

# Observation of a proton-emitting near-threshold resonance in <sup>11</sup>B via <sup>10</sup>Be+p

Yassid Ayyad (IGFAE, Universidad de Santiago de Compostela)









- Beta-decay proton emission in <sup>11</sup>Be.
- <sup>10</sup>Be+p resonant scattering.
- Outlook and conclusions.









## Nuclei as open quantum systems





igfae.usc.es



# Some examples















# Neutron life-time problem from nuclear physics stand point

 Best precision achieved in a bottle experiment: 877.7± 0.7 (stat) +0.4/-0.2 (sys).

• 888.0 ± 2.0 s in beam experiments: 4.0 $\sigma$  of difference.

This 1% of difference could be attributed to systematic uncertainties...

• ... or unaccounted exotic decay modes not detected in the in-beam experiment.





EXCELENCIA

DE MAEZTU





Bartosz Fornal and Benjamín Grinstein Phys. Rev. Lett. 120, 191801 (2018).





 Neutron→dark particle + photon. In this case 937.900 MeV< mχ< 939.565 MeV and 0.782 MeV< Eγ<1.664 MeV. No evidence was found (Z. Tang et al., Phys. Rev. Lett. 121, 022505 2018).

Neutron→two dark particles. 937.900 MeV<</li>
mχ+mφ<939.565 MeV.</li>

 3) Neutron→dark particle + e<sup>+</sup>e<sup>-</sup>. Excluded Br(n→χe<sup>+</sup>e<sup>-</sup>)≈1% for e<sup>+</sup>e<sup>-</sup>pairs with energies E<sub>e+e</sub>->2m<sub>e</sub>+ 100 keV. (X. Sun et al., .Phys. Rev., C97(5):052501, 2018).

4) Nuclear dark decays: 937.9 MeV< m<sub>χ</sub>< m<sub>n</sub>–S<sub>n...</sub> Fulfilled in neutron halo nuclei











- If the neutron separation energy of a nuclei is Sn<1.572 MeV, the dark neutron decay could happen.
- Pfutzner and Riisager identified the candidates as: <sup>6</sup>He, <sup>11</sup>Li, <sup>11</sup>Be, <sup>15</sup>C, and <sup>17</sup>C, with <sup>11</sup>Be as the best candidate.
- <sup>11</sup>Be lifetime is 13.7 s and has several betadelayed channels open.
- Beta-delayed proton emission is possible if S<sub>n</sub><(m<sub>n</sub>-m<sub>p</sub>-m<sub>e</sub>)c<sup>2</sup>≈0.782 MeV. Q<sub>bp</sub> = 280 keV.
- Branching ratio upper limit of 10<sup>-4</sup>, depending on the dark particle mass.





- Riisager et al. implanted <sup>11</sup>Be in a catcher and let it decay
- Then analyzed the ratio of <sup>10</sup>Be/ <sup>11</sup>B in the catcher with the accelerator mass spectrometry technique
- Deduced that the <sup>11</sup>Be -> <sup>10</sup>Be branching ratio was 8.3(9)·10<sup>-6</sup>
- This value is orders of magnitude higher than theoretical predictions
- The neutron decays to a proton in a resonance and it is emitted, or it directly decays into the continuum
- An unobserved resonance in <sup>11</sup>B could explain it.





EXCELENCIA MARÍA DE MAEZTU





- Previous experiment did not observe the emitted protons.
- Measuring the energy distribution of the protons will yield information in the hypothesized resonance in <sup>11</sup>B.
- By knowing the  $\beta p$  energy window we can extract the B(GT).
- Free neutrons have a B(GT)=3, so this value can directly quantify how "free" are halo neutrons.
- Riisager et al. measured the combination of all decay branches leading to 11Be -> 10Be
- This experiment specifically measured the <sup>11</sup>Be -> <sup>10</sup>Be + p branch
- Any discrepancy between both results would be an indication of unaccounted decay branches, with the dark decay as a very likely candidate















### **Experimental method: Silicon detectors**



J. Refsgaard, J. Büscher, A. Arokiaraj, H. O. U. Fynbo, R. Raabe, and K. Riisager Phys. Rev. C 99, 044316 – Published 25 April 2019



























