Measurements of Tan's contact in quantum gases

Jérôme Beugnon Laboratoire Kastler Brossel. Collège de France

Outline

- A Quantum gases
- B Tan's contact
- C Overview of contact measurements in dilute gases
- D Measurement of Tan's contact in a 2D Bose gas

(Nat. Commun. 12 760 (2021))

Quantum gases

Bose-Einstein condensates (1995)

Degenerate Fermi gases (2001)

Typical scales:

- $n\sim 10^{20}$ atoms/m³, $T_c\sim 1\,\mu{
 m K}\sim 0.1\,{
 m neV}$
- $N\sim 1
 ightarrow 10^5$ atoms, $L\sim 10\,\mu{
 m m}$

Probing tools:

Density distribution, momentum distribution, internal state control (\uparrow , \downarrow ,...)

Quantum gases: Microscopic physics

Mostly two-body interactions Fermions $\equiv (|\uparrow\rangle, |\downarrow\rangle)$ van der Waals potential (range *b*) Low-energy collisions ($kb \ll 1$): Only *s*-wave \rightarrow scattering length *a* $a \sim b \sim nm \ll d \equiv n^{-1/3} \sim \mu m$

Quantum gases: Microscopic physics

a tunable by Feshbach resonances (Magnetic tuning of a resonance scattering).

Strongly interacting regime $a \gg b$, $a \sim d \equiv n^{-1/3}$ $a \rightarrow \infty \equiv$ unitarity Mostly two-body interactions Fermions $\equiv (|\uparrow\rangle, |\downarrow\rangle)$ van der Waals potential (range *b*) Low-energy collisions ($kb \ll 1$): Only *s*-wave \rightarrow scattering length *a* $a \sim b \sim nm \ll d \equiv n^{-1/3} \sim \mu m$

Quantum gases: Few-body physics

Few-fermion system:

Nature 587, 583 (2020)

Quantum gases: Few-body physics

Few-fermion system:

Nature 587, 583 (2020)

J. Zhang, APS arXiv:2112.00991 (Harvard)

- Formation of dimers
- Atom-molecule, molecule-molecule interactions
- Quantum chemistry

Quantum gases: Few-body physics

Few-fermion system:

Nature 587, 583 (2020)

J. Zhang, APS arXiv:2112.00991 (Harvard)

Three-body physics: Efimov states

- Formation of dimers
- Atom-molecule, molecule-molecule interactions
- Quantum chemistry

Quantum gases: Uniform gas in box potentials

Recently developped optical box potentials \Rightarrow Homogeneous Fermi or Bose gases

Outline

- A Quantum gases
- B Tan's contact
- C Overview of contact measurements in dilute gases
- D Measurement of Tan's contact in a 2D Bose gas (Nat. Commun. 12 760 (2021))

Tan's contact

Contribution of short-range physics to thermodynamics given by Tan's contact C

Valid if short-range physics only described by a scattering length *a*. Same form whatever is the interaction strength, temperature

Tan's contact

Contribution of short-range physics to thermodynamics given by Tan's contact C

Valid if short-range physics only described by a scattering length *a*. Same form whatever is the interaction strength, temperature

Microscopic

Thermodynamics

Thermodynamic approach for a simple fluid (S, V, N):

 $\mathrm{d} E = T \mathrm{d} S - P \mathrm{d} V + \mu \mathrm{d} N$

Thermodynamic approach for a simple fluid (S, V, N):

 $\mathrm{d} \boldsymbol{E} = T \mathrm{d} \boldsymbol{S} - \boldsymbol{P} \mathrm{d} \boldsymbol{V} + \mu \mathrm{d} \boldsymbol{N}$

Dilute cold gas \rightarrow binary *s*-wave collisions:

$$\mathrm{d}E = T\mathrm{d}S - P\mathrm{d}V + \mu\mathrm{d}N + \mathcal{C}\mathrm{d}a$$

$$C = \frac{\partial E}{\partial a} \bigg|_{S,V,N} \text{ conjugate quantity of } a$$

Thermodynamic approach for a simple fluid (S, V, N):

 $\mathrm{d} \boldsymbol{E} = \boldsymbol{T} \mathrm{d} \boldsymbol{S} - \boldsymbol{P} \mathrm{d} \boldsymbol{V} + \mu \mathrm{d} \boldsymbol{N}$

Dilute cold gas \rightarrow binary *s*-wave collisions:

$$\mathrm{d}E = T\mathrm{d}S - P\mathrm{d}V + \mu\mathrm{d}N + \mathcal{C}\mathrm{d}a$$

$$C = \frac{\partial E}{\partial a} \bigg|_{S,V,N} \text{ conjugate quantity of } a$$

