Exotic decay modes of proton drip-line nuclei

Chiara Mazzocchi

Faculty of Physics, University of Warsaw

Nuclear Physics at the Edge of Stability, ECT* July 6th, 2022

Zakład Fizyki Jądrowej Uniwersytet Warszawski

Selected recent results

Summary and outlook

Overview

Physics playground

Experimental approaches

Selected recent results

Summary and outlook

Exotic nuclei

Light and medium mass proton drip-line region

- Nuclear structure far from stability
- New decay modes
- Data for the rp-process

Light n-rich nuclei

- Emission of β-delayed charged particles (p,d)
- Probing n-halo

Rare decay modes

Proton-rich nuclei

- strong β transitions

Precursor

Two-proton radioactivity

Expected for even-Z nuclei beyond the proton drip-line

Goldanski, Nucl. Phys. 19 (1960) 482

Two-proton emission

Important messenger on

- masses
- nuclear forces
- structure (?)

beyond the proton drip-line.

It competes with β^+ decay.

What is the mechanism?

- sequential or simultaneous?
- di-proton, independent, correlated?

 \rightarrow measurement of the angular distribution of the two protons

L. Grigorenko, two-proton decay mechanisms of ⁴⁵Fe

Particle spectroscopy

Measurement of branching ratios and $T_{1/2}$

- competition btw. β decay & particle capture \rightarrow shape of rp-process path
 - \Rightarrow abundance of heavy elements in the Universe
- comparison of exp. studies with theory
 → check of nuclear structure
 and interaction models

Experimental approaches 000 Selected recent results

Summary and outlook

Charged particle spectroscopy

The beginning of an adventure: discovery of 2p radioactivity (2002)

Implantation into Si-det. array

- \rightarrow good measurement of total energy but protons not resolved!
- \Rightarrow auxiliary detectors needed to prove peak is not β p emission!

M. Pfützner et al., Eur. Phys. J. A14 (2002) 279

J. Giovinazzo et al., Phys. Rev. Lett. 89 (2002) 102501

The beginning of an adventure: momenta of the 2 protons (2007)

Time-projection chambers developed to measure the momenta of the 2 protons

University of Warsaw:: "optical" TPC

45Fe

K. Miernik et al., Phys. Rev. Lett. 99 (2007) 192501

CENBG-Bordeaux:: "classical" TPC (electronic readout)

J. Giovinazzo et al., Phys. Rev. Lett. 99 (2007) 102501

Challenges for experimenters

- exotic nuclei \rightarrow low production rates
- rare decay modes \rightarrow small branching ratios
- high background levels
- physics requirements
 - low-energy particle detection
 - particle correlation measurements

Experimental solution(s)

Production of the isotopes of interest

projectile fragmentation + in-flight separation
 → MARS@TAMU, BIGRIPS@RIKEN, ACCULINNA@DUBNA, FRS@GSI, A1900@NSCL

- ion identification: energy loss (ΔE) vs time-of-flight (ToF) matrices
- implantation of the ions into the Optical Time-Projection Chamber $({\rm OTPC})$

Physics playground

Experimental approaches

Selected recent results

Summary and outlook

Optical-readout Time-Projection Chamber (OTPC)

Identified ions implanted in the OTPC

Combination of CCD image and PMT waveform \rightarrow 3D reconstruction of particle tracks

Exotic decay modes of proton drip-line nuclei

ECT*, 06.07.2022

Physics playground	Experimental approaches 000	Selected recent results	

Can we see the Z=28 shell closure in the p-p correlations?

Two-proton radioactivity of ⁵⁴Zn studied at the BigRIPS spectrometer (RIKEN):

- fragmentation of a $^{78}{\rm Kr}$ beam @ 350 MeV/u on Be target
- large beam intensity: 300 pnA
- ion-by-ion identification
- selective triggering
- beam stopped upon good implantation

A. Kubiela, PhD thesis, University of Warsaw, in preparation

Production cross-section of proton-rich Zn isotopes:

- cross section found to be more than 100x smaller than pessimistic predictions \rightarrow only a few $^{54}{\rm Zn}$ ions observed