EXCELENCIA MARÍA DE MAEZTU











- First direct observation of β<sup>-</sup>p in a neutron-rich nuclei.
- Branching ratio is 1.2x10<sup>-5</sup>, with 30% uncertainty... Theoretical calculations yield 8.0×10<sup>-6</sup>.
- A narrow resonance (12 keV) in  $^{11}\text{B}$  was inferred. E = 11425(20)keV, F=12(5) keV, J^{\pi} = 1/2;3/2+.
- Comment on "Direct Observation of Proton Emission in 11Be" No reliable particle identification. B(GT)>3 (above free single nucleon decay limits) (<u>https://arxiv.org/abs/1912.06064</u>).
- Assuming a pure Gamow-Teller (GT) transition, it yields B(GT)= 5.5+8.3-3.
- Decay into the continuum would be characterized by a much shorter branching ratio (10<sup>-10</sup>).







### Theory tries to reproduce the result

arXiv:2112.05622

#### Phys Rev Lett. 124, 042502 (2020)





- Near-threshold collectivity driven by the interplay between nuclear interactions and decay channels.
- Single "aligned eigenstate".
- [<sup>10</sup>Be(0<sup>+</sup>)  $\otimes$  p(s<sup>1/2</sup>)]<sup>1/2+</sup>, [<sup>10</sup>Be(0<sup>+</sup>)  $\otimes$  p(s<sup>1/2</sup>)]<sup>1/2+</sup> and [<sup>10</sup>B(3<sup>+</sup>)  $\otimes$  n(d<sup>5/2</sup>)]<sup>1/2+</sup>
- Strongest collectivization is predicted at  $E_p \simeq 142$  keV.
- Core-coupled proton state [<sup>10</sup>Be  $\otimes$  p] with the negligible [<sup>7</sup>Li  $\otimes$   $\alpha$ ] component.
- SMEC finds a consistent description of the beta-delayed alpha branching ratio of <sup>11</sup>Be and the  $\Gamma_p(1/2_3^+)$ .
- However, it does not reconcile with the branching ratio for proton emission. It should be 40 times lower.
- This is based on the assumption that a neighboring 3/2<sup>+</sup> state decaying by alpha emission exists (at around 11.450 keV). Such state was inferred from R-matrix calculations.







#### PRC 99, 044316 (2019)

igfae.usc.es



EXCELENCIA MARÍA DE MAEZTU

#### Phys. Rev. C 105, 054316 (2022)



Physics Letters B 821 (2021) 136610

0.15

 $E \,[{\rm MeV}]$ 

0.10

0.18

0.20

EFT:  $r_0 = 2.7$  fm,  $r_0^C = 1.5$  fm

 $= (6.5 \pm 1.5) \times 10^{-7} \text{ s}^{-1} \text{ Ref.} [21]$ 

0.22

 $E_R = (0.196 \pm 0.020)$  MeV Ref. [21]

EFT: theo. uncertainty

----- Theory decay rate Ref. [21]

0.20

 $E_R(\Gamma_R)$  [MeV]

Upper bound from Ref. [23]

0.25

0.30

0.24

Bave and Tursunov Ref. [18]

EFT:  $r_0 = 2.7 \text{ fm}, r_0^C = 1.5 \text{ fm}$ 

----- EFT:  $r_0 = 0$  fm, no fsi

0.05

10

 $10^{\circ}$ 

10

 $10^{-}$ 

 $10^{-1}$ 

 $10^{-}$ 

 $10^{-}$ 

 $10^{-}$ 

 $10^{-10}$ 

 $10^{-}$ 

0.16

ī\_\_\_\_\_10

0.00

 $d\Gamma/dE \, [s^{-1}MeV^{-1}]$ 

### Theory tries to reproduce the result

- Halo Effective Field theory (EFT) yields results consistent with the experiment.  $b_p = 4.9 + 5.6 - 2.9(exp) + 4.0 - 0.8(theo.)$  and  $\Gamma = 9.0 + 4.8 - 3.3(exp) + 5.3 - 2.2(theo.)$  keV.
- No resonance: Γ=(6.6+-2.6) 10<sup>-10</sup> s
- From ab-initio calculations with no-core shell model with continuum (NCSMC)  $b_p = (1.3+-0.5) \ 10^{-6} \ s$
- Alpha decay spectroscopic factor is consistent with our estimate inferred from the decay width.
- From shell model calculations (A. Volya EPL 130, 1, 2020) the decay proceeds via the isobaric analog state with a lifetime of 2.6  $10^{10}$  s SFp = 0.23. Small alpha width does not explain the experimental branching ratio.