A definition of Tan's contact: (fermions) Tan Ann. Phys. 323 2971 (2008)

$$C = \frac{4\pi ma^2}{\hbar^2} \frac{\partial E}{\partial a} \bigg|_{S,V,N} = \frac{4\pi ma^2}{\hbar^2} \frac{\partial F}{\partial a} \bigg|_{T,V,N}$$

Thermodynamic approach for a simple fluid (S, V, N):

 $\mathrm{d} \boldsymbol{E} = \boldsymbol{T} \mathrm{d} \boldsymbol{S} - \boldsymbol{P} \mathrm{d} \boldsymbol{V} + \mu \mathrm{d} \boldsymbol{N}$

Dilute cold gas \rightarrow binary *s*-wave collisions:

$$\mathrm{d}E = T\mathrm{d}S - P\mathrm{d}V + \mu\mathrm{d}N + \mathcal{C}\mathrm{d}a$$

$$C = \frac{\partial E}{\partial a} \bigg|_{S,V,N} \text{ conjugate quantity of } a$$

A definition of Tan's contact: (fermions) Tan Ann. Phys. 323 2971 (2008)

$$C = \frac{4\pi ma^2}{\hbar^2} \frac{\partial E}{\partial a} \bigg|_{S,V,N} = \frac{4\pi ma^2}{\hbar^2} \frac{\partial F}{\partial a} \bigg|_{T,V,N}$$

Pressure relation

$$PV = \frac{2}{3}E + \frac{\hbar^2 C}{12\pi ma}$$

Contact: microscopic properties

Two-body correlation function:

 $b \ll r \ll a$. Two-body scattering state $\psi(r) \propto \frac{1}{r}$

$$G_{2,\uparrow,\downarrow}(r) = \langle \hat{\Psi}^{\dagger}_{\uparrow}(r) \hat{\Psi}^{\dagger}_{\downarrow}(0) \hat{\Psi}_{\downarrow}(0) \hat{\Psi}_{\uparrow}(r) \rangle \propto rac{C}{r^2}$$

Contact: microscopic properties

Two-body correlation function:

 $b \ll r \ll a$. Two-body scattering state $\psi(r) \propto \frac{1}{r}$

$$G_{2,\uparrow,\downarrow}(r) = \langle \hat{\Psi}^{\dagger}_{\uparrow}(r) \hat{\Psi}^{\dagger}_{\downarrow}(0) \hat{\Psi}_{\downarrow}(0) \hat{\Psi}_{\uparrow}(r) \rangle \propto rac{C}{r^2}$$

Momentum distribution:

 $a^{-1} \ll k \ll b^{-1}$

$$n_{\uparrow}(\boldsymbol{k}) = n_{\downarrow}(\boldsymbol{k}) = rac{C}{k^4}$$

Contact: microscopic properties

Two-body correlation function:

 $b \ll r \ll a$. Two-body scattering state $\psi(r) \propto \frac{1}{r}$

$$G_{2,\uparrow,\downarrow}(r) = \langle \hat{\Psi}^{\dagger}_{\uparrow}(r) \hat{\Psi}^{\dagger}_{\downarrow}(0) \hat{\Psi}_{\downarrow}(0) \hat{\Psi}_{\uparrow}(r) \rangle \propto rac{C}{r^2}$$

Momentum distribution:

 $a^{-1} \ll k \ll b^{-1}$

$$n_{\uparrow}(\boldsymbol{k}) = n_{\downarrow}(\boldsymbol{k}) = rac{C}{k^4}$$

Radiofrequency spectrum wings:

Radiofrequency spectroscopy to an auxiliary state. Transfer rate:

$$\Gamma(\omega) \propto rac{C}{(\omega-\omega_0)^{3/2}}$$

(equivalent to $1/k^4$ law. $\hbar |\omega - \omega_0| \gg rac{\hbar^2}{ma^2}$)

Contact: how to link macro and micro ?

Contact: how to link macro and micro ?

Hellmann-Feynman theorem

$$\frac{\partial E}{\partial a} = \langle \frac{\partial \hat{H}}{\partial a} \rangle$$

Contact: how to link macro and micro ?

Hellmann-Feynman theorem

$$rac{\partial E}{\partial a} = \langle rac{\partial \hat{H}}{\partial a}
angle$$

In our case :

$$\langle \frac{\partial \hat{H}}{\partial a} \rangle = \langle \frac{\partial \hat{H}_{\text{int}}}{\partial a} \rangle \propto \int \delta U_{\text{int}} G_{2,\uparrow,\downarrow}(r) \mathrm{d}^3 r \propto C$$

Contact: summary

Contact: summary

Generalization

- Three-body contact
- *p*-wave contact

• ...

