Recent results of Texas Active Target (TexAT) detector: structure of ¹³Be, clustering in ¹⁸Ne, and neutron upscattering on Carbon

Grigory Rogachev

Cyclotron Institute and Department of Physics & Astronomy

The role of neutrons in carbon nucleosynthesis

Clustering in mirror pairs, the case study for A=18

Structure of ¹³Be.

Acknowledgement

Texas A&M U: E. Aboud (now at LLNL), S. (Tony) Ahn (now at RAON), M. Barbui, J. Bishop, J. Hooker (ind.), C. Hunt (now at FRIB), H. Jayatissa (now at Argonne NL), R. O'Dwyer, C. Parker, E. Koshchiy, B. Roeder, M. Roosa, D. Scriven, A. Saastamoinen, S. Upadhyayula (now at TRIUMF), E. Uberseder; IRFU, CEA, Saclay, France: E.C. Pollacco; Washington U.: L. Sobotka, C. Pruitt, R.J. Charity; Louisiana State University: S. O'Marley, R. Malecek; U Sao Paulo: V. Guimaraes, M. Assuncao, J.C. Zamora; UFF, Rio de Janeiro: R. Linares; U of Birmingham: T. Kokalova-Weldon, C. Weldon, EWHA Womans U: Insik (Kevin) Hahn, Se Young Han; Ohio U: C. Brune, Z. Meisel, T.N. Massey, N. Singh, D. Soltesz, et al.

High/Low gain regions

Mesonance scattering

Past TexAT experiments

- Resonances in ⁹C ⁸B(p,p)
- Clustering in ¹⁴O ¹⁰C(α , α) resonance elastic scattering
- Clustering in ¹⁸Ne ¹⁴O(a,a) resonance elastic scattering
- Structure of ¹³Be T=5/2 IAS in ¹³B through ¹²Be(p,p)
- ♦ Structure of ¹⁰Li T=2 IAS in ¹⁰Be through ⁹Li(p,p) and ⁹Li(p,n)

M Transfer reactions

- ◆ Structure of ¹²B(g.s.) ¹²B(d,³He)¹¹Be
- ◆ Search for excited state in tritium ¹H(⁶He,⁴He)
- **Markov** Fusion reactions
 - \bullet ⁸B+⁴⁰Ar fusion
- Ø-delayed charged particle emission
 - (12Ν,β3α) Hoyle state
 - \blacklozenge Search for Efimov effect in ¹²C below the Hoyle state.
- Meutron-induced reactions
 - ¹²C(n,n')¹²C(Hoyle)

The role of neutrons in carbon nucleosynthesis

Triple-alpha reaction and neutron upscattering

- Three alphas produce Hoyle state in ¹²C (through ⁸Be(g.s.))
- Hoyle state can be de-excited by:
 - gamma cascade
 - electron-positron pair
 - neutrons + Hoyle scattering
 - protons + Hoyle scattering
 - α+Hoyle scattering OR decay back to 3α

week ending 15 SEPTEMBER 2017

Enhancement of the Triple Alpha Rate in a Hot Dense Medium

Mary Beard,^{1,2,*} Sam M. Austin,^{2,†} and Richard Cyburt^{2,‡} ¹Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA ²Joint Institute for Nuclear Astrophysics, National Superconducting Cyclotron Laboratory, Michigan State University, 640 South Shaw Lane, East Lansing, Michigan 48824-1321, USA (Received 10 March 2017; revised manuscript received 3 July 2017; published 15 September 2017)

nature

Explore content v About the journal v Publish with us v

nature > articles > article

Article Published: 02 December 2020

Enhanced triple- α reaction reduces proton-rich nucleosynthesis in supernovae

Shilun Jin, Luke F. Roberts 🖂, Sam M. Austin & Hendrik Schatz

Nature 588, 57–60 (2020) | Cite this article 4334 Accesses | 9 Citations | 127 Altmetric | Metrics

[M. Beard et al. Phys. Rev. Lett. 119, 112701]

Using Hauser Feshbach XS predictions. High-density environment, large neutron enhancements at low temperature (≈ 0.2 GK (T9))

