^{\pi} T}(r) \mathcal{A}_{\nu}\left|{ }^{9} \mathrm{~B}+\mathrm{p}, \nu\right\rangle
$$

${ }^{10} \mathrm{C}$ structure at $N_{\max }=9$

Eigenphase shifts

${ }^{10} \mathrm{C}$ structure at $N_{\max }=9$

Eigenphase shifts

${ }^{10} \mathrm{C}$ structure at $N_{\max }=9$

Eigenphase shifts

${ }^{10} \mathrm{C}$ structure at $N_{\max }=9$

${ }^{10} \mathrm{C}$ structure at $N_{\max }=9$

Eigenphase shifts

${ }^{10} \mathrm{C}$ structure at $N_{\max }=9$

Eigenphase shifts

- 1^{+}resonance previously predicted [9]
- Sharp 1^{+}and 2^{+} resonances
- Additional 3^{+}resonance

- - 0^{+}
--- 1^{+}
--- 1^{+}
--- 2^{+}
$-=-2^{+}$
--- 2^{+}
--- 2^{+}
--- 3^{+}

${ }^{10} \mathrm{C}$ structure at $N_{\max }=9$

Eigenphase shifts

$$
\underbrace{}_{0}{ }^{10} \mathrm{C} \rightarrow \mathrm{p}+{ }^{9} \mathrm{~B}
$$

- 1^{-}and 2^{-}resonances in ${ }^{10} \mathrm{C}$ analogs of ${ }^{10} \mathrm{Be}$ halo states
- 3^{-}resonance expected in ${ }^{10}$ Be present
- Indication of consistency

${ }^{10} \mathrm{C}$ structure at $N_{\max }=9$

Eigenphase shifts

- 1^{-}and 2^{-}resonances in ${ }^{10} \mathrm{C}$ analogs of ${ }^{10} \mathrm{Be}$ halo states
- 3^{-}resonance expected in ${ }^{10}$ Be present
- Indication of consistency

${ }^{10} \mathrm{C}$ eigenphase shifts at $N_{\max }=7$

$$
\pi=+1
$$

${ }^{10} \mathrm{C}$ eigenphase shifts at $N_{\max }=7$

$$
\pi=+1
$$

${ }^{10} \mathrm{C}$ eigenphase shifts at $N_{\max }=7$

$$
\pi=-1
$$

${ }^{10} \mathrm{C}$ eigenphase shifts at $N_{\max }=7$

$$
\pi=-1
$$

${ }^{10} \mathrm{C}$ eigenphase shifts $N_{\max }=7-9$ comparison

${ }^{10} \mathrm{C}$ eigenphase shifts $N_{\max }=7-9$ comparison

${ }^{10} \mathrm{C}$ phase shifts at $N_{\max }=7$

$$
\pi=+1
$$

${ }^{10} \mathrm{C}$ phase shifts at $N_{\max }=7$

$$
\pi=+1
$$

${ }^{10} \mathrm{C}$ phase shifts at $N_{\max }=7$

$$
\pi=-1
$$

${ }^{10} \mathrm{C}$ phase shifts at $N_{\max }=7$

$$
\pi=-1
$$

${ }^{10} \mathrm{C}$ phase shifts $N_{\max }=7-9$ comparison

${ }^{10} \mathrm{C}$ phase shifts $N_{\max }=7-9$ comparison

迅 TRIUMF
${ }^{10} \mathrm{Be}$ structure

${ }^{10} \mathrm{Be}$ structure

$$
\left|{ }^{10} \mathrm{Be}\right\rangle=\sum_{\alpha} c_{\alpha}\left|{ }^{10} \mathrm{Be}, \alpha\right\rangle_{\mathrm{NCSM}}+\sum_{\nu} \int d r \gamma_{\nu}^{J^{\pi} T}(r) \mathcal{A}_{\nu}\left|{ }^{9} \mathrm{Be}+\mathrm{n}, \nu\right\rangle
$$

- Treat as mass partition of neutron plus ${ }^{9} \mathrm{Be}$
- Use $3 / 2^{-}, 5 / 2^{-}$, and $1 / 2^{-}$states of ${ }^{9} \mathrm{Be}$
- Four bound states produced in NCSMC

State	$\mathrm{E}_{\text {NCSM }}(\mathrm{MeV})$	$\mathrm{E}(\mathrm{MeV})$	$\mathrm{E}_{\text {exp }}(\mathrm{MeV})$
0^{+}	-5.70	-5.97	-6.8122
2^{+}	-2.25	-2.51	-3.4442
2^{+}	-0.02	-0.67	-0.8538
1^{-}	+2.23	-0.03	-0.8523
0^{+}	--	+0.56	-0.6329
2^{-}	+2.52	+0.02	-0.5489

