EFT-inspired two-body model of ¹¹Be accounting for the core excitations

Live-Palm Kubushishi Pierre Capel

Johannes Gutenberg-Universität Mainz

July 6, 2022

Live-Palm Kubushishi

ECT* Trento 2022

Introduction/motivation

- Halo Nuclei
- Halo EFT
- Breakup reactions with halo nuclei

Coupled-channels calculations of ¹¹Be ¹/₂ states

• $\frac{1}{2}^{-}$ states

3 Summary/perspectives

- Neutron-rich nuclei
- Light nuclei, large matter radius
 - \rightarrow due to one or two loosely-bound neutrons (low S_n or S_{2n})
- Clusterised structure: neutrons can tunnel far from the core
 → halo-nucleus ≡ a compact core + valence neutron(s)

• Halos when low centrifugal barrier (low ℓ)

3 / 25

Where to find them ? How to study them ?

• Exotic nuclear structures found far from stability

- One-neutron, two-neutron and proton halos (less probable)
- Our case study : ${}^{11}\text{Be} \equiv {}^{10}\text{Be} + n$
- Short-lived $[\tau_{1/2}(^{11}\text{Be}) = 13 \text{ s}] \rightarrow \text{study via reactions (e.g. breakup)}$
- Breakup of ¹¹Be ≡ dissociation of halo (n) from core (¹⁰Be) by interaction with target

$^{11}\text{Be} \equiv {}^{10}\text{Be}(0^+) + n$

• **Assumption**: ¹⁰Be always in its 0⁺ ground state

 $\begin{array}{rrrr} 5/2^+ & 1.274 & d5/2 \\ \\ \hline & & - & - & - & - & - \\ \hline \hline 1/2^- & -0.184 & 0p1/2 \\ \hline 1/2^+ & -0.504 & 1s1/2 \end{array}$

¹¹Be spectrum

• angular momenta ℓ and j fixed the spin and parity of ¹¹Be states:

- $\frac{1}{2}^+$ ground state in s1/2
- $\frac{1}{2}^{-}$ first excited state in p1/2
- $\frac{5}{2}^+$ first excited state in d5/2

Single-particle description:

$$H_0(\mathbf{r}) = T_{\mathbf{r}} + V_{cn}(\mathbf{r})$$

Halo EFT description of ¹¹Be

- Halo EFT : separation of scales [in energy/distance]
 - \rightarrow expansion parameter $\epsilon = \frac{R_{core}}{R_{halo}}$ or $\sqrt{\frac{S_{1n}}{E_{2^+}}} \simeq 0.4$
 - \rightarrow no inclusion of 2⁺ state of ^{10}Be core at E(2⁺)=3.4 MeV

 \rightarrow expansion along ϵ of low-energy behaviour (long-range physics) [C. Bertulani, et al. NPA 712, 37 (2002)] [Hammer, Ji, Phillips, JPG 44, 103002 (2017)]

• Effective potentials in each partial wave Ij - narrow Gaussians @NLO

$$V_{cn}(r) = V_{lj}^{(0)} e^{-rac{r^2}{2\sigma^2}} + V_{lj}^{(2)} r^2 e^{-rac{r^2}{2\sigma^2}}$$

 $V_{lj}^{(0)}$ and $V_{lj}^{(2)}$ fitted to reproduce [for bound states]: $\rightarrow \epsilon_{nlj}$ (@ LO) $\rightarrow \epsilon_{nlj}$ (@ LO) and ANC_{nlj} (@ NLO) σ := unfitted parameter \rightarrow evaluates sensitivity to short-range physics [Capel, Phillips, Hammer, PRC 98, 034610 (2018)]

$s_{\frac{1}{2}}$: @NLO - single-particle calculations of ¹¹Be

• $s_{\frac{1}{2}}$: @NLO potentials **fitted to** reproduce *ab initio* data: \rightarrow [Calci et al., PRL 117, 242501 (2016)] $\rightarrow \epsilon_{1s\frac{1}{2}}$ =-0.503 MeV and ANC_{1s\frac{1}{2}} = 0.786 fm^{-1/2}

Wave functions: different interiors but same asymptotics as *ab initio*δ_{s1/2}: ∀ σ, good agreement with *ab initio* up to 1.5 MeV

Single-particle - NLO

July 6, 2022

$p_{\frac{1}{2}}$: @NLO - single-particle calculations of ¹¹Be

• $p_{\frac{1}{2}}$: @NLO potentials **fitted to** reproduce *ab initio* data: $\rightarrow \epsilon_{0p\frac{1}{2}}$ =-0.184 MeV and ANC_{0p\frac{1}{2}} = 0.129 fm^{-1/2}

• Wave functions: different interiors but same asymptotics as ab initio

• Larger variation in $\delta_{p1/2} \rightarrow \sigma$ -dependency !! $\delta_{p1/2}$: $\forall \sigma$, fair agreement with *ab initio* only up to 0.5 MeV ! \rightarrow Is there a model to do better ? Live-Palm Kubushishi Single-particle - NLO July 6, 2022 8/25