| $J^{\pi}$     | $S(^{11}B \rightarrow {}^{10}Be)$ | $S(^{11}B \rightarrow {}^{10}B)$ |                    | $S(^{11}B \rightarrow ^{7}Li$ |  |
|---------------|-----------------------------------|----------------------------------|--------------------|-------------------------------|--|
|               | (0+, 1)                           | $(1_1^+, 0)$                     | $(1^+_2, 0)$       | $(3/2^+, 1/2)$                |  |
| $1/2^+_1$     | 0.276                             | 0.250                            | $2 \times 10^{-4}$ | 0.218                         |  |
| $1/2^+_2$     | 0.0525                            | 0.171                            | 0.562              | 0.002                         |  |
| $1/2_{3}^{+}$ | 0.067                             | 0.231                            | 0.188              | 0.011                         |  |
| $3/2^+_1$     | 0.079                             | $6 \times 10^{-4}$               | 0.215              | 0.009                         |  |
| $3/2^+_2$     | $4 \times 10^{-4}$                | 0.581                            | 0.002              | 0.012                         |  |
| $3/2_{3}^{+}$ | $6 \times 10^{-4}$                | 0.011                            | 0.006              | 0.021                         |  |
| $3/2_4^+$     | 0.067                             | 0.034                            | 0.35               | 0.006                         |  |
|               |                                   |                                  |                    |                               |  |

| $J_i^{\pi}$   | E (EXP)  | E(psdu) | E(fsu)  | B(GT) | $\log_{10}(ft)$ | $SF_p$ | $SF_{\alpha}$ |
|---------------|----------|---------|---------|-------|-----------------|--------|---------------|
| $1/2_{1}^{+}$ | 6.7918   | 7.1743  | 6.5998  | 0.009 | 5.625           | 0.078  | 0.198         |
| $3/2^{+}_{1}$ | 7.9779   | 8.0855  | 8.6337  | 0.000 | 8.286           | 0.040  | 0.034         |
| $1/2^+_2$     | (9.820)  | 9.9360  | 10.9678 | 0.191 | 4.301           | 0.175  | 0.170         |
| $3/2_{2}^{+}$ | 9.873    | 10.6324 | 10.6968 | 0.001 | 6.737           | 0.057  | 0.002         |
| $3/2_{3}^{+}$ | (11.450) | 11.5736 | 10.8534 | 0.615 | 3.792           | 0.008  | 0.038         |
| $3/2_4^+$     |          | 11.9769 | 11.9453 | 1.731 | 3.343           | 0.012  | 0.008         |
| $1/2^+_3$     |          | 12.7309 | 12.4382 | 0.659 | 3.762           | 0.019  | 0.012         |
| $3/2_{5}^{+}$ |          | 12.9830 | 12.2265 | 0.035 | 5.046           | 0.003  | 0.023         |
| $3/2_{6}^{+}$ |          | 13.1816 | 12.9324 | 0.222 | 4.235           | 0.001  | 0.007         |
| $1/2_{4}^{+}$ |          | 13.1963 | 13.5568 | 0.959 | 3.599           | 0.057  | 0.004         |
| $3/2^{+}_{7}$ |          | 14.4333 | 13.3750 | 0.037 | 5.011           | 0.003  | 0.001         |
| $3/2_{8}^{+}$ |          | 14.9305 | 14.4300 | 0.008 | 5.674           | 0.013  | 0.001         |
| $1/2^+, 3/2$  | 12.554   | 14.7199 | 12.6631 | 0.571 | 3.195           | 0.230  | 0.000         |

EPL 130, 1, 2020

![](_page_15_Picture_12.jpeg)

![](_page_15_Picture_13.jpeg)

![](_page_16_Picture_0.jpeg)

## <sup>10</sup>Be+p resonant scattering at ReA3 (FRIB)

![](_page_16_Figure_2.jpeg)

Aluminized thick 10 um CH<sub>2</sub> Target

![](_page_16_Picture_4.jpeg)

10 🔊

![](_page_16_Picture_5.jpeg)

Instituto Galego de Física de Altas Enerxías (IGFAE)

<sup>10</sup>Be beam

from ReA3

(4) (5) (7) (8)

at 400

keV/u

![](_page_17_Figure_0.jpeg)

![](_page_17_Figure_1.jpeg)

Phys. Rev. Lett. 129, 012501 (2022)

![](_page_17_Picture_3.jpeg)

![](_page_18_Picture_0.jpeg)

# Excitation function of elastic scattering 10Be+p

![](_page_18_Figure_2.jpeg)

![](_page_18_Figure_3.jpeg)

Self-consistent Skyrme Hartree-Fock in the continuum method.