${ }^{10} \mathrm{Be}$ structure at $N_{\max }=9$

${ }^{10}$ Be ANC's at $N_{\max }=9$

1^{-}ANCs

1^{-}ANCS				
State	l	S	ANC $\left(\mathrm{fm}^{-1 / 2}\right)$	ANC pheno $\left(\mathrm{fm}^{-1 / 2}\right)$
$3 / 2^{-}$	0	1	0.363	0.951
$3 / 2^{-}$	2	1	0.7×10^{-3}	0.392×10^{-1}
$3 / 2^{-}$	2	2	-0.244×10^{-3}	-0.137×10^{-1}
				-0.230
$5 / 2^{-}$	2	2	-0.102	0.399×10^{-1}
$5 / 2^{-}$	2	3	0.104×10^{-1}	-3.60×10^{-3}
$5 / 2^{-}$	4	3	-0.603×10^{-4}	
				0.425
$1 / 2^{-}$	0	1	0.257	0.506×10^{-1}
$1 / 2^{-}$	2	1	0.184×10^{-1}	

2^{-}ANCs

State	l	S	ANC pheno $\left(\mathrm{fm}^{-1 / 2}\right)$
$3 / 2^{-}$	2	1	-0.288×10^{-1}
$3 / 2^{-}$	0	2	-0.756
$3 / 2^{-}$	2	2	-0.103×10^{-1}
$3 / 2^{-}$	4	2	-0.274×10^{-4}
$5 / 2^{-}$	0	2	-0.451
$5 / 2^{-}$	2	2	0.164
$5 / 2^{-}$	4	2	0.849×10^{-4}
$5 / 2^{-}$	2	3	0.126
$5 / 2^{-}$	4	3	-0.128×10^{-3}
$1 / 2^{-}$	2	0	-0.184×10^{-1}
$1 / 2^{-}$	2	1	-0.348×10^{-1}

${ }^{10}$ Be ANC's at $N_{\max }=9$

${ }^{10}$ Be-nucleus optical potentials developed from chiral effective field theory $N N$

Stat
$3 / 2^{-}$
$3 / 2^{-}$
$3 / 2^{-}$
$5 / 2^{-1}$
$5 / 2^{-1}$
$5 / 2^{2}$

V. Durant ${ }^{1,}$ 困 and P. Capel ${ }^{1,2, ~}{ }^{\text {, }}$
${ }^{1}$ Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
${ }^{2}$ Physique Nucléaire et Physique Quantique (CP 229), Université libre de Bruxelles (ULB), B-1050 Brussels, Belgium

We present a determination of optical potentials for ${ }^{10} \mathrm{Be}$-nucleus collisions using the doublefolding method to compute the real part and Kramers-Kronig dispersion relations to derive the imaginary part. As microscopic inputs we use chiral effective field theory nucleon-nucleon interactions at next-to-next-to-leading order combined with state-of-the-art nucleonic densities. With these potentials, we compute elastic scattering cross sections for the exotic nucleus ${ }^{10} \mathrm{Be}$ off various targets, and compare them to experiment. Without any fitting parameter, we obtain good agreement with data. For collisions on light targets, we observe significant uncertainty related to the short-range physics, whereas for heavy targets that uncertainty remains small.

$1 / 2^{-}$	0	1	0.257	0.425
$1 / 2^{-}$	2	1	0.184×10^{-1}	0.506×10^{-1}

$1 / 2^{-}$	2	0	-0.184×10^{-1}
$1 / 2^{-}$	2	1	-0.348×10^{-1}

Conclusions

- Exploration of continuum effects on $A=10$ systems
- Consistency between ${ }^{10} \mathrm{C}$ and ${ }^{10} \mathrm{Be}$ calculations
$-1^{-}, 2^{-}$and 3^{-}resonances appear in ${ }^{10} \mathrm{C}$
- Predictions of ${ }^{10} \mathrm{Be}$ halo states challenging
- NCSMC close to getting bound 2^{-}
- additional mass partitions could help, i.e. ${ }^{8} \mathrm{Be}+2 \mathrm{n}$ or ${ }^{6} \mathrm{He}+\alpha$

Outlook

- Include additional mass partitions in ${ }^{10} \mathrm{Be}$

References

1. B.R. Barrett, P. Navrátil, \& J.P. Vary. Prog. in Part. and Nuc. Phys., 69, pp. 131-181. (2013)
2. D.R. Entem, R. Machleidt, \& Y. Nosyk. Phys. Rev. C 96, 024004 (2017)
3. V. Somà, P. Navrátil, F. Raimondi, C. Barbieri, \& T. Duguet. Phys. Rev. C, 101, 014318 (2020)
4. P. Navrátil, S. Quaglioni, I. Stetcu \& B.R. Barrett. Jour. Phys. G 36083101 (2009)
5. A.M. Lane \& R.G. Thomas. Rev. Mod. Phys. 30, 257 (1958)
6. M. Hesse, J.-M. Sparenberg, F. Van Raemdonck \& D. Baye. Nuc. Phys. A 640, pp. 37-51 (1998)
7. P. Descouvemont \& D. Baye. Rep. Prog. Phys. 73, 036301 (2010)
8. P. Navrátil, S. Quaglioni, G. Hupin, C. Romero-Redondo \& A. Calci. Phys. Scr. 91 053002, pp. 38 (2016)
9. E.K. Warburton \& B.A. Brown. Phys. Rev. C 46, 3 (1992)

きTRIUMF

Thank you

 Merciwww.triumf.ca
Follow us @TRIUMFLab
(5) (○) § Yout

$A^{2}{ }^{2} z^{w^{-}}$

