Binding of heavy fermions by a single light atom in 1D

Andrea Tononi

Laboratoire Physique Théorique et Modèles Statistiques, CNRS, Université Paris-Saclay

ECT* NPES Workshop,
Trento
04-08/07/2022
based on
[A. Tononi, J. Givois, and D. S. Petrov, arXiv:2205.01018, accepted in PRA as a Letter]

The system

$$
\hat{H}=\int\left(-\frac{\hat{\Psi}_{x}^{\dagger} \partial_{x}^{2} \hat{\Psi}_{x}}{2 M}-\frac{\hat{\phi}_{x}^{\dagger} \partial_{x}^{2} \hat{\phi}_{x}}{2 m}+g \hat{\Psi}_{x}^{\dagger} \hat{\phi}_{x}^{\dagger} \hat{\Psi}_{x} \hat{\phi}_{x}\right) d x, \quad g<0
$$

N heavy fermions of mass M 1 light atom of mass m

Noninteracting heavy
heavy-light attraction

How many heavy fermions can be bound by a single light atom in 1D?

How many heavy fermions can be bound by a single light atom in 1D?

Competition between:

- Kinetic energy of heavy atoms $\sim 1 / M$
- (Effective) attractive heavy-heavy potential, mediated by the exchange of the light atom $\sim 1 / m$

The (N+1)-body problem

A well posed problem (clear question), with few simple parameters

- spatial dimension $D=1$,
- scattering length a
- mass ratio M / m,
- number of heavy atoms N

The (N+1)-body problem

A well posed problem (clear question), with few simple parameters

- spatial dimension $D=1$,
- scattering length a
- mass ratio M / m,
- number of heavy atoms N
relevant for experiments with mass and density-imbalanced fermionic mixtures

$$
{ }^{173} \mathrm{Yb}-{ }^{6} \mathrm{Li},{ }^{53} \mathrm{Cr}-{ }^{6} \mathrm{Li},
$$

$$
{ }^{40} \mathrm{~K}-{ }^{6} \mathrm{Li},{ }^{161} \mathrm{Dy}-{ }^{40} \mathrm{~K}
$$

Outline

\triangleright Introduction and motivation
\triangleright Born-Oppenheimer theory of the 3D trimer
\triangleright Bound states of $N+1$ fermions in 1D
\triangleright Derivation of the results
\triangleright Exact results for $N \leq 5$
\triangleright Mean field: Thomas-Fermi approximation
\triangleright Mean field: Hartree-Fock
\triangleright Conclusions and perspectives

$2+1$ (trimer) in the 3D Born-Oppenheimer picture

Light atom in the field of fixed heavy fermions
(distance $R=\left|\vec{R}_{2}-\vec{R}_{1}\right|$)
$-\frac{\hbar^{2} \nabla_{\vec{r}}^{2}}{2 m} \phi_{R}(\vec{r})=\epsilon(R) \phi_{R}(\vec{r})$,

$$
\phi_{R}\left(\vec{r} \rightarrow \vec{R}_{i} / 2\right) \propto \frac{1}{\left|\vec{r}-\vec{R}_{i} / 2\right|}-\frac{1}{a}
$$

$2+1$ (trimer) in the 3D Born-Oppenheimer picture

Light atom in the field of fixed heavy fermions (distance $R=\left|\vec{R}_{2}-\vec{R}_{1}\right|$)
$-\frac{\hbar^{2} \nabla_{\vec{r}}^{2}}{2 m} \phi_{R}(\vec{r})=\epsilon(R) \phi_{R}(\vec{r})$,

$$
\phi_{R}\left(\vec{r} \rightarrow \vec{R}_{i} / 2\right) \propto \frac{1}{\left|\vec{r}-\vec{R}_{i} / 2\right|}-\frac{1}{a}
$$

Small R :
$\epsilon_{+, m}(R) \sim-\frac{\hbar^{2}}{m R^{2}}$
Large R :
$\epsilon_{+, m}(R) \sim \epsilon_{0}$, dimer energy

[D. S. Petrov, arXiv:1206.5752]

$2+1$ (trimer) in the 3D Born-Oppenheimer picture

Schrödinger equation for heavy atom with reduced mass $M / 2$ in the effective potential:

$$
\left[-\frac{\hbar^{2}}{M} \frac{\partial^{2}}{\partial R^{2}}+U_{\text {eff }}(R)-E\right] \chi(R)=0, \quad U_{\text {eff }}(R)=\frac{\hbar^{2} I(I+1)}{M R^{2}}+\epsilon_{+, m}(R)+\left|\epsilon_{0}\right|
$$