![](_page_18_Figure_5.jpeg)

![](_page_18_Picture_6.jpeg)

![](_page_19_Picture_0.jpeg)

### <sup>10</sup>Be+p Narrow resonances with R-matrix code Azure2.

|   | Light<br>Particle | Light<br>Spin | Heavy<br>Particle | Heavy<br>Spin | Excitation<br>Energy | Separation<br>Energy | Channel<br>Radius |
|---|-------------------|---------------|-------------------|---------------|----------------------|----------------------|-------------------|
| 1 | p                 | 1/2+          | <sup>10</sup> Be  | 0+            | 0                    | 11,228               | 5,4               |
| 2 | a                 | 0+            | <sup>7</sup> Li   | 3/2-          | 0                    | 8,664                | 5,4               |

![](_page_19_Figure_3.jpeg)

 From R-matrix we infer a Γa = 11+-4 keV, with a relatively large cross section of 0.5 b.

- •Absence of alpha decay would give a total width 0f 4.5 keV, in clear conflict with the experimental resolution.
- Possible neighboring 3/2+ overlapping...
- Still does not solve the conundrum neither the B(GT), which is very sensitive to the energy and width.
- Dedicated measurement is needed!

#### PRC 99, 044316 (2019)

![](_page_19_Figure_10.jpeg)

igfae.usc.es

![](_page_19_Picture_11.jpeg)

![](_page_20_Picture_0.jpeg)

# <sup>10</sup>Be(d,n) FSU

![](_page_20_Figure_2.jpeg)

FIG. 3: Excitation energy spectrum in <sup>11</sup>B reconstructed from the <sup>11</sup>B<sup>\*</sup>  $\rightarrow$  <sup>10</sup>Be + p (red) and <sup>11</sup>B<sup>\*</sup>  $\rightarrow$  <sup>7</sup>Li +  $\alpha$  (blue). A prominent near-threshold peak at E<sub>ex</sub> = 11.44 ± 0.04 MeV is visible in the proton spectrum.

![](_page_20_Figure_4.jpeg)

FIG. 4: Energy-sum signals of  ${}^{10}\text{Be} + \text{p}$  events for the 11.44 MeV state, compared with a Monte Carlo simulation (in blue) that takes into account the DWBA-calculated angular distribution of the  ${}^{10}\text{Be}(d,n){}^{11}\text{B}^*$  reaction. A value of  $\ell = 0$  fits well the experimental data.

### Upper limit for alpha branch < 40%

#### Phys. Rev. Lett. 129, 012502 (2022)

![](_page_20_Picture_8.jpeg)

![](_page_20_Picture_9.jpeg)

galicia

Xacobeo 21·22

FONDO EUROPEO DE DESENVOLVEMENTO REXIONAL "Unha maneira de facer Europa"

Instituto Galego de Física de Altas Enerxías (IGFAE)

igfae.usc.es

![](_page_21_Picture_0.jpeg)

# Theory still not happy...

#### $\beta^{-}p$ and $\beta^{-}\alpha$ decay of the <sup>11</sup>Be neutron halo ground state

J. Okołowicz,<sup>1</sup> M. Płoszajczak,<sup>2</sup> and W. Nazarewicz<sup>3</sup>

<sup>1</sup>Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, PL-31342 Kraków, Poland <sup>2</sup>Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DSM - CNRS/IN2P3, BP 55027, F-14076 Caen Cedex, France <sup>3</sup>Department of Physics and Astronomy and FRIB Laboratory, Michigan State University, East Lansing, Michigan 48824, USA

Beta-delayed proton emission from the neutron halo ground state of <sup>11</sup>Be raised much attention due to the unusually high decay rate. It was argued that this may be due to the existence of a resonance just above the proton decay threshold. In this Letter, we use the lenses of real-energy continuum shell model to describe several observables including the Gamow-Teller rates for the  $\beta^-$ -delayed  $\alpha$  and proton decays, and argue that, within our model, the large  $\beta^-$ p branching ratio cannot be reconciled with other data.

