

Invariant-mass spectrometry

Most of the experimental data I will show come from experiments at NSCL (MSU) using the HiRA apparatus - 14 Si-CsI(TI) E- $\Delta \mathrm{E}$ telescopes. For heavier resonances we the S 800 spectrometer with an annual $\mathrm{Si}-\mathrm{Csi}(\mathrm{TI})$ array instead.

Measured energy and angle of charged decay products to construct invariant-mass spectra

Where is the edge of the chart of Nuclides in this region

Al- 21
Al- 22
91.1 ms

Mg-19 4.0ps

Na- 18 $1.3 \mathrm{E}-21 \mathrm{~s}$

Ne- $\mathbf{1 7}$
109.2 ms
$0-12$

FIE-225
F-14
$5.0 \mathrm{E}-225$
$\mathbf{O - 1 3}$
8.58

\section*{| 3.7 | |
| :---: | :---: |
| | F |
| | |}

F-15	
4.1	

F-15
$1 \mathrm{E}-22 \mathrm{~s}$
$\mathbf{0 - 1 4}$

F-16
$1.1 \mathrm{E}-19$

\section*{| 1.1 |
| :---: |
| |
| |
| |}

$\mathrm{N}-11$
$5.5 \mathrm{E}-22 \mathrm{~s}$
22 s

C
C-1

10

C-
20.
E

B-9
$8.5 \mathrm{E}-1$

C
126.5
$\mathbf{B}-8$
770
Be
53.2

[-

Al- 23
AI- 24
Al- 2
Al- 26
Al- 27 2.053 s
$* 130.9 \mathrm{~ms}$

The edge of chart of nuclides is diffuse - determined by when the width of resonances become so wide they melt into the continuum.

So what is the maximum width we can consider for an isotope?
In high-energy physics, the W -boson has a decay width of 2 GeV , but this is unrealistic for a nucleus.

Separation of timescales between formation and decay of resonance.
i.e., reaction timescale must be shorter that lifetime of resonance.

Typical reaction time is that in which $100 \mathrm{MeV} / \mathrm{A}$ projectile travels one diameter (9 fm) of target $\sim 7 \times 10^{-23} \mathrm{~s} \quad$ Thus $\Gamma<9 \mathrm{MeV}$.

Decay time cannot be shorter than typical time scale of nuclear motion time for a valence nucleon (Ek $\sim 40 \mathrm{MeV}$) to travel a nuclear diameter (9 fm), Thus $\Gamma<6 \mathrm{MeV}$

Experimentally a resonance of width 6 MeV would be hard to find especially if there is some non-resonance background and/or multitude of states which overlap and form a continuum.

Just beyond the proton drip line we find $1 p$ emitters for odd- Z isotopes and $2 p$ emitter for even- Z isotopes

$70 \mathrm{MeV} / \mathrm{A}^{13} \mathrm{O}$ beam
Webb et al PRC 100 (2019) 024306

Correlations in decay can be explained in the time-dependent approach starting with Gamow Coupled Channel wavefunctions. Determined by nuclear structure and final-state interactions. Decay is dominated by the proton $\left(\mathrm{s}_{1 / 2}\right)^{2}$ configuration of the initial wavefunction. Wang et al , J. Phys. G to be published.
${ }^{11} \mathrm{O}->2 \mathrm{p}+{ }^{9} \mathrm{C}$ mirror of ${ }^{11} \mathrm{Li}$

Two-neutron knockout from ${ }^{13} \mathrm{O}$ beam
Webb et al PRL 122 (2019) 122501

Overlapping states:
Decomposition is done with the aid of Gamow Coupled Channels modellots of interesting effects of the continuum here.

Three neutron knockout reactions to resonance states added.
${ }^{17} \mathrm{Ne}->{ }^{16} \mathrm{Ne}_{\text {g.s. }}$
${ }^{13} \mathrm{O} \quad->^{12} \mathrm{O}_{\text {g.s. }}$
${ }^{9} \mathrm{C} \quad->^{8} \mathrm{C}_{\text {g.s. }}$

Nucleon knockout to resonant states is further suppressed compared to the Gade-Tostevin systematics. We suggested that this extra suppression is a result of smaller spectroscopic factors influenced by the continuum coupling - This has been supported with theory calculations including the continuum.
[J. Wylie et al., Phys. Rev. C 104, L061301 (2021)]

Discovery of ${ }^{13} \mathrm{~F}$ formed in a charge-exchange reaction with a ${ }^{13} \mathrm{O}$ beam with the invariant-mass method. Mirror of ${ }^{13} \mathrm{~B}$ discussed by G . Rogachev

Only the $5 / 2^{+}$first excited states was resolved.
Intermediate states in ${ }^{12} \mathrm{O}$ were identified

Charity et al , PRL 1126 (2021) 132501
$4 p$ emitters for even-Z isotopes.

NSCL HiRA experiment PRC 82 041304(R) (2010)

$2 p+\alpha$ subevents from the detected $4 p+\alpha$ events. Six subevents per event. All ${ }^{8} \mathrm{C}_{\text {g.s. }}$ events have a ${ }^{6} \mathrm{Be}_{\text {g.s. }}$ intermediate state.
$2 p+\alpha$ events from a ${ }^{7}$ Be beam following one-neutron knockout
$4 p+\alpha$ events from ${ }^{9} \mathrm{C}$ beam following one neutron knockout

$\frac{0^{+}}{4 \mathrm{p}+\alpha}$

${ }^{8} \mathrm{C}$ excited states?
5 nucleon knockout from a ${ }^{13} \mathrm{O}$ beam

Gamow-Shell-Model predictions J. Wylie, S Wang, W. Nazarewicz

2 protons plus a ${ }^{6} \mathrm{Be}$ core.