@NLO - Coulomb breakup: $^{11}Be+Pb \rightarrow ^{10}Be+n+Pb$

Exp : [Fukuda *et al.* PRC 70, 054606 (2004)] Th. : [P.C., Phillips & Hammer, PRC 98, 034610]

- $\forall \sigma$ (effective potentials), very similar results:
 - \rightarrow wave functions, \neq interiors, same asymptotics and same results
 - \rightarrow reaction sensitive to ANC and phaseshifts
 - \rightarrow reaction is peripheral
 - \rightarrow adequacy of Halo-EFT to reproduce long-range physics

Nuclear breakup: ${}^{11}Be+C \rightarrow {}^{10}Be+n+C$

Th. : [P.C., Phillips & Hammer, PRC 98, 034610]

- ∀ σ (effective potentials), very similar results once again: reaction still peripheral
- Good order of magnitude but missing breakup strength at the $\frac{5}{2}^+$ and $\frac{3}{2}^+$ resonances
 - \rightarrow need for a better description of the continuum

@NLO - Nuclear breakup

Beyond NLO - Nuclear breakup: $^{11}\text{Be}+\text{C} \rightarrow ^{10}\text{Be}+\text{n}+\text{C}$ @67 AMeV

- Beyond NLO:= NLO + resonances
 - \rightarrow potentials fitted to reproduce *ab initio* data (E_R, Γ)
- $\forall \sigma$ (effective potentials), similar breakup cross sections

 ¹⁰Be (2⁺) = the missing degree of freedom ! [Moro, Lay PRL 109, 232502 (2012)]

Beyond NLO - Nuclear breakup

- Idea:= include core excitation in Halo-EFT
 - \rightarrow allowing the ^{10}Be core to be excited to its 2^+ state
 - \rightarrow adding a new degree degree of freedom to Halo EFT

Adding core degrees of freedom

• Two-body Hamiltonian of the projectile:

$$H_0(\mathbf{r},\xi) = T_{\mathbf{r}} + V_{cn}(\mathbf{r},\xi) + h_c(\xi)$$

where :

- ξ : core internal d.o.f
- $h_c(\xi)$: intrinsic Hamiltonian of the core
- $V_{cn}(\mathbf{r},\xi)$: effective c-n interaction
- \rightarrow contains a non central part for the core admixtures
- Model for $h_c(\xi)$?

- 1^{st} idea of rotational model for ¹¹Be using mean field potentials: \rightarrow [F.M. Nunes, et al. NPA, 596 (1996)]
- Particle-rotor model [Bohr and Mottelson (1975)]:
 - \rightarrow core with a permanent quadrupole deformation
- Multipolar expansion of V_{cn} assuming small deformation lengths. Coupling interaction:

$$V_{cn}(\mathbf{r},\xi) = V_{cn}(r;\sigma_0) + \beta_2 \sigma_c Y_2^0(\hat{r}) \frac{d}{d\sigma_c} V_{cn}(r;\sigma_c)$$

 $V_{cn}(\mathbf{r}, \xi)$: from deforming the NLO Gaussian Halo-EFT potentials σ_0 , σ_c : widths of Gaussian coupling $\beta_2 \sim$ low-energy constant (LEC)

14 / 25

Coupled-channels equations to be solved: with **R-Matrix method on a Lagrange mesh**

• Core eigenfunctions satisfy the equations:

$$h_c(\xi)\phi_{MK}^{I}(\xi) = \epsilon \phi_{MK}^{I}(\xi)$$

with $\phi'_{MK}(\xi) \propto D'_{MK}$:= Wigner rotational matrices • $\psi_{\alpha}(r)$ = solutions of the set of coupled-channel equations, $\alpha = \{n\ell jl\}$

$$(\epsilon_{J^{\pi}}^{^{11}Be} - \epsilon_{\alpha}^{^{10}Be})\psi_{\alpha}(r) = [T_r^{\ell} + V_{\alpha\alpha}(r)]\psi_{\alpha}(r) + \sum_{\alpha' \neq \alpha} V_{\alpha\alpha'}(r)\psi_{\alpha'}(r)$$

with

$$V_{lphalpha'}(\mathbf{r}) = \langle Y_{lpha}(\hat{\mathbf{r}})\phi_{lpha}(\xi)|V_{cn}(\mathbf{r},\xi)|Y_{lpha'}(\hat{\mathbf{r}})\phi_{lpha'}(\xi)
angle$$

the coupling interaction being:

$$V_{cn}(\mathbf{r},\xi) = V_{cn}^{NLO}(r;\sigma_0) + \beta_2 \sigma_c Y_2^0(\hat{r}) \frac{d}{d\sigma_c} V_{cn}^{NLO}(r;\sigma_c)$$

• 2 \neq types of calculations: $\sigma_c = \sigma_0 = \sigma_c$ and $\sigma_c \neq \sigma_0$

¹¹Be: $\frac{1}{2}^+$ states

イロト イヨト イヨト イヨト

2

Bound state - coupled-channels ¹¹Be - $\sigma_c = \sigma_0$ [=1.5 fm]