![](_page_21_Figure_6.jpeg)

![](_page_21_Picture_7.jpeg)

![](_page_21_Picture_8.jpeg)

![](_page_22_Picture_0.jpeg)

# Reanalysis of <sup>11</sup>Be beta decay

![](_page_22_Figure_2.jpeg)

![](_page_22_Figure_3.jpeg)

![](_page_22_Figure_4.jpeg)

![](_page_22_Figure_5.jpeg)

In preparation...

![](_page_22_Picture_7.jpeg)

![](_page_22_Picture_9.jpeg)

![](_page_23_Picture_0.jpeg)

#### Improved measurement of <sup>10</sup>Be+p->7Li+4He to assess • the alpha decay branching ratio.

- Also, <sup>7</sup>Li+<sup>4</sup>He-><sup>10</sup>Be+p (already planned at TwinSol, • Notre Dame).
- Search for <sup>8</sup>Be+t emission in the <sup>11</sup>Be beta decay data. •

![](_page_23_Figure_4.jpeg)

![](_page_23_Figure_5.jpeg)

Fig. 14. Comparison of the model-program calculation with experiment for the elastic cross section at  $\theta_{e.m.} = 159^{\circ}$ . The solid line is the model program calculation using the parameters listed in table 2. The points are experimental values. The dotted line is a smooth curve drawn through the data points.

![](_page_23_Figure_7.jpeg)

![](_page_23_Picture_8.jpeg)

![](_page_23_Picture_10.jpeg)

![](_page_24_Picture_0.jpeg)

### ...and of course re-measure of beta-delayed proton emission of <sup>11</sup>Be

Magnetic field for enhanced particle identification

![](_page_24_Figure_3.jpeg)

![](_page_24_Picture_4.jpeg)

![](_page_25_Picture_0.jpeg)

# Conclusions

- Three independent experiments confirm the existence of a <sup>1</sup>/<sub>2</sub>+ state at Ex~11.400MeV in <sup>11</sup>B: <sup>11</sup>Be(b,p), <sup>10</sup>Be(p,p) and (<sup>10</sup>Be(d,n)<sup>11</sup>B-><sup>10</sup>Be+p)
- All show a strong spectroscopic factor of ~ 0.2-0.3
- Models with coupling to the continuum can reproduce these properties
- Still needed: precise branching ratios to decay, (gs and 1st excited state of 7Li) tritium decay
- Check by independent measurement of <sup>11</sup>Be(b,p) branching ratio

![](_page_25_Picture_7.jpeg)

![](_page_25_Picture_9.jpeg)

![](_page_26_Picture_0.jpeg)

# Thank you!

![](_page_26_Picture_2.jpeg)

![](_page_26_Picture_4.jpeg)

![](_page_27_Picture_0.jpeg)

# Particle identification: p,d,t,alpha and <sup>7</sup>Li

![](_page_27_Figure_2.jpeg)

![](_page_27_Picture_3.jpeg)

EXCELENCIA MARÍA DE MAEZTU

![](_page_27_Picture_4.jpeg)

![](_page_27_Picture_6.jpeg)

![](_page_28_Picture_0.jpeg)

# Criteria for proton event selection

• Proton beam events are used to assess the selection parameters.

• Chi2, center of gravity (shape of the pulse) and stretch factor.

![](_page_28_Figure_4.jpeg)

![](_page_28_Picture_5.jpeg)

galicia

![](_page_28_Picture_7.jpeg)

![](_page_29_Picture_0.jpeg)

# Criteria for proton event selection

- Proton beam events are used to assess the selection parameters.
- Chi2, center of gravity (shape of the pulse) and stretch factor.
- This method is complementary to the one we used before: no selection in chi2.
- The energy distribution obtained in the last analysis is compatible with the published result.