Measuring time-reversed reaction

Time-reversal symmetry

Quantum mechanically we can relate a reaction and the time reverse of that reaction using "detailed balance"

TPCs and neutron beams

TPCs can be well-suited to many different types of neutron-induced measurements

Active-target (gas IS the target and readout medium) TPC filled with CO_2 looking to measure:

- ¹²C(n, n₂)3α inelastic neutron scattering to the Hoyle state
- ^{12/16}C/O(n, α) hugely important reactions for nuclear data measured parasitically

Can be measured with the TexAT with 50 Torr CO_2 gas. Represents a great opportunity for future measurements with low-energy recoil products - can be well resolved using low pressure TPC.

TPCs and neutron beams

- Edwards Accelerator
 Lab Ohio University
- Deuteron beam from accelerator: $\approx 10^{13}$ pps
- Neutron beam from *d(d, n)* reaction - scanning from 7.2-10.0 MeV
- 5×10^3 neutrons/s: $\sigma(E_n) \approx 200$ keV
- Normalization is a big issue! Use ¹H(n, p)

Identifying Hoyles with TexAT

Observing ¹²N decay with TexAT

Typical ¹²C(n,n₂)Hoyle event

- J. Bishop, et al., NIM A964 (2020) 163773.
- J. Bishop, et al., PRC 102 (2020) 041303.
- J. Bishop, et al., PRC Letter 103 (2021)

¹²C(n,n₂)Hoyle reaction XS

Reconstruct three α -particles to make Hoyle state, count the events and neutrons! ${}^{12}C(n, \alpha_{1,2})^9Be^*$ contribution is removed

Remarkable similarity between the ${}^{12}C(n, n_2)3\alpha$ and ${}^{12}C(n, \alpha)$ demonstrates the dominance of the compound nucleus reaction (i.e. make ${}^{13}C$ and then it decays again)

Understanding the resonances in $^{13}\mathrm{C}$ we can perform a multi-channel R-Matrix fit using channel data:

- $^{12}C(n, n_0)$
- $^{12}C(n, n_1)$
- \square ¹²C(n, n_2)3 α
- ${}^{12}C(n, \alpha_0)^9Be$
- ⁹Be(α, n₂)3α

Aim to get the ${}^{12}C(n_0, n_2)$ and ${}^{12}C(n_1, n_2)$ cross sections (impossible to measure experimentally - must only be inferred) and their inverses through detailed balance

R-Matrix

R-Matrix relates the resonances to the observed cross sections for compound nucleus reactions

Enhancement of the upscattering enhancement is evaluated by the following:

$$R = k_n \rho_n T_9^{-1.5} (2J_i + 1) \times \int_0^\infty \sigma_{nn'}(E) (E - Q) \exp(-11.605 E/T_9) dE, \quad (1)$$

 $k_n = 6.557 \times 10^{-6} \text{ K}^{\frac{3}{2}} \text{ cm}^3 \text{g}^{-1}$, J_i is the spin factor (0 for g.s. to Hoyle, 2 for 2⁺ to Hoyle), E is COM energy, Q is the reaction Q-value, T_9 is temperature in GK and σ is our measured XS.

- Higher COM E more important at higher T
- Hoyle $\rightarrow 2^+_1$ more important by a factor of 5!

J. Bishop

nature communications

Explore content \checkmark About the journal \checkmark Publish with us \checkmark

nature > nature communications > articles > article

Article | Open Access | Published: 20 April 2022

Neutron-upscattering enhancement of the triple-alpha process

J. Bishop ⊠, C. E. Parker, G. V. Rogachev, S. Ahn, E. Koshchiy, K. Brandenburg, C. R. Brune, R. J. Charity, J. Derkin, N. Dronchi, G. Hamad, Y. Jones-Alberty, Tz. Kokalova, T. N. Massey, Z. Meisel, E. V. Ohstrom, S. N. Paneru, E. C. Pollacco, M. Saxena, N. Singh, R. Smith, L. G. Sobotka, D. Soltesz, S. K. Subedi, A. V. Voinov, J. Warren & C. Wheldon — Show fewer authors