$2+1$ (trimer) in the 3D Born-Oppenheimer picture

Schrödinger equation for heavy atom with reduced mass $M / 2$ in the effective potential:

$$
\left[-\frac{\hbar^{2}}{M} \frac{\partial^{2}}{\partial R^{2}}+U_{e f f}(R)-E\right] \chi(R)=0, \quad U_{\text {eff }}(R)=\frac{\hbar^{2} I(I+1)}{M R^{2}}+\epsilon_{+, m}(R)+\left|\epsilon_{0}\right|
$$

The light-mediated effective heavy-heavy potential is "tuned" by M / m :

Outline

\triangleright Introduction and motivation
\triangleright Born-Oppenheimer theory of the 3D trimer
\triangleright Bound states of $N+1$ fermions in 1D
\triangleright Derivation of the results
\triangleright Exact results for $N \leq 5$
\triangleright Mean field: Thomas-Fermi approximation
\triangleright Mean field: Hartree-Fock
\triangleright Conclusions and perspectives

Binding in 1D

As in 3D, there is a competition between heavy kinetic energy and light-mediated heavy-heavy attraction.

Binding in 1D

As in 3D, there is a competition between heavy kinetic energy and light-mediated heavy-heavy attraction.

> State of the art in 1D:

- Trimer ($2+1$ atoms) at $M / m \geq 1$ (red dashed curve) [Kartavtsev, et al. JETP 108, 365 (2009)]
- Tetramer (3+1 atoms) through Born-Oppenheimer treatment (lowest black curve) [Mehta, PRA 89, 052706 (2014)]

Our results

> We provide the exact solution of the quantum mechanical problem up to $N=5$.
> ($N=2,3,4,5$ here $)$

[A. Tononi, J. Givois, and D. S. Petrov, arXiv:2205.01018]

Our results

We provide the exact solution of the quantum mechanical problem up to $N=5$.
($N=2,3,4,5$ here)

We identify the critical mass ratios:

$$
\begin{gathered}
(M / m)_{2+1}=1 \\
(M / m)_{3+1}=1.76 \\
(M / m)_{4+1}=4.2 \\
(M / m)_{5+1}=12.0 \pm 0.5
\end{gathered}
$$

[A. Tononi, J. Givois, and D. S. Petrov, arXiv:2205.01018]

Outline

\triangleright Introduction and motivation
\triangleright Born-Oppenheimer theory of the 3D trimer
\triangleright Bound states of $N+1$ fermions in 1D
\triangleright Derivation of the results
\triangleright Exact results for $N \leq 5$
\triangleright Mean field: Thomas-Fermi approximation
\triangleright Mean field: Hartree-Fock
\triangleright Conclusions and perspectives

Exact results: the Skorniakov-Ter Martirosian equation

Schrödinger equation for a system of N heavy plus 1 light fermions:
$\left[-\sum_{i=1}^{N} \frac{\partial_{x_{i}}^{2}}{2 M}-\frac{\partial_{x_{N+1}}^{2}}{2 m}+g \sum_{i<N+1} \delta\left(x_{i}-x_{N+1}\right)-E\right] \psi\left(x_{1}, \ldots, x_{N}, x_{N+1}\right)=0$,
where $E<0$, and $g=-1 /\left(m_{r} a\right)<0, m_{r}=m M /(m+M)$.

Exact results: the Skorniakov-Ter Martirosian equation

Schrödinger equation for a system of N heavy plus 1 light fermions:
$\left[-\sum_{i=1}^{N} \frac{\partial_{x_{i}}^{2}}{2 M}-\frac{\partial_{x_{N+1}}^{2}}{2 m}+g \sum_{i<N+1} \delta\left(x_{i}-x_{N+1}\right)-E\right] \psi\left(x_{1}, \ldots, x_{N}, x_{N+1}\right)=0$,
where $E<0$, and $g=-1 /\left(m_{r} a\right)<0, m_{r}=m M /(m+M)$.