![](_page_29_Figure_6.jpeg)

![](_page_29_Picture_7.jpeg)

![](_page_29_Picture_8.jpeg)

galicia

![](_page_29_Picture_10.jpeg)

![](_page_30_Picture_0.jpeg)

#### Clarification of large-strength transitions in the $\beta$ decay of <sup>11</sup>Be

J. Refsgaard,<sup>1,\*</sup> J. Büscher,<sup>1</sup> A. Arokiaraj,<sup>1</sup> H. O. U. Fynbo,<sup>2</sup> R. Raabe,<sup>1</sup> and K. Riisager<sup>2</sup> <sup>1</sup>Instituut voor Kern- en Stralingsfysica, KU Leuven, B-3000 Leuven, Belgium <sup>2</sup>Institut for Fysik og Astronomi, Aarhus Universitet, DK-8000 Aarhus, Denmark

(Received 6 November 2018; published 25 April 2019; corrected 7 May 2019)

The shape and normalization of the  $\beta$ -delayed  $\alpha$  spectrum from <sup>11</sup>Be was measured by implanting <sup>11</sup>Be ions in a segmented Si detector. The spectrum is found to be dominated by a well-known transition to the  $3/2^+$  state at  $E_x = 9.87$  MeV in <sup>11</sup>B. A significant increase in the observed decay strength towards the higher end of the  $Q_\beta$  window means, however, that the 9.87 MeV state cannot alone be responsible for the transition. Using the *R*-matrix framework we find that the inclusion of an extra  $3/2^+$  state at  $E_x = 11.49(10)$  MeV is required to obtain a satisfactory description of the spectrum. Both states show large widths towards  $\alpha$  decay, exhausting significant fractions of the Wigner limit, a typical signature of  $\alpha$  clusterization. The observed Gamow-Teller strength indicates large overlaps between the two states and the ground state of <sup>11</sup>Be.

![](_page_30_Figure_5.jpeg)

| $r_0$ (fm)                      | 1.4       | 1.5       | 1.6       |
|---------------------------------|-----------|-----------|-----------|
| $a_c$ (fm)                      | 4.90      | 5.25      | 5.60      |
| $E_1$ (keV)                     | 9850(1)   | 9848(1)   | 9846(1)   |
| $\Gamma_{11}$ (keV)             | 240(3)    | 237(3)    | 233(3)    |
| $\Gamma_{12}$ (keV)             | 21.3(3)   | 20.8(3)   | 20.4(3)   |
| $B_1/\sqrt{N}$                  | 0.265(5)  | 0.190(2)  | 0.161(2)  |
| $[\theta_{11}^2]$               | 4.30(5)   | 1.99(3)   | 1.31(2)   |
| $[\theta_{12}^2]$               | 3.19(5)   | 1.38(2)   | 0.84(2)   |
| $[M_{\rm GT,1}]$                | 0.726(18) | 0.722(13) | 0.717(12) |
| $[B_{\mathrm{GT},1}]$           | 0.326(16) | 0.322(12) | 0.318(11) |
| $[\log(ft)_1]$                  | 4.067(49) | 4.072(36) | 4.078(33) |
| $E_2$ (keV)                     | 11474(71) | 11475(75) | 11492(79) |
| $\Gamma_{21}  (\text{keV})^{a}$ | -361(163) | -388(157) | -431(145) |
| $\Gamma_{22}$ (keV)             | 76(71)    | 66(68)    | 47(59)    |
| $B_2/\sqrt{N}$                  | 0.181(34) | 0.166(29) | 0.156(26) |
| $[\theta_{21}^2]^{\mathbf{a}}$  | -0.18(8)  | -0.19(8)  | -0.21(7)  |
| $[\theta_{22}^2]$               | 0.049(45) | 0.041(43) | 0.029(37) |
| $[\tilde{M}_{\rm GT,2}]$        | 1.21(23)  | 1.11(19)  | 1.05(17)  |
| $[B_{\mathrm{GT},2}]$           | 0.90(35)  | 0.77(26)  | 0.67(22)  |
| $[\log(ft)_2]$                  | 3.63(39)  | 3.70(34)  | 3.75(33)  |
| $\mu a_c^2/\hbar^2$ (keV)       | 683.2     | 595.1     | 523.0     |
| $\chi_L^2$                      | 269.42    | 269.30    | 269.33    |
| 0.000                           |           |           |           |

![](_page_30_Picture_7.jpeg)

![](_page_31_Picture_0.jpeg)

 $\begin{aligned} & \text{Total System} \\ (\mathcal{H}_T, \rho_T, H_T) \end{aligned} \\ & \text{System} \\ (\mathcal{H}, \rho, H) \end{aligned} \\ & \text{Interaction} \end{aligned}$ 

A total system (belonging to a Hilbert space  $\mathcal{H}_T$ , with states described by density matrices  $\rho_T$ , and with dynamics determined by a Hamiltonian  $H_T$ ) divided into the system of interest, "system," and the environment.