<u>Nature Communications</u> 13, Article number: 2151 (2022) | <u>Cite this article</u> 432 Accesses | 6 Altmetric | <u>Metrics</u>

Enhancement is not as important as previously thought to be! Different astrophysical sites have different temperatures

Clustering in ¹⁸O-¹⁸Ne mirrors

Clustering in ¹⁸O

Molecular-type configuration

"Shell model" configuration

 α -cluster configuration

Cartoon is borrowed from W. von Oertzen, et al., EPJA 43, 17 (2010)

Excitation functions for ¹⁴C+α

Levels in ¹⁸O

E*(MeV)	J^{π}	$\Gamma_{tot}(keV)$	$\Gamma_{\alpha}(\text{keV})$	θ _α ²	 E*(MeV)	J^{π}	$\Gamma_{tot}(keV)$	Γ_{α} (keV)	θ _α 2
8.04	1	2	2	0.02	12.54	4	6	5	< 0.01
8.21	2+	1.9	1.7	0.03	12.57	6+	71	49	0.38
8.28	3.	8.5	2.9	0.18	12.64	3-	103	5	< 0.01
8.82	2	58	0.3	< 0.01	12.71	3	285	118	0.05
8.96	2*	69	5	0.02	12.90	2*	310	285	0.09
9.19	1	218	199	0.20	12.94	5	38	14	0.02
9.35	3	176	112	0.48	12.96	2+	4788	4788	1.56
9.70	3	137	15	0.04	12.98	3	1039	768	0.32
9.76	1.	679	626	0.46	13.08	5	176	122	0.18
9.79	2	173	90	0.10	13.17	2+	147	129	0.04
9.86	0*	3209	3209	1.85	13.33	1	306	33	< 0.01
10.11	3.	16	7	0.01	13.38	2+	252	215	0.07
10.29	4 +	29	19	0.09	13.45	4 ⁺	838	23	0.01
10.40	3.	66	18	0.03	13.48	4+	465	196	0.11
10.42	2*	182	44	0.03	13.69	2*	531	40	0.01
10.80	17	688	629	0.29	13.82	5.	25	2	< 0.01
10.98	2	284	21	0.01	13.89	4 +	60	28	0.01
11.31	2	248	86	0.02	13.96	3	144	74	0.03
11.43	4 +	41	32	0.05	14.01	3	2615	2098	0.70
11.62	3	144	28	0.01	14.07	5.	560	260	0.23
11.63	5	40	31	0.13	14.12	2+	155	96	0.03
11.67	1.	201	117	0.02	14.30	1-	955	403	0.10
11.70	6+	23	12	0.23	14.47	1.	449	228	0.05
11.95	3	561	297	0.17	14.52	4 +	2212	81	0.03
12.12	1.	414	49	0.02	14.70	5.	280	230	0.16
12.21	2*	1073	960	0.37	14.77	4 +	943	446	0.18
12.34	5	39	26	0.06	14.82	5	142	102	0.07
12.46	1	910	271	0.08		_			

Clustering in ¹⁸Ne

¹⁴O+α experiment: event selection

A M

 $^{14}C+\alpha$ excitation function

1600

¹⁴O+ α excitation function

80

Scattering feature in 0⁺ wave in A=18

E.D. Johnson,	et al., EPJ	JA, 42 135	(2009)
---------------	-------------	------------	--------