Outline

- A Quantum gases
- B Tan's contact
- C Overview of contact measurements in dilute gases
- D Measurement of Tan's contact in a 2D Bose gas (Nat. Commun. 12 760 (2021))

Tan's contact in 3D Fermi gases

Tan's contact in 3D Fermi gases

Phys. Rev. Lett. 122, 203402 (2019) & Phys. Rev. Lett. 122, 203401 (2019)

Tan's contact in 3D Bose gases

Three-body physics (Efimov) could contribute Unitarity Bose gas at zero temperature: strong three-body losses Equilibrium state not possible in practice but...

Tan's contact in 3D Bose gases

Three-body physics (Efimov) could contribute Unitarity Bose gas at zero temperature: strong three-body losses Equilibrium state not possible in practice but...

Degenerate, strongly interacting but not unitary

RF spectroscopy

Phys. Rev. Lett. 108, 145305 (2010)

Tan's contact in 3D Bose gases

Three-body physics (Efimov) could contribute Unitarity Bose gas at zero temperature: strong three-body losses Equilibrium state not possible in practice but...

Degenerate, strongly interacting but not unitary

Outline

- A Quantum gases
- B Tan's contact
- C Overview of contact measurements in dilute gases

D - Measurement of Tan's contact in a 2D Bose gas

(Nat. Commun. 12 760 (2021))

The Bose gas in two dimensions

- ▶ No long-range order at the thermodynamic limit at $T \neq 0$
- Interactions \Rightarrow Normal-to-superfluid transition of Kosterlitz-Thouless type
- ► Scale-invariant system: *s*-wave interactions described by dimensionless \tilde{g} Thermodynamics with dimensionless functions: $\mathcal{D} = n\lambda_T^2 = f(\mu/k_B T, \tilde{g})$
- Critical point $D_c \approx \ln(380/\tilde{g})$ (n: 2D density, λ_T : thermal wavelength)

The Bose gas in two dimensions

- ▶ No long-range order at the thermodynamic limit at $T \neq 0$
- \blacktriangleright Interactions \Rightarrow Normal-to-superfluid transition of Kosterlitz-Thouless type
- ► Scale-invariant system: *s*-wave interactions described by dimensionless \tilde{g} Thermodynamics with dimensionless functions: $\mathcal{D} = n\lambda_T^2 = f(\mu/k_B T, \tilde{g})$
- Critical point $D_c \approx \ln(380/\tilde{g})$ (n: 2D density, λ_T : thermal wavelength)

Some recent experiments

Our setup

Our setup

- ▶ ⁸⁷Rb
- $\omega_z \approx 2\pi \times 4 \text{ kHz}$ $\Rightarrow \tilde{g} \sim 0.16$
- ► *T* ≈ 10-100 nK
- ▶ $n_{\rm 2D} \approx 100 \, \mu {\rm m}^{-2}$
- \blacktriangleright Atom number $\approx 10^5$
- Spatial light modulator (DMD) to shape the potential. (10 kHz refresh rate)

Our setup

▶ ⁸⁷Rb

- $\omega_z \approx 2\pi \times 4 \text{ kHz}$ $\Rightarrow \tilde{g} \sim 0.16$
- ► *T* ≈ 10-100 nK
- ▶ $n_{\rm 2D} \approx 100 \, \mu {\rm m}^{-2}$
- \blacktriangleright Atom number $\approx 10^5$
- Spatial light modulator (DMD) to shape the potential. (10 kHz refresh rate)

Theory for contact in 2D: State-of-the-art

$$\begin{array}{l} \blacktriangleright \quad T = 0 \\ C = \frac{8\pi ma^2}{\hbar^2} \frac{\langle \hat{H}_{\rm int} \rangle}{a} \xrightarrow{\text{Contact interactions} (\hat{\delta}(\mathbf{r} - \mathbf{r}'))} C = C_0 \equiv 4\pi \tilde{g} \, \bar{n} a N \\ \bar{n}: \text{ z-averaged density} \end{array}$$

Extension to finite T: Bogoliubov

Theory for contact in 2D: State-of-the-art

$$\begin{array}{l} \mathcal{T} = 0 \\ C = \frac{8\pi ma^2}{\hbar^2} \frac{\langle \hat{H}_{\mathrm{int}} \rangle}{a} \xrightarrow{\text{Contact interactions } (\hat{\delta}(\mathbf{r} - \mathbf{r}'))} C = C_0 \equiv 4\pi \tilde{g} \, \bar{n} a N \\ \bar{n}: \ \text{z-averaged density} \end{array}$$