An open quantum system is a quantum system interacting with its Environment which is sometimes called Bath or Reservoir, In reality every system is open and an isolated quantum system is an idealization and consequently our famous Schrodinger equation is also idealization for only closed quantum systems.

- Quantum optics
- Quantum information processing
- Quantum computing
- Quantum biology
- Quantum Chemistry
- Relativistic quantum mechanics
- Quantum cryptography
- Quantum Thermodynamics
- Foundations of quantum mechanics

![](_page_31_Picture_13.jpeg)

FONDO EUROPEO DE DESENVOLVEMENTO REXIONAL "Unha maneira de facer Europa"

![](_page_31_Picture_15.jpeg)

![](_page_31_Picture_16.jpeg)

galicia

![](_page_32_Picture_0.jpeg)

![](_page_32_Picture_1.jpeg)

![](_page_32_Picture_3.jpeg)

![](_page_32_Picture_5.jpeg)

![](_page_33_Picture_0.jpeg)

![](_page_33_Picture_1.jpeg)

![](_page_33_Picture_2.jpeg)

![](_page_33_Picture_4.jpeg)

![](_page_34_Picture_0.jpeg)

![](_page_34_Picture_1.jpeg)

Read-out plane and electron amplification X and Y coordinates

![](_page_34_Picture_3.jpeg)

![](_page_34_Picture_5.jpeg)

![](_page_35_Picture_0.jpeg)

![](_page_35_Picture_1.jpeg)

![](_page_35_Picture_2.jpeg)

Nature 566, 332-333 (2019)

- Discovered in 1932 by James Chadwick.
- Neutrons have non-zero magnetic moment. And possible electric dipole moment (nEDM 3.0×10<sup>-26</sup> e·cm).
- Neutron structure is modified when embedded inside a nucleus: Short range correlations, n-n and n-p cooper pairs, condensates, giant pairing vibration...
- Neutrons can exist in a quasi-free mode inside the nucleus: neutron halo.
- Free neutrons decay into protons through beta decay. Lifetime measured 70 years ago: 14 min 39 s. But the value depends on the method...

![](_page_35_Picture_9.jpeg)

![](_page_35_Picture_11.jpeg)

![](_page_36_Picture_0.jpeg)

![](_page_36_Picture_1.jpeg)

![](_page_36_Picture_2.jpeg)

![](_page_36_Picture_3.jpeg)

![](_page_36_Picture_4.jpeg)

![](_page_37_Picture_0.jpeg)

![](_page_37_Figure_1.jpeg)

W. Nazarewicz, J. Phys. G43, 044002 (2016)

### (Quantum) Physics research crossroads

- Strongly coupled super fluid systems.
- Phase-transitional behavior.
- Spectral fluctuations and statistics.
- Properties of open quantum systems.
- Clustering.
- Studies of neutron-rich matter as in neutron stars and supernova.
- Nuclear matrix elements for fundamental symmetry tests in nuclei and for neutrino physics.

![](_page_37_Picture_11.jpeg)

![](_page_37_Picture_13.jpeg)

![](_page_38_Picture_0.jpeg)

![](_page_38_Figure_1.jpeg)

![](_page_38_Picture_2.jpeg)

![](_page_38_Picture_3.jpeg)

![](_page_38_Picture_4.jpeg)

![](_page_39_Picture_0.jpeg)

# **Proton beam calibration**

![](_page_39_Figure_2.jpeg)

![](_page_39_Picture_3.jpeg)

![](_page_39_Picture_5.jpeg)

![](_page_40_Picture_0.jpeg)

![](_page_40_Figure_1.jpeg)

- Degrees of freedom that atomic nuclei are made of depend on the energy of the experimental probe and the distance scale.
- Quantum chromodynamics building blocks: quarks and gluons, lurking inside mesons and baryons.
- Low-energy nuclear physics experiments, nuclei can be well described in terms of individual protons and neutrons, their densities and currents, collective coordinates (rotations and vibrations of the nucleus).
- Major theoretical approaches to the nuclear manybody problem: Lattice QCD, ab-initio models, configuration interaction techniques, nuclear Density Functional Theory, and collective model)...