16 States were used to fit the data

		0 ⁺ at 3.67 MeV	E*(MeV)	Jπ	$\Gamma_{\rm tot}({\rm keV})$	$\Gamma_{\alpha}(\text{keV})$	θ_{α}^{2}
60 50	0 = θ _{c.m.} = 180 0 = ' Data 🔆	i	8.04	1-	2	2	0.02
400 400 100 120 100 400 400 400 200 400 400 400 120 100 400 400 400 400 400 400 40	E = Best Fit Fit without 0*		8.21	2+	1	1	< 0.01
			8.29	3-	8	2	0.09
	0 E 129 < 0 < 151		8.78	2+	70	1	< 0.01
			8.98	2+	60	4	0.01
			9.17	1-	240	205	0.24
			9.36	2+	24	1	< 0.01
8	$ \begin{array}{c} 100 \\ 121 < \theta_{cm} < 148 \\ 60 \\ 40 \end{array} $	9.39	3-	155	103	0.47	
6			9.69	3-	56	0.1	< 0.01
$ \begin{array}{c} 40 \\ 20 \\ 100 \\ 80 \\ 60 \\ 40 \\ 20 \\ \end{array} $			9.79	2*	263	167	0.20
	$\theta_{c,m} = 90$		9.76	1-	740	658	0.48
			9.90	0*	2100	2100	1.20
			10.10	3-	17	12	0.02
_	2.2 2.4 2.6 2.8 3 3.2 3.4	3.6 3.8 4 4.2 4.4	10.30	4+	23	16	0.08
	$E_{em}(MeV)$		10.34	2+	111	20	0.02

Comparing the 6⁺ states in A=18

Comparing cluster 1⁻ states in A=18

1

18O

10.8(3)	1-	$\theta^2 = 0.29(4)$
9 76(2)	1-	$A^2 = 0.46(4)$

9.19(2) 1- $\theta^2 = 0.20(1)$

¹⁸Ne

$$0.58(3) \quad 1^{-} \quad \theta^{2} = 0.15(5)$$

$$9.57(2)$$
 1- 0- - 0.51(5)

$$\overline{9.08(2)}$$
 1- $\theta^2 = 0.21(1)$

alpha-cluster structure of 18Ne

M. Barbui, <u>A. Volya, E. Aboud, S. Ahn, J. Bishop, V.Z. Goldberg, J. Hooker, C.H. Hunt, H.</u> Jayatissa, <u>Tz. Kokalova, E. Koshchiy, S. Pirrie, E. Pollacco, B.T. Roeder, A. Saastamoinen, S.</u> <u>Upadhyayula, C. Wheldon, G.V. Rogachev</u>

https://doi.org/10.48550/arXiv.2206.10659

Highlights

- The first detailed, large-scale comparison of cluster states in mirror pairs was performed.
- A direct link between cluster structures in A=18 mirrors was established.
- Evidence for a systematic difference between the mirror systems - the states with larger total widths also get large alpha-core(g.s.) SF factor.

Structure of ¹³Be

Is the N=8 magicity breaking in ¹³Be?

 Naively the g.s. and first excited state in ¹³Be should be 5/2⁺ and 1/2⁺
 ¹⁵C and ¹⁷O are "good" examples of N=9 nuclei

However:

I¹¹Be (N=7) has 1/2⁺ g.s., followed by 1/2⁻, so should the g.s. of ¹³Be be 1/2⁻ with 1/2⁺ filled?

Should there be more low-lying states in ¹³Be?

G. Randisi, et al. Phys. Rev. C 89, 034320 (2014)

B.R. Marks, et al., Phys. Rev. C 92, 054320 (2015)

 All results are from break up at high energies
 Interpretation is challenging
 No conclusive spin-parity assignments

Structure of ¹³Be through T=5/2 states in ¹³B

How well does this work?

500 pps of ¹²Be beam at 60 MeV

TexAT measurements at TRIUMF

160°-180°

Shell Model with FSU Hamiltonian

1/2-(1) T=5/2 0 0.436083 I=1 1/2+(1) T=5/2 0.1788 0.283016 l=0 0.0914305 l=1 3/2-(1) T=5/2 1.7761 5/2+(1) T=5/2 1.7819 0.480836 l=2 5/2+(2) T=5/2 2.0454 0.211212 I=2 5/2-(1) T=5/2 2.3707 0.000506811 I=3

0hω and 2hω configurations are

mixed in these SM calculations

Cross Section (mb/sr

Cross Section (mb/sr)

5.5

5.5

Experiment

Highlights

- Excitation function for $^{12}Be+p$ resonance elastic scattering is described by T=5/2 resonances ONLY.
- Ground state appears to be 1/2+, but low SF indicates that N=8 is not a shell closure.
- The role of configuration mixing is significant.
- More states of negative parity may be present and consistent with the data (but not required).