A. Kubiela et al., Phys. Rev. C 104, 064610 (2021)

A. Kubiela, PhD thesis, University of Warsaw, in preparation

Production cross-section of proton-rich Zn isotopes

Nucleus	$\sigma_{ m exp}$	$\sigma_{ m EPAX3}$	$\sigma_{ m AA}$	$\sigma_{ m Ni}$
⁵⁶ Zn ⁵⁵ Zn ⁵⁴ Zn	$\begin{array}{l} (3.1\pm0.1_{(stat)}\pm1.0_{(syst)})\times10^{-11} \\ (8.8\pm0.3_{(stat)}\pm3.1_{(syst)})\times10^{-13} \\ (3.5\pm0.7_{(stat)}\pm1.2_{(syst)})\times10^{-15} \end{array}$	$\begin{array}{l} 8.45 \times 10^{-11} \\ 3.47 \times 10^{-12} \\ 1.47 \times 10^{-13} \end{array}$	$\begin{array}{c} 1.6\times10^{-11}\\ 3.8\times10^{-13}\\ 4.1\times10^{-15} \end{array}$	$\begin{array}{c} 5^{+20}_{-2} \times 10^{-10} \\ 2.0^{+0.6}_{-0.5} \times 10^{-11} \\ \approx 1 \times 10^{-13} \end{array}$

A. Kubiela et al., Phys. Rev. C 104, 064610 (2021); A. Kubiela, PhD thesis, University of Warsaw, in preparation

Exotic decay modes of proton drip-line nuclei

ECT*. 06.07.2022

Production cross-section of proton-rich Zn isotopes

reaction selection

Lab	Beam	E [MeV/u]	<i>I</i> [pnA]	Target	$d [g/cm^2]$	σ [fb]	Y [1/day]
GANIL RIKEN	⁵⁸ Ni ⁺²⁶ ⁷⁸ Kr ⁺³⁶	75 345	154 300	Ni Be	0.250	100	22 70
	м	545	500	БС	1.050	5.5	70

• predictions for productions of new 2-proton emitters

Nucleus	σ [barn]	S_p [MeV]	S_{2p} [MeV]	$T_{1/2}^{2p}$
⁵⁹ Ge	$(4.8 \pm 1) \times 10^{-14}$ a	0.349	-0.742	10 ¹¹ s
⁵⁸ Ge	7.6×10^{-16}	0.299	-2.122	$0.6 \mu s$
⁶³ Se	$(1.3 \pm 0.3) \times 10^{-14}$ a	0.589	-1.512	1 s
⁶² Se	$8.4 imes 10^{-17}$	0.099	-2.612	14 ns

^aExperimental value from Ref. [16].

A. Kubiela et al., Phys. Rev. C 104, 064610 (2021); A. Kubiela, PhD thesis, University of Warsaw, in preparation

Exotic decay modes of proton drip-line nuclei

ECT*. 06.07.2022

Two-proton radioactivity of ⁵⁴Zn studied at the BigRIPS spectrometer (RIKEN):

5 events observed (4 reconstructed)

A. Kubiela, PhD thesis, University of Warsaw, in preparation

Physics playground	Experimental approaches	Selected recent results	
0000000	000	0000000000000	0000

β -delayed multi-particle decays: light silicon isotopes

Region around ²²Si (Z=14, N=8):

- ²²Si and ²³Si known to decay via β1p and β2p emission
- mostly through the IAS
- β3p, βαp and β³He channels (hitherto unobserved decay mode) open
- decay through other states than IAS not observed, nor the β3p

0.85

Summary and outlook

β -delayed multi-particle decays: light silicon isotopes

Experiment at the MARS spectrometer (Texas A&M University):

- fragmentation of a $^{28}{\rm Si}$ beam @ 45 MeV/u on Ni target
- ion-by-ion identification
- selective triggering
- beam stopped upon good implantation

00000000 000 0000 00000 0000 0000	Physics playground	Experimental approaches	Selected recent results	
	0000000	000	0000000000000	0000

 β -delayed multi-particle emission from ²³Si

- about 7.5k implanted ²³Si ions
- branching ratios: $b_{\beta p} = 81.8(11)\%$ (lit. 71%) $b_{\beta 2 p} = 7.73(35)\%$ (lit. 3.6%)
- new low-energy proton group observed

A.A. Ciemny et al., submitted to Phys. Rev. C A.A. Ciemny, PhD Thesis, University of Warsaw, in preparation