![](_page_40_Picture_6.jpeg)

![](_page_40_Picture_8.jpeg)

![](_page_41_Picture_0.jpeg)

![](_page_41_Picture_1.jpeg)

![](_page_41_Picture_2.jpeg)

![](_page_41_Picture_4.jpeg)

![](_page_42_Picture_0.jpeg)

# Criticisms

![](_page_42_Figure_2.jpeg)

- No reliable particle identification.
- B(GT)>3 (above free single nucleon decay limit).

![](_page_42_Picture_5.jpeg)

![](_page_42_Picture_7.jpeg)

![](_page_43_Picture_0.jpeg)

5 protons 5 neutrons

![](_page_43_Figure_1.jpeg)

![](_page_43_Figure_2.jpeg)

![](_page_43_Picture_3.jpeg)

б protons 4 neutrons

![](_page_43_Picture_4.jpeg)

![](_page_43_Picture_5.jpeg)

![](_page_44_Picture_0.jpeg)

### Experimental method: Experiment at ISAC (TRIUMF)

- Implant-decay on the pAT-TPC: High detection efficiency (80%) and resolution ( $\sigma$ (E)~5%, ( $\sigma$ ( $\theta$ )=1 deg)
- Full reconstruction and identification of p+ and  $\alpha$ .
- He(+10% CO2) as thin tracking medium: low straggling and  $\beta$  blind.
- The pAT-TPC was filled with 60 torr of He(+10% CO2)
- Beam energy of 390 keV/u deposited 11Be at the center
- <sup>11</sup>Be ions drifted to the cathode
- Protons of ~180 keV stopped in 10 cm tracks
- Normalization 11Be -> 7Li +  $\alpha$ , 3.47(1)%
- Experiment run in pulsed mode 1 sec implantation, 0.5 sec relaxation, 6.88 sec decay
- It was optimized for a peak activity of 200  $\alpha$  pps, to minimize dead time
- We run for 4.33 days or 13 8-hour shift

![](_page_44_Figure_13.jpeg)

![](_page_44_Figure_14.jpeg)

![](_page_44_Picture_15.jpeg)

![](_page_45_Picture_0.jpeg)

| Eur. Phys. J. A (2020) 56:100                   |  |
|-------------------------------------------------|--|
| https://doi.org/10.1140/epja/s10050-020-00110-2 |  |

THE EUROPEAN PHYSICAL JOURNAL A

Regular Article - Experimental Physics

#### Search for beta-delayed proton emission from <sup>11</sup>Be

K. Riisager<sup>1,a</sup>, M. J. G. Borge<sup>2,3</sup>, J. A. Briz<sup>3</sup>, M. Carmona-Gallardo<sup>4</sup>, O. Forstner<sup>5</sup>, L. M. Fraile<sup>4</sup>, H. O. U. Fynbo<sup>1</sup>, A. Garzon Camacho<sup>3</sup>, J. G. Johansen<sup>1</sup>, B. Jonson<sup>6</sup>, M. V. Lund<sup>1</sup>, J. Lachner<sup>5</sup>, M. Madurga<sup>2</sup>, S. Merchel<sup>7</sup>, E. Nacher<sup>3</sup>, T. Nilsson<sup>6</sup>, P. Steier<sup>5</sup>, O. Tengblad<sup>3</sup>, V. Vedia<sup>4</sup>

<sup>1</sup> Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark

- <sup>2</sup> ISOLDE, EP Department, CERN, 1211 Geneve 23, Switzerland
- <sup>3</sup> Instituto de Estructura de la Materia, CSIC, 28006 Madrid, Spain
- <sup>4</sup> Grupo de Física Nuclear and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- <sup>5</sup> Faculty of Physics, University of Vienna, Währinger Strasse 17, 1090 Wien, Austria
- <sup>6</sup> Institutionen för Fysik, Chalmers Tekniska Högskola, 41296 Göteborg, Sweden <sup>7</sup> Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany

Received: 9 January 2020 / Accepted: 16 February 2020 / Published online: 30 March 2020

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2020 Communicated by Klaus Blaum

![](_page_45_Figure_14.jpeg)

EXCELENCIA MARÍA DE MAEZTU

![](_page_46_Picture_0.jpeg)

![](_page_46_Figure_1.jpeg)

- The halo is a long tail in the density distribution of a nucleus.
- An important concept of a halo is the decoupling of the halo wave function from the core of the nucleus.
- Very weak binding of the last one or two valence nucleons (usually neutrons).
- Single-particle behavior.

![](_page_46_Picture_6.jpeg)

![](_page_46_Picture_8.jpeg)