Summary

- A wide range of experiments with exotic beams can be performed using active targets.
- First measurements with neutron beam in active target indicate that neutron upscattering is not as important in carbon nucleosynthesis as was believed previously.
- A study of clustering in A=18 mirror system ¹⁸O -¹⁸Ne reveals similarities, but also curious differences
- The first observation of the T=5/2 states in ¹³B shed light on the ¹³Be structure.

Structure of light exotic nuclei

Theoretical advances

S. Pieper, et al., PRC 70 054325 (2004)

A=9 T=3/2 iso-multiplet Where is the 2s1/2 shell?

We used Active Target detector TexAT to populate resonance in ⁹C in ⁸B+p scattering

Now is a short technical detour...

A=9 T=3/2

A=10 T=2 iso-multiplet - what is the ground state?

Very little was known about ¹⁰N

Possibly a state observed at 2.6 MeV above p-decay threshold. [A. Lepine-Szily, et al., PRC 65 (2002)]
 Odd-odd psd-shell challenge to both experiment and theory.

10 I j

A. Lepine-Szily, et al., PRC 65 (2002)

Excitation function for ⁹C+p elastic scattering

Excitation function for ⁹C+p elastic scattering

Nordheim rule?

- If $(l_1 + l_2 + j_1 + j_2)$ is even, then $I = |j_1 j_2|$.
- 2. If $(l_1 + l_2 + j_1 + j_2)$ is odd, then I will be large so we use $I = (j_1 + j_2)$.

Evidence for 1p1/2 - 2s1/2 shell degeneracy in ¹³Be

TexAT "Hoyle" Publications

- **I** J. Bishop, et al., NIM A964 (2020) 163773.
- **I** J. Bishop, et al., PRC 102 (2020) 041303.
- J. Bishop, et al., PRC Letter 103 (2021) L051303.
- J. Bishop, et al., Nature Communication 13 (2022)

2151

54

Direct measurement of fusion with TPC

Juan Zamora

Direct 8B+40Ar fusion Valdir Guimarães measurement Yurii Penionzhkevich Charge/pad 200 200150 150Y [mm] [mm] 4000 100 100 3000 1000 50 -100-501000 50 -100-500 100 X [mm] 50 150 200 250 300 100 X[mm] Y [mm]

Direct measurement of fusion with TPC

Target	R_B	V_B	$\hbar\omega$	Ref.
	[MeV]	[MeV]	[MeV]	
²⁸ Si	8.15	11.28	3.59	[27]
⁴⁰ Ar	8.57	13.87	3.76	This work
⁵⁸ Ni	8.90	20.83	4.14	[51]

Direct measurement of fusion with TPC week ending 26 AUGUST 2011 PHYSICAL REVIEW LETTERS PRL 107, 092701 (2011) Near-Barrier Fusion of the ⁸B + ⁵⁸Ni Proton-Halo System E.F. Aguilera,* P. Amador-Valenzuela, E. Martinez-Quiroz, D. Lizcano, P. Rosales, H. García-Martínez, and A. Gómez-Camacho Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, DF-11801, México J.J. Kolata, A. Roberts, L.O. Lamm,[†] and G. Rogachev[‡] Fusion ⁸B+²⁸Si - INFN-Italy Physics Department, University of Notre Dame, Notre Dame, Indiana, 46556-5670, USA V. Guimarães (alpha multiplicity - model dependent Fusion ⁸B+⁵⁸Ni - ND - USA Fusion suppression above barrier ? (proton multiplicity - model dependent) Fusion enhancement below barrier ? 10 $[2E/(\hbar\omega R_b^2)]\sigma_{fus}$

0.1

0

PHYSICAL REVIEW C 93, 034613 (2016)

Above-barrier fusion enhancement of proton-halo systems

E. F. Aguilera,* P. Amador-Valenzuela, E. Martinez-Quiroz, and J. Fernández-Arnáiz Departamento de Aceleradores, Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, Código Postal 11801 México, Distrito Federal, México