Physics playground	Experimental approaches	Selected recent results	
0000000	000	0000000000000	0000

 β -delayed multi-particle emission from ²³Si

- first observation of β 3p decay of ²³Si (2 evnts) 20
- $b_{\beta 3p} = 2.9 \binom{+38}{-19} \times 10^{-4}$
- E_{3p} = 3.65(35) MeV (# 1) and E_{3p} \geq 2.7(7)-3.3(6) MeV (# 2)

 \rightarrow compatible with decay through IAS or nearby states

 β -delayed multi-particle emission from ²³Si

- elayed multi-particle emission from \sim . tentative identification of $\beta p \alpha$ decay of ²³Si (1 ev.) $(^{\pm 33}) \sim 10^{-4}$
- Fit results:

 $\alpha p/p\alpha \rightarrow E_p=1.6(1)$ MeV and $E_{\alpha}=1.2(4)$ MeV (compatible with IAS decay)

 $p+p \rightarrow E_{p_1}=1.6(1)$ and $E_{p_2}0.4(2)$ MeV (compatible with decay from state below IAS)

 β -delayed multi-particle emission from ²³Si: $\beta p \alpha / \beta \alpha p$ decay channel

- $\beta p \alpha$ or $\beta \alpha p$?
- barrier penetrability considerations with $\ell_{\alpha}=0$ favour p+ α emission
- in literature $\beta p \alpha$ and $\beta \alpha p$ observed in ¹⁷Ne and ⁹C, while $\beta p \alpha$ in ²¹Mg

A.A. Ciemny et al., submitted to Phys. Rev. C A.A. Ciemny, PhD Thesis, University of Warsaw, in preparation

 β -delayed multi-particle emission from ²³Si: $\beta p \alpha / \beta \alpha p$ decay channel

- $\beta p \alpha / \beta \alpha p$ known cases (T_z=-3/2 ¹⁷Ne, ⁹C and ²¹Mg) decay through α -conj. nucleus (¹⁶O, ⁸Be, ²⁰Ne)
- systematics of β -delayed multi-particle decay of $T_z \leq -3/2$ isotopes \rightarrow presence of β 3p and $\beta p \alpha / \beta \alpha p$ decay modes in $T_z \leq -3/2$ due to odd-even rather than α clustering effects (Lund et al., PLB750 (2015))
- observation in T_z =-5/2 ²³Si, ²⁷S, ³¹Ar would support the conclusion
- discovery of $\beta 3p$ decay in $^{23}{\rm Si},\,^{31}{\rm Ar}$ and $^{43}{\rm Cr},$ and tentatively of $\beta p\alpha$ in $^{23}{\rm Si}$ supports it

A.A. Ciemny et al., submitted to Phys. Rev. C

A.A. Ciemny, PhD Thesis, University of Warsaw, in preparation

β decay of ²³Si – DFT-NCCI calculations

- State-of-the-art: shell-model \rightarrow sufficiently accurate description of the low-energy spectrum of $^{23}{\rm Al}$
- Alternative approach: multi-reference density-functional-rooted (DFT-rooted) calculations

 \rightarrow extension of conventional mean-field that restores angular momentum and treats properly isospin symmetry

• Aim: validate the new approach in the nucleus where benchmark SM results exist and test the properties of the underlying functional in this mass region without applying any local adjustment of its parameters.

A.A. Ciemny, PhD Thesis, University of Warsaw, in preparation

A.A. Ciemny et al., submitted to Phys. Rev. C

β decay of ²³Si – DFT-NCCI calculations

- Configuration-space and configuration mixing calculation \rightarrow SV_{SO} density-ind. Skyrme interaction
- · Low-energy spectrum compares relatively well with SM
- IAS predicted \sim 2.5 MeV lower than exp. and SM \rightarrow need for better calibration of the symmetry energy strength in the functional
- GT for decay to states with $\mathsf{E}_x <\!\! 3 \mbox{ MeV} \rightarrow \mathsf{GT}$ mat. el. $\ll\!\! 1$
- Shape difference predicted for ²³Si (weak def. obl.) and ²³Al (well def. prol.) \rightarrow GT mat. el. hindrance + IAS dominance in decay pattern
- Difference between DFT-NCCI and SM predictions for $E_x > 3$ MeV: still under investigations \rightarrow will require better calibration of the functional