Background from ${ }^{12} \mathrm{O}->4 p+2 \alpha$ subtracted
${ }^{18} \mathrm{Mg}$ formed following two-neutron knockout from a ${ }^{20} \mathrm{Mg}$ beam: NSCL PRL 127, 262502 (2021)
${ }^{18} \mathrm{Mg}->4 p+{ }^{14} \mathrm{O} . \quad{ }^{14} \mathrm{O}$ fragment detected in the S 800 spectrometer, protons detected in a Si-CsI(TI) annular counter. Collaboration with Peking University.

Ground and 2^{+}first excited state identified

Ground-state subevents consistent with decay path consisting of two-steps of prompt $2 p$ decay with a ${ }^{16} \mathrm{Ne}$ intermediate state.

$3 p$ and $4 p$ emitters so far involve sequential steps of $1 p$ and $2 p$ decay. No evidence for prompt $3 p$ and $4 p$ emission.
$5 p$ emitters?

$70 \mathrm{MeV} / \mathrm{A}{ }^{13} \mathrm{O}$ beam - knockout 1 proton and 3 neutrons
$5 p+\alpha$ invariant-mass distribution is quite broad and no clear peaks.

Look for events that $p+{ }^{8} C_{\text {g.s. }}$ decay by gating on the invariant-mass of the $4 p+\alpha$ subevents. (Five subevents for each $5 p+\alpha$ event)

Single peak fit.
Can only fit this as $\mathrm{I}=0$ resonance using a R -matrix lineshape for $p+{ }^{8} \mathrm{C}$.
$\mathrm{Q}_{1 \mathrm{p}}=1.22(6) \mathrm{MeV}$
$\Gamma=2.59(23) \mathrm{MeV}$
$\Gamma>2 \times \mathrm{Q}_{5 \mathrm{p}}$ - subthreshold resonance (similar to diproton)
More of a final state effect.

Two-peak fit.
Upper peak is at energy of the $1 / 2{ }^{-2}$ state predicted with Gamow Shell Model. (Wyle, Wang, Nazarewicz). As for ${ }^{11} \mathrm{Be}$, we expect an inversion of the 12^{+}and $1 / 2^{-}$ground and first excited states as the $\mathrm{s}_{1 / 2}$ orbital intrudes in the p-shell. Can the lower peak be the $1 / 2+$ state? In the mirror ${ }^{9} \mathrm{He}$, a number of experimental studies report a 12^{+} virtual state in the $n+{ }^{8} \mathrm{He}$ system (final-state effect).
The Gamow Shell Model cannot find a real $1 / 2^{+}$resonance. Within the statistical uncertainty we cannot determine if the $1 / 2+$ peak is from a real resonance or a final-state effect.

Do we see a ${ }^{9} \mathrm{~N}$ state?

Option 1) one peak all associated with $\mathrm{s}_{1 / 2}$ strength,
this strength is from a sub-threshold resonance, i.e., final-state interaction

Option 2) two peaks. Upper peak is the $1 / 2^{-}$state in ${ }^{9} \mathrm{~N}$. Within statistics we cannot discriminate if lower peak in fit is from a real resonance or a final-state interaction.

```
Gamow Shell Model calculations (J. Wylie, S. Wang, W. Nazarewicz)
1/2 state Q }\mp@subsup{\textrm{Q}}{5\textrm{p}}{}=8.3\textrm{MeV}\quad\Gamma=1.4 Me
Does not predict a 1/2+ ground state
```


Have we reached the edge yet?
${ }^{19} \mathrm{Mg} \Gamma=1 \times 10^{-10} \mathrm{MeV}$ (exp.)
${ }^{18} \mathrm{Mg} \Gamma=1.2 \times 10^{-1} \mathrm{MeV}$ (exp.)
Nine orders of magnitude change, extrapolating to ${ }^{17} \mathrm{Mg}$ would give us well over 10 MeV
${ }^{16} \mathrm{Ne} \Gamma=0.8 \times 10^{-3} \mathrm{MeV}$ (prediction by Grigorenko et al.)
${ }^{15} \mathrm{Ne} \Gamma=0.6 \mathrm{MeV}$ (exp.)
Three orders of magnitude change
${ }^{12} \mathrm{O} \Gamma=5 \times 10^{-2} \mathrm{MeV}$ (exp.)
${ }^{11} \mathrm{O} \Gamma=1.3 \mathrm{MeV}$ (exp + theory)
Two orders of magnitude change

Other $5 p$ emitters, or even $6 p$ emitters?

Summary

Exploration far beyond the proton drip line allows us to explore the role of continuum in nuclear structure.

We have observed 3, 4, and 5-proton emitters at the extreme edge of Chart of Nuclides and more such emitters will be found in heavy isotopes.

The extreme proton-rich edge of the chart of nuclides has been largely found in the region of light nuclei.

```
Collaborators
Washington University: Lee Sobotka
    Kyle Brown (thesis)
    Tyler Webb (thesis)
    Dan Hoff
    Cole Pruitt.
```

The Lynch/Tsang/Brown group at MSU
Simin Wang, Joshua Wylie, Witek Nazarewicz (Shanghai and FRIB)
Alan Wuosmaa group at U. of Connecticut
Peking University
Yu Jin (thesis). C.Y. Niu. Z. Li. H. Hua

Backup slides

Fits where $1 / 2^{+}$strength is from the Gamow Coupled Channels time-dependent calculations.