> J. J. Kolata Physics Department, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA

V. Guimarães Instituto de Fisica, Universidade de São Paulo, P.O. Box 66318, 05389-970 São Paulo, São Paulo, Brazil (Received 22 October 2015; revised manuscript received 19 February 2016; published 16 March 2016)

⁸B + ²⁸Si

 $F_{0}(E_{Red})$

4

3

2

 $E_{\text{Red}} = (E - V_{\text{b}})/\hbar\omega$

Tracking in TexAT

α-cluster parity doublets in ¹⁶O and ²⁰Ne

... and now back to: A=9 T=3/2 iso-multiplet Where is the 2s1/2 shell?

Josh Hooker 2019 graduate

⁸B - cumulative tracks

-100

100

50

IAS in ⁹Be

References

- E. Koshchiy, GR, E. Pollacco, et al., NIM A 957 (2020) 163398 TexAT
- J. Hooker, GR, E. Koshchiy, et al., PRC 100, (2019) 054618 Structure of ⁹C
- J. Hooker, GR, E. Koshchiy, et al., PLB 769 (2017) 62 Structure of ¹⁰N
- C. Hunt, GR, S. Almaraz, et al., PRC 102 (2020) 014615 T=3/2 states in 9Be
- E. Uberseder, GR, V.Z. Goldberg, et al., PLB 754 (2016) Structure of ⁹He
- S. Upadhyayula, GR, et al., PRC 101 (2020) 034604 Clustering in ¹⁰Be
- J. Bishop, GR, S. Ahn, et al., NIM A 964 (2020) 163773 Hoyle decay
- J. Bishop, GR, S. Ahn, et al. PRC 102 (2020) 041303 (R) Hoyle decay
- H. Jayatissa, GR, et al., PLB 802 (2020) 135267 ²²Ne(α,γ) reaction rate
- S. Ota, G. Christian, et al., PLB 802 (2020) n/γ br. ratios for ²²Ne(α,γ)
- R. Linares, V. Guimaraes, GR, et al., PRC (2021) submitted ¹⁰C+²⁰⁸Pb el.sc.
- J. Zamora, V. Guimaraes, GR, et al., PLB (2021) submitted ⁸B+⁴⁰Ar fusion
- J. Bishop, GR, et al., PRL (2021) submitted search for Efimov states in ¹²C

TexAT Utilizes GET Electronics

8 AsAd boards - 2048 channels 2 CoBos, 1 MUTANT GET is used to read out ALL channels microMegas (1024); Si - (256); CsI(TI) - (64)

Analysis Computing Infrastructure

- Using "Big Data" tools actively supported and developed by a very large community (but still open source!)
- + HDFS (Hadoop Distributed File System) for all data storage
 - Redundant, fault-tolerant, high-availability distributed file system
- Spark cluster engine handles parallel tasks
 - Spark + PyROOT gives parallel, data local, parallel processing of ROOT trees with TSelectors, similar to PROOF but more general with larger development base
 - Simple Python wrapper (less lines than a Condor script) allows easy batch processing (i.e. Geant4 applications)
- Entire compute/data node environment is contained in a Docker image and runs in a container
 - Setup of entire node after operating system install takes < 5 minutes

TexAT designated Cluster architecture

master users

Data never transferred to/from master, only results (histograms, of example) Data transfer between nodes minimized automatically by Spark software

TexAT software suite flowchart

Analysis Computing Infrastructure

Parallel Analysis Example:

~30 GByte data 230,000,000 events 1 Gbit network

Case 1

- +1 node, 1 core
- All files looped with TChain

No data locality

Case 2

- +4 nodes, 24 cores
- Each file processed as separate task
- Data locality preferred

 $\begin{array}{r} 870 \text{ seconds} \\ 0.27 \text{ Gbit/s} \end{array} \longrightarrow \begin{array}{r} 90\% \longrightarrow \begin{array}{r} 40 \text{ seconds} \\ 6.0 \text{ Gbit/s} \end{array}$

With existing 8 node / 120 cores cluster **260 TB** of data can be **ALL** analyzed in few **days**