Summary and outlook

OTPC used in connection with different ion-delivery systems:

- simple and very efficient tool to search for very rare decays and to investigate charged-particle decays obscured by β background
- it can provide precise branching ratios for β -delayed charged-particle channels
- low energies can be reconstructed (worse energy resolution than with Si detectors complementarity!)
- most recent results include study of 2p decay of $^{54}{\rm Zn}$ and $\beta{\rm xp}$ decay of $^{23}{\rm Si}$

Summary and outlook

Limitations

- reconstruction of multi-particle decays (>2) difficult/impossible
- low counting rate (\sim 2 Hz)
- long $T_{1/2}$ are very challenging
- limited range range of measurable energies (but complementary to Si-detector energy ranges)

New active target TPC with planar readout developed for nuclear astrophysics studies, but not only

OTPC experiments on the two-proton emitters $^{39}{\rm Ti}$ and $^{48}{\rm Ni}$ planned at GANIL and FRIB

Stay tuned!

thank you!

PHYSICAL REVIEW C 104, 064610 (2021)

Production of the most neutron-deficient Zn isotopes by projectile fragmentation of ⁷⁸Kr

A, Kubiela,^{1,*} H, Suzuki,² O, B, Tarasov,³ M, Pfützner,^{0,1,*} D,-S, Ahn,² H, Baba,² A, Bezbakh,⁴ A, A, Ciemny,¹ W, Dominik,¹ N. Fukuda,² A. Giska,¹ R. Grzywacz,⁵ Y. Ichikawa,^{2,6} Z. Janas,¹ Ł. Janiak,⁷ G. Kamiński,^{4,8} K. Kawata,^{2,9} T. Kubo,² M. Madurga,⁵ C. Mazzocchi,¹ H. Nishibata,^{2,6} M. Pomorski,¹ Y. Shimizu,² N. Sokołowska,¹ D. Suzuki,² P. Szymkiewicz,^{4,10} A. Świercz,^{4,10} M. Tajima,² A. Takamine,² H. Takeda,² Y. Takeuchi,^{2,11} C. R. Thornsberry,⁵ H. Ueno,² H. Yamazaki,² R. Yokovama,⁵ and K. Yoshida² ¹Faculty of Physics, University of Warsaw, 02-093 Warszawa, Poland ²RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ³National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA ⁴Flerov Laboratory of Nuclear Reactions, JINR, 141980 Dubna, Russia ⁵Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA ⁶Department of Physics, Kyushu University, 744 Moto-oka, Nishi, Fukuoka, Fukuoka 819-0395, Japan 7 National Centre for Nuclear Research, 05-400 Otwock, Świerk, Poland 8 Heavy Ion Laboratory, University of Warsaw, 02-093 Warsaw, Poland 9 Center for Nuclear Study, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan ¹⁰AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, 30-059 Krakow, Poland ¹¹Department of Advanced Sciences, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan

Beta-delayed charged-particle decay of ^{22,23}Si

A.A. Ciemny^{1,*} C. Mazzocchi,^{1,1} W. Dominik,¹ A. Fijałkowska,^{2,1} J. Hooker,^{3,4} C. Hunt,^{3,4}
 H. Jayatissa,^{3,4} L. Janiak,^{5,1} G. Kamiński,⁶ E. Koshchiy,³ M. Pfützner,¹ M. Pomorski,¹ B. Roeder,³
 G.V. Rogachev,^{3,4} A. Saastamoinen,³ S. Sharma,¹ N. Sokolowska,¹ W. Satuk,¹ and Jagjit Singh¹
 ¹*Faculty of Physics, University of Warsaw, Warsaw, Poland* ²*Rulgers University, New Branswick, New Jersey* ³*Cyclotron Institute, Tezas A&M University, Colleg Station, Texas* ⁴*Department of Physics & Astronomy, Texas A&M University, Tolky Texas, USA* ⁵*National Centre for Nuclear Research, Outock, Swierk, Poland* ⁶*Heavy Ion Laboratory, University of Warsaw, Pol203* ⁶*Heavy Ion Laboratory, University of Warsaw, 2020*

PROCON2023 - Warsaw, June 24-29, 2023 MAZURIAN LAKES CONFERENCE ON PHYSICS, Sept. 3-9, 2023