- Ground state of ¹¹Be
- $s_{\frac{1}{2}}$: β_2 , @NLO potentials **fitted to** reproduce *ab initio* data:
 - $\stackrel{_{2}}{\rightarrow}$ [Calci et al., PRL 117, 242501 (2016)]
 - \rightarrow $\epsilon_{1s\frac{1}{2}}{=}{-}0.503~{\rm MeV}$ and ${\rm ANC}_{1s\frac{1}{2}}$ = 0.786 ${\rm fm}^{-1/2}$
- Wave functions: different interiors, same asymptotics as *ab initio* but **no real improvement** compared to single-particle description
- Similar results obtained for $\sigma_0{=}1.2$ and 2.0 fm

Phaseshift - coupled-channels ¹¹Be - $\sigma_c = \sigma_0$ [=1.5 fm]

- $s_{\frac{1}{2}}$: β_2 , @NLO potentials fitted to reproduce *ab initio* data: \rightarrow [Calci et al., PRL 117, 242501 (2016)]
- δ_{s1/2}: ∀ σ, good agreement up to 1.5 MeV with *ab initio* but no improvement compared to single-particle description
- Similar results obtained for $\sigma_0=1.2$ and 2.0 fm

Bound state - coupled channels ¹¹Be - $\sigma_c \neq \sigma_0$

- Let us try $\sigma_c \neq \sigma_0$, i.e. coupling acting at larger distances
- $s_{\frac{1}{2}}$: β_2 , @NLO potentials **fitted to** reproduce *ab initio* data:

$$ightarrow \epsilon_{1srac{1}{2}}$$
=-0.503 MeV and ANC $_{1srac{1}{2}}$ = 0.786 fm $^{-1/2}$

- Here, $\dot{\sigma}_c = 2.2$ fm, $\sigma_0 = 1.2$ fm
- $\forall \beta_2, \neq$ interiors, same asymptotics as *ab initio*
- $\exists \beta_2$ (=0.5) which gives really good agreement with *ab initio*

19 / 25

Phaseshift - coupled-channels ¹¹Be - $\sigma_c \neq \sigma_0$

- $s_{\frac{1}{2}}$: β_2 , @NLO potentials **fitted to** reproduce *ab initio* data:
- $\sigma_c \neq \sigma_0 \rightarrow \text{significative improvement of the phaseshift:}$ $\rightarrow \exists \beta_2 \ (=0.5) \text{ which reproduces ab initio up to 4MeV ! (see below)}$ Also, best $\beta_{wf} \simeq \text{best } \beta_{\delta_{eig}}$
 - \rightarrow $\sigma_{0}{=}1.2 {\rm fm}$ \rightarrow \simeq 1.8 {\rm fm} : same results, agreement up to 3 MeV
- Zone of interest: $\sigma_0 \ll \sigma_c \sim 2.2$ fm [rms radius of ¹⁰Be core]

¹¹Be: $\frac{1}{2}^{-}$ states

イロト イヨト イヨト イヨト

3

Bound state - coupled channels ¹¹Be - $\sigma_c \neq \sigma_0$

- 1st excited state of ¹¹Be
- $\sigma_c \neq \sigma_0$ (no improvement of wave functions/ phaseshift otherwise)
- $p_{\frac{1}{2}}$: β_2 , @NLO potentials **fitted to** reproduce *ab initio* data:
 - \rightarrow $\epsilon_{0p\frac{1}{2}}{=}{-}0.184$ MeV and $\mathsf{ANC}_{0p\frac{1}{2}}$ = 0.129 $\mathsf{fm}^{-1/2}$
- Here, $\sigma_c = 2.2$ fm, $\sigma_0 = 1.2$ fm [similar results for other (σ_c , σ_0) values]
- No improvement of the wavefunction

Phaseshift - coupled-channels ¹¹Be - $\sigma_c \neq \sigma_0$

- $p_{\frac{1}{2}}$: β_2 , @NLO potentials **fitted to** reproduce *ab initio* data:
- Here, $\sigma_c = 2.2$ fm, $\sigma_0 = 1.2$ fm [similar results for other (σ_c , σ_0) values]
- No improvement of the phaseshift
- What is happening for the $\frac{1}{2}^{-}$ states ? What can we improve here ?

σ -dependency in $\frac{1}{2}^{-}$ states ?

- $p_{\frac{1}{2}}$: @NLO potentials **fitted to** reproduce *ab initio* data
- Single-particle description
- $\sigma = 1.8$ fm, improvement phaseshift up to 3 MeV (0.5 MeV for other σ)
 - $ightarrow \sigma$ -dependency
 - \rightarrow no improvement when adding the coupling with the core
 - \rightarrow Work in progress to adress this question !

We have developed a model that:

- Includes core excitations perturbatively in Halo-EFT
- 2 $\frac{1}{2}^+$ states: $\sigma_c \simeq {}^{10}$ Be rms radius
 - \rightarrow better description of *ab initio* wave functions and phaseshifts
- $\frac{1}{2}$ states: coupling with the core does not improve anything $\exists \sigma$ in agreement with *ab initio* till 3 MeV (σ -dependency) \rightarrow Should we go to N2LO to remove this σ -dependency ?
- Future: using our model for breakup calculations