Wave function of $(N-1)$ fermions plus a dimer:

$$
\psi\left(x_{1}, \ldots, x_{N-1}, x_{N}, x_{N+1}=x_{N}\right)
$$

Exact results: the Skorniakov-Ter Martirosian equation

Schrödinger equation for a system of N heavy plus 1 light fermions:
$\left[-\sum_{i=1}^{N} \frac{\partial_{x_{i}}^{2}}{2 M}-\frac{\partial_{x_{N+1}}^{2}}{2 m}+g \sum_{i<N+1} \delta\left(x_{i}-x_{N+1}\right)-E\right] \psi\left(x_{1}, \ldots, x_{N}, x_{N+1}\right)=0$,
where $E<0$, and $g=-1 /\left(m_{r} a\right)<0, m_{r}=m M /(m+M)$.

Wave function of $(N-1)$ fermions plus a dimer:

$$
\psi\left(x_{1}, \ldots, x_{N-1}, x_{N}, x_{N+1}=x_{N}\right)
$$

Fourier transform: $F\left(q_{1}, \ldots, q_{N-1}, q_{N}\right)$

Exact results: the Skorniakov-Ter Martirosian equation

Schrödinger equation for a system of N heavy plus 1 light fermions:

$$
\left[-\sum_{i=1}^{N} \frac{\partial_{x_{i}}^{2}}{2 M}-\frac{\partial_{x_{N+1}}^{2}}{2 m}+g \sum_{i<N+1} \delta\left(x_{i}-x_{N+1}\right)-E\right] \psi\left(x_{1}, \ldots, x_{N}, x_{N+1}\right)=0
$$

where $E<0$, and $g=-1 /\left(m_{r} a\right)<0, m_{r}=m M /(m+M)$.

Wave function of $(N-1)$ fermions plus a dimer:

$$
\psi\left(x_{1}, \ldots, x_{N-1}, x_{N}, x_{N+1}=x_{N}\right)
$$

Fourier transform: $F\left(q_{1}, \ldots, q_{N-1}, q_{N}\right)$ In center of mass coordinates $q_{N}=-\sum_{i=1}^{N} q_{i}$ we have:

$$
F\left(q_{1}, \ldots, q_{N-1}\right)
$$

Exact results: the Skorniakov-Ter Martirosian equation

$F\left(q_{1}, \ldots, q_{N-1}\right)$ satisfies the STM equation
$\left[\frac{a}{2}-\frac{1}{2 \kappa\left(q_{1}, \ldots, q_{N-1}\right)}\right] F\left(q_{1}, \ldots, q_{N-1}\right)=-\int \frac{d p}{2 \pi} \frac{\sum_{j=1}^{N-1} F\left(q_{1}, \ldots, q_{j-1}, p, q_{j+1}, \ldots, q_{N-1}\right)}{\kappa^{2}\left(q_{1}, \ldots, q_{N-1}\right)+\left(p+\frac{m_{r}}{m} \sum_{i=1}^{N-1} q_{i}\right)^{2}}$,
where $\kappa\left(q_{1}, \ldots q_{N-1}\right)=\sqrt{-2 m_{r} E+\frac{m_{r}}{M+m}\left(\sum_{i=1}^{N-1} q_{i}\right)^{2}+\frac{m_{r}}{M} \sum_{i=1}^{N-1} q_{i}^{2}}$.
[Skorniakov, Ter-Martirosian, JETP 4, 648 (1957)]
[Pricoupenko, Petrov, PRA 100, 042707 (2019)]

Integro-differential equation that includes naturally zero-range interactions, and removes the dimer coordinates.

Exact results: the Skorniakov-Ter Martirosian equation

The exact solution of the STM equation gives the energies (continuous lines) of the $N+1$ clusters:

We also find that the trimer and tetramer have $P=-1$, while pentamer and hexamer have $P=+1$

Two questions

- Large N limit?
- Are there computationally-cheap methods that work also at small N ?