Back-up slides

β -delayed multi-particle decays: ²²Si

- First observation in 1987, in ³⁶Ar fragmentation reaction.
- First $T_z = -3$ nucleus observed
- β p identified and energy spectrum measured in 1996
- β 2p from IAS reported in 2017:
 - charged-particle group @ 5600(70) keV
 - BR = 0.7(3)% (5 events)

M.G. Saint-Laurent et al., PRL 59, 33, 1987 B. Blank et al., PRC 54, 572, 1996 X.X. Xu et al., PRL B 766, 312-316, 2017

β -delayed multi-particle decays: ²²Si

A.A. Ciemny et al., submitted to Phys. Rev. C A.A. Ciemny, PhD Thesis, University of Warsaw, in preparation

ECT*, 06.07.2022

β -delayed multi-particle decays: ²³Si decay

- First identification in 1986: ⁴⁰Ca fragmentation on Ni target
- First spectroscopic information in 1996: $b_{\beta p} = 71\%$ and $b_{\beta 2p} = 3.6\%$

M. Langevin et al., Nucl. Phys. A 455, 149, 1986
 B. Blank et al., Z. Phys. A 357, 247-254, 1997

 β -delayed multi-particle emission from ²³Si: $\beta p\alpha/\beta \alpha p$ decay channel

A.A. Ciemny et al., submitted to Phys. Rev. C

A.A. Ciemny, PhD Thesis, University of Warsaw, in preparation

ECT*, 06.07.2022

 β -delayed multi-particle emission from ²³Si: $\beta p \alpha / \beta \alpha p$ decay channel

A.A. Ciemny et al., submitted to Phys. Rev. C

A.A. Ciemny, PhD Thesis, University of Warsaw, in preparation

ECT*, 06.07.2022

β decay of ²³Si – DFT-NCCI calculations

- Configuration space: g.s. and two lowest p-h config. in ²³Si + g.s.&13 excited configs in ²³Al
- $E_{IAS}=9.27 \text{ MeV}$ $|M_F| \approx \sqrt{4.9} \text{ and } |M_{GT}| \approx 1.5$
- GT predicted to populate mostly $I^{\pi}=5/2^+$ states at $E_x \sim 5.8$ MeV ($|M_{GT}| = 1.3$) and $I^{\pi}=7/2^+$ states at $E_x \sim 7.8$ MeV ($|M_{GT}| = 1.6$)
- results at variance with SM that predicts strong decay to $I^{\pi}=5/2^+$ at $E_x=3.83$ MeV and $I^{\pi}=3/2^+$ at $E_x=3.24$ MeV

	52 ⁺ 52 ⁺ 9.27 (IAS) 9.20
<u>52</u> ⁺ 8.22	1/2 ⁺ 7/2 ⁺ 7.89
7/2 ⁺ 6.97 7/2 ⁺ 6.51	7/2 ⁺ 5/2 ⁺ 6.81 6.77
7/2+ 5.54	3/2 ⁴ 5/2 ⁴ 1/2 ⁴ 5.80 5.80 5.80 5.80 5.80 5.80 5.80
72^+ 4.40 52^+ 3.81 72^+ 3.61 32^+ 3.24	<u>3/2*</u> <u>438</u> <u>7/2⁴</u> <u>3.19</u>
3/2 ⁺ 1.77 7/2 ⁺ 1.76	32^+ 172 12^+ 148 72^+ 133
$\frac{\frac{52^{4}}{I^{g}}}{\frac{23}{13}} \frac{0}{\text{MeV}}$	$\frac{\frac{52^{4}}{I^{8}}}{\frac{23}{13}}$ $\frac{0}{E}$ $\frac{E}{MeV}$
SM	DFT

11.59 (IAS)

- A.A. Ciemny et al., submitted to Phys. Rev. C
- A.A. Ciemny, PhD Thesis, University of Warsaw, in prep.

β decay of ²³Si – DFT-NCCI calculations

• Stability of the calculations verified by angular-momentum-projected calculations (AMP)

 \rightarrow include more configurations + verify stability of low-en. spectra, wave funct.

& β decay rates

 \rightarrow 32 self-consistent mean-field solutions

A.A. Ciemny et al., submitted to Phys. Rev. C A.A. Ciemny, PhD Thesis, University of Warsaw, in prep.