Extension to finite T: Bogoliubov

 $\blacktriangleright T \gg T_c$

b

$$C = \frac{8\pi ma^2}{\hbar^2} \frac{\partial F}{\partial a} \bigg|_{T,V,N} \text{ and } F = F_{\text{Boltzmann}} + \frac{\hbar^2}{m} \tilde{g} \bar{n} N \Rightarrow C = 2C_0.$$

Extension to lower T: Virial expansion

Theory for contact in 2D: State-of-the-art

$$\begin{array}{l} \mathcal{T} = 0 \\ C = \frac{8\pi ma^2}{\hbar^2} \frac{\langle \hat{H}_{\mathrm{int}} \rangle}{a} \xrightarrow{\text{Contact interactions } (\hat{\delta}(\mathbf{r} - \mathbf{r}'))} C = C_0 \equiv 4\pi \tilde{g} \, \bar{n} a N \\ \bar{n}: \ \text{z-averaged density} \end{array}$$

Extension to finite T: Bogoliubov

 $\blacktriangleright T \gg T_c$

$$C = \frac{8\pi ma^2}{\hbar^2} \frac{\partial F}{\partial a} \Big|_{T,V,N} \text{ and } F = F_{\text{Boltzmann}} + \frac{\hbar^2}{m} \tilde{g} \bar{n} N \Rightarrow C = 2C_0.$$

Extension to lower T: Virial expansion

• Intermediate regime: $T \sim T_c$

Monte-Carlo simulations : Prokofev, Svistunov Phys. Rev. A 66, 043608 (2002)

Experimental protocol

Prepare uniform gas (\bar{n}, T) in F = 1

Experimental protocol

Prepare uniform gas (\bar{n}, T) in F = 1

 $\begin{array}{c} |2\rangle & - & \bullet \\ |1\rangle & - & \bullet \\ \end{array} \uparrow \omega_{\rm HF} \end{array}$

Induce Δa : F = 1, $a_{11} \rightarrow F = 2$, a_{22}

Measure $h\Delta\nu = \Delta E$ with Ramsey spectroscopy

Compute $C \propto \frac{\Delta E}{\Delta a}$

(NB : valid only if $a_{11} \sim a_{12} \sim a_{22}$)

Protocol:

preparation in |1
angle - $\pi/2$ pulse - wait ${\cal T}$ - $\pi/2$ pulse - measure population in |2
angle

Protocol:

preparation in $|1\rangle$ - $\pi/2$ pulse - wait ${\it T}$ - $\pi/2$ pulse - measure population in $|2\rangle$

Protocol:

preparation in $|1\rangle$ - $\pi/2$ pulse - wait ${\it T}$ - $\pi/2$ pulse - measure population in $|2\rangle$

 \Rightarrow For a given ($ar{n}, T$), extract $\Delta
u =
u_{
m res} -
u_0$

22 / 26

Linear behaviour with density Mean-field description OK

Mean-field description OK

Scale-invariance \Rightarrow plot C/C_0 vs $\mathcal{D} = \bar{n}\lambda_T^2 \propto \bar{n}/T$

23 / 26

Contact measurement

Contact measurement

 \Rightarrow Compatible with Virial expansion (low \mathcal{D}) and Bogoliubov (high \mathcal{D})

Contact measurement

 \Rightarrow Scale-invariance OK

 \Rightarrow Compatible with Virial expansion (low $\mathcal{D})$ and Bogoliubov (high $\mathcal{D})$

 \Rightarrow What about the critical region ?

Contact in the critical region

 \Rightarrow Monte-Carlo calculations not reliable ($ilde{g}$ too large) for "correlation" functions

Contact in the critical region

⇒ Monte-Carlo calculations not reliable (\tilde{g} too large) for "correlation" functions ⇒ ! NEW !, renormalization group approach compatible with the data (Rançon & Dupuis)

Contact in the critical region

⇒ Monte-Carlo calculations not reliable (\tilde{g} too large) for "correlation" functions ⇒ ! NEW !, renormalization group approach compatible with the data (Rançon & Dupuis)

Outlook : beyond mean-field regime, breaking of scale invariance...

Conclusion

Contact has become a major tool for the understanding of quantum gas

Focus here on two-body s-wave contact

But p-wave, three-body, ... any interaction described by a single parameter

Conclusion

Contact has become a major tool for the understanding of quantum gas

Focus here on two-body s-wave contact

But p-wave, three-body, ... any interaction described by a single parameter

Contact of a 2D Bose gas

Contributors:

B. Bakkali-Hassani, C. Maury, Y. Zou,G. Chauveau, E. Le Cerf,S. Nascimbene, J. Dalibard