Outline

\triangleright Introduction and motivation
\triangleright Born-Oppenheimer theory of the 3D trimer
\triangleright Bound states of $N+1$ fermions in 1D
\triangleright Derivation of the results
\triangleright Exact results for $N \leq 5$
\triangleright Mean field: Thomas-Fermi approximation
\triangleright Mean field: Hartree-Fock
\triangleright Conclusions and perspectives

Thomas-Fermi approach

Large N limit: mean-field theory based on the Thomas-Fermi approximation for the heavy fermions

$$
\Omega=\int\left[\frac{\left|\phi^{\prime}(x)\right|^{2}}{2 m}+g n(x)|\phi(x)|^{2}+\frac{\pi^{2} n^{3}(x)}{6 M}-\epsilon|\phi(x)|^{2}-\mu n(x)\right] d x
$$

Thomas-Fermi approach

Large N limit: mean-field theory based on the Thomas-Fermi approximation for the heavy fermions

$$
\Omega=\int\left[\frac{\left|\phi^{\prime}(x)\right|^{2}}{2 m}+g n(x)|\phi(x)|^{2}+\frac{\pi^{2} n^{3}(x)}{6 M}-\epsilon|\phi(x)|^{2}-\mu n(x)\right] d x
$$

minimizing Ω wrt ϕ and $n:-\phi_{1}^{\prime \prime}(x)+2 m g n(x) \phi_{1}(x)=2 m \epsilon \phi_{1}(x)$,

$$
n(x)=\sqrt{-2 M g\left(|\phi(x)|^{2}-\mu / g\right) / \pi^{2}}, \text { when }|\phi(x)|^{2}>\mu / g .
$$

Thomas-Fermi approach

Large N limit: mean-field theory based on the Thomas-Fermi approximation for the heavy fermions

$$
\Omega=\int\left[\frac{\left|\phi^{\prime}(x)\right|^{2}}{2 m}+g n(x)|\phi(x)|^{2}+\frac{\pi^{2} n^{3}(x)}{6 M}-\epsilon|\phi(x)|^{2}-\mu n(x)\right] d x
$$

minimizing Ω wrt ϕ and $n:-\phi_{1}^{\prime \prime}(x)+2 m g n(x) \phi_{1}(x)=2 m \epsilon \phi_{1}(x)$,

$$
n(x)=\sqrt{-2 M g\left(|\phi(x)|^{2}-\mu / g\right) / \pi^{2}}, \text { when }|\phi(x)|^{2}>\mu / g .
$$

When $\mu=0$ (threshold for binding a new heavy atom), analytical:
Threshold: $\left(\frac{M}{m}\right)_{N+1}=\frac{\pi^{2}}{36} N^{3}$

$$
\begin{gathered}
\phi(x)=\frac{-3 \pi \epsilon}{\sqrt{-8 M g^{3}}} \frac{1}{\cosh ^{2}(\sqrt{-m \epsilon / 2} x)} \\
n(x)=\sqrt{-2 M g / \pi^{2}}|\phi(x)|
\end{gathered}
$$

Thomas-Fermi approach

We extend the theory for $\mu \neq 0$, and calculate cluster energies.

Thomas-Fermi approach

We extend the theory for $\mu \neq 0$, and calculate cluster energies.

Thomas-Fermi approach (grey curves), analytical, computationally cheap, works at large N :

Thomas-Fermi approach

We extend the theory for $\mu \neq 0$, and calculate cluster energies.

Thomas-Fermi approach (grey curves), analytical, computationally cheap, works at large N :

What is the main source of discrepancy with the small- N exact results? TF, mean field?

Hartree-Fock approach

$$
\hat{H}=\int\left(-\frac{\hat{\Psi}_{x}^{\dagger} \partial_{x}^{2} \hat{\Psi}_{x}}{2 M}-\frac{\hat{\phi}_{x}^{\dagger} \partial_{x}^{2} \hat{\phi}_{x}}{2 m}+g \hat{\Psi}_{x}^{\dagger} \hat{\phi}_{x}^{\dagger} \hat{\Psi}_{x} \hat{\phi}_{x}\right) d x
$$

Energy $E_{N+1}=\langle v| \hat{H}|v\rangle$, with the variational ansatz:

$$
|v\rangle=\int d x \phi_{1}(x) \hat{\phi}_{x}^{\dagger} \int d x_{1} \ldots d x_{N} \frac{\operatorname{det}\left[\Psi_{\nu}\left(x_{n}\right)\right]}{\sqrt{N!}} \prod_{\eta=1}^{N} \hat{\Psi}_{x_{n}}^{\dagger}|0\rangle
$$

Hartree-Fock approach

$$
\hat{H}=\int\left(-\frac{\hat{\Psi}_{x}^{\dagger} \partial_{x}^{2} \hat{\Psi}_{x}}{2 M}-\frac{\hat{\phi}_{x}^{\dagger} \partial_{x}^{2} \hat{\phi}_{x}}{2 m}+g \hat{\Psi}_{x}^{\dagger} \hat{\phi}_{x}^{\dagger} \hat{\Psi}_{x} \hat{\phi}_{x}\right) d x
$$

Energy $E_{N+1}=\langle v| \hat{H}|v\rangle$, with the variational ansatz:

$$
|v\rangle=\int d x \phi_{1}(x) \hat{\phi}_{x}^{\dagger} \int d x_{1} \ldots d x_{N} \frac{\operatorname{det}\left[\Psi_{\nu}\left(x_{n}\right)\right]}{\sqrt{N!}} \prod_{\eta=1}^{N} \hat{\Psi}_{x_{\eta}}^{\dagger}|0\rangle
$$

Minimizing $E_{N+1}-\epsilon_{1}-\mu N$ with respect to the orbitals yields:

$$
\begin{aligned}
& -\frac{\partial_{x}^{2} \phi_{1}}{2 m}+g n \phi_{1}=\epsilon_{1} \phi_{1} \\
& -\frac{\partial_{x}^{2} \Psi_{\nu}}{2 M}+g\left|\phi_{1}\right|^{2} \Psi_{\nu}=E_{\nu} \Psi_{\nu} \\
& n=\sum_{\nu=1}^{N}\left|\Psi_{\nu}\right|^{2}
\end{aligned}
$$

Hartree-Fock approach

\rightarrow No improvement wrt TF energies (dashed lines)...

Hartree-Fock approach

\rightarrow No improvement wrt TF energies (dashed lines)...

...the second-order correction (dotted lines)

$$
\begin{gathered}
E_{N+1}=\langle v| \hat{H}|v\rangle+\sum_{v \neq v^{\prime}} \frac{\left.\left|\left\langle v^{\prime}\right| \hat{H}\right| v\right\rangle\left.\right|^{2}}{E_{v}^{(0)}-E_{v^{\prime}}^{(0)}} \\
\text { gives good and computationally cheap } \\
\text { agreement }
\end{gathered}
$$

$N-1$ atoms momentum distribution

All methods give access to the following quantity:

$$
\rho_{N+1}(q)=\int\left|F\left(q, q_{2}, \ldots, q_{N-1}\right)\right|^{2} d q_{2} \ldots d q_{N-1}
$$

that can be used to compare their effectiveness at small N.

$N-1$ atoms momentum distribution

All methods give access to the following quantity:

$$
\rho_{N+1}(q)=\int\left|F\left(q, q_{2}, \ldots, q_{N-1}\right)\right|^{2} d q_{2} \ldots d q_{N-1}
$$

that can be used to compare their effectiveness at small N.
We find that Hartree-Fock reproduces very well these momentum correlations:

Outline

\triangleright Introduction and motivation
\triangleright Born-Oppenheimer theory of the 3D trimer
\triangleright Bound states of $N+1$ fermions in 1D
\triangleright Derivation of the results
\triangleright Exact results for $N \leq 5$
\triangleright Mean field: Thomas-Fermi approximation
\triangleright Mean field: Hartree-Fock
\triangleright Conclusions and perspectives

Conclusions and perspectives

Binding of N heavy fermions by a light atom: for larger mass ratio more atoms can be bound.
(very different from 3D, where there are no $N+1$ states for $M / m \gtrsim 13$, meaning no $6+1$ clusters!)

Conclusions and perspectives

> Binding of N heavy fermions by a light atom: for larger mass ratio more atoms can be bound.
(very different from 3D, where there are no $N+1$ states for $M / m \gtrsim 13$, meaning no $6+1$ clusters!)

- Exact results up to $N=5$
- TF theory: analytical and works for large N
- HF theory: reproduces well energy and correlations at small and large N

Conclusions and perspectives

> Binding of N heavy fermions by a light atom: for larger mass ratio more atoms can be bound.
(very different from 3D, where there are no $N+1$ states for $M / m \gtrsim 13$, meaning no $6+1$ clusters!)

- Exact results up to $N=5$
- TF theory: analytical and works for large N
- HF theory: reproduces well energy and correlations at small and large N

Possible generalization to other setups:

- higher dimensions
- more particles

Thank you for your attention!

References:

- A. Tononi, J. Givois, and D. S. Petrov, arXiv:2205.01018, accepted in PRA as a Letter
- A. Pricoupenko, and D. S. Petrov, PRA 100, 042707 (2019)

