Quantum Many-Body Physics Near Decay Thresholds

Alexander Volya

Florida State University

Supported by the US Department of Energy Award number: DE-SC0009883

Nucleus is an open quantum system

Wooden toy model illustrating Bohr's compound nucleus, from Nature **137**, 351 (1936)

Nucleus is an open quantum system

- Effect of continuum and thresholds on structure of states
- Transitions via continuum
- Specific cases: 11Be, alpha clustering etc.

Wooden toy model illustrating Bohr's compound nucleus, from Nature **137**, 351 (1936)

Physics of coupling to continuum

The role of continuum-coupling

$$H'(\epsilon) = \int_0^\infty d\epsilon' A^*(\epsilon') rac{1}{\epsilon - \epsilon' + i0} A(\epsilon') \qquad A(\epsilon') \equiv \langle I_2, \epsilon' | H_{PQ} | I_1
angle$$

[1] C. Mahaux and H. Weidenmüller, *Shell-model approach to nuclear reactions*, North-Holland Publishing, Amsterdam 1969

Physics of coupling to continuum

$$H'(\epsilon) = \int_0^\infty d\epsilon' \frac{|A(\epsilon')|^2}{\epsilon - \epsilon' + i0}$$

$$H'(\epsilon) = \Delta(\epsilon) \qquad \Delta(\epsilon) = \int d\epsilon' \frac{|A(\epsilon')|^2}{\epsilon - \epsilon' + i0}$$

State embedded in the continuum

$$\frac{1}{x \pm i0} = \text{p.v.} \frac{1}{x} \mp i\pi\delta(x)$$

$$H'(\epsilon) = \Delta(\epsilon) - \frac{i}{2}\Gamma(\epsilon) \quad \Gamma(\epsilon) = 2\pi |A(\epsilon)|^2$$

Self energy, interaction with continuum

D. Abrahamsen, A. Volya, and I. Wiedenhoever, *Effective R-matrix parameters of the Woods-Saxon nuclear potential*, APS Volume 57, Number 16, section KA 26 (2012).

Effect of weak binding

Effect of weak binding

C. R. Hoffman, B. P. Kay, and J. P. Schiffer Phys. Rev. C 89, 061305(R) B. P. Kay, C. R. Hoffman, and A. O. Macchiavelli Phys. Rev. Lett. 119, 182502

11Be beta decya

M. Pfützner, K. Riisager, *Examining the possibility to observe neutron dark decay in nuclei,* Phys. Rev. C **97** (2018) 042501. F. E. Wietfeldt, G. L. Greene, *Colloquium: The neutron lifetime,* Rev. Mod. Phys. **83** (2011) 1173.

11Be beta-delayed proton decay

	Theory (FSU)			Experiment	
J	E(MeV)	log(ft)	SF(p)	E(MeV)	SF(p)
1/2+(1)	5.709	5.5	0.262	6.792	
1/2+(2)	10.545	3.4	0.117	9.820	
1/2+(3)	11.952	3.5	0.134	11.44	0.27(6)
1/2+(4) T=3/2	12.181		0.274	12.554	
1/2+(5)	12.827	4.0	0.028		
1/2+(6)	14.105	5.4	0.001		

1/2+ states in 11B

E. Lopez-Saavedra, et.al. resonance at 211(40) keV

Questions

- Even with proton resonance, beta-delayed rate is hard to explain
- The proton resonance is likely 1/2+(3), why it is lowered (predicted 12.2 MeV, observed at 11.44 MeV
- Why proton SF is so large, while there is no alpha decay?
- Can exotic mechanisms, transition via continuum, isospin mixing etc explain the situation

Clustering in light nuclei

 $^{20}_{10}$ Ne₁₀

Clustering and continuum

Clustering in A=18 mirror systems

Clustering in A=18 mirror systems

Translational invariance and Center of Mass (CM)

Shell model, Glockner-Lawson procedure

Clustering reaction basis channel

(basis states for clustering)

Resonating group method and reactions

K. Kravvaris, A. Volya, Phys. Rev. C 100 (2019) 034321

alpha+alpha scattering phase shifts

Experimental data from S. A. Afzal, A. A. Z. Ahmad, and S. Ali, Rev. Mod. Phys. 41, 247 (1969). K. Kravvaris, A. Volya, Phys. Rev. C 100 (2019) 034321

Channel coupling in ¹⁸0 I=1 channel

M. Barbui, et al., (2022) https://arxiv.org/abs/2206.10659

Channel coupling in ¹⁸0 I=1 channel

Single-particle decay in many-body system

Evolution of complex energies E=E-i $\Gamma/2$ as a function of γ

Total states 8!/(3! 5!)=56; states that decay fast 7!/(2! 5!)=21

Separation of states in the complex plane

(a) $\varkappa = 0.5$ (b) $\varkappa = 1$ (c) $\varkappa = 1.8$

Observing superradiance

$$H = \begin{pmatrix} \epsilon - \frac{i}{2}\Gamma & v \\ v & 0 \end{pmatrix} = H_0 - \frac{i\Gamma}{2}A^{\dagger}A \qquad A = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Stationary system $\Gamma = 0$

Energies
$$E_{1,2} = \frac{1}{2} \left(\epsilon \pm \sqrt{\epsilon^2 + 4v^2} \right)$$

Spectroscopic Factors

$$SF_{1,2} = \frac{1}{2} \left(1 \pm \frac{\epsilon}{\sqrt{\epsilon^2 + 4v^2}} \right)$$

Observing superradiance

$$H = \begin{pmatrix} \epsilon - \frac{i}{2}\Gamma & v \\ v & 0 \end{pmatrix} = H_0 - \frac{i\Gamma}{2}A^{\dagger}A \qquad A = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Energies $\mathcal{E}_{1,2} = \frac{1}{2}\left(\epsilon - \frac{i}{2}\Gamma \pm \sqrt{\left(\epsilon - \frac{i}{2}\Gamma\right)^2 + 4v^2}\right)$

Width $\Gamma_{1,2} = -2 \operatorname{Im} \left(\mathcal{E}_{1,2} \right)$

Spectroscopic Factors $SF_{1,2} = \Gamma_{1,2}/\Gamma_{1,2}$

Example of interacting resonances

Observing superradiance

Spectroscopic factor for superradiant state

Spectroscopic factor for trapped state

Isospin symmetry

		¹⁸ Ne		¹⁸ O		
J	E (MeV)	Γ (keV)	SF	E (MeV)	Γ(keV)	SF
1-	9.08(1)	357	0.21(1)	9.19(2)	200	0.20(1)
1-	9.57(1)	1062	0.51(5)	9.76(2)	630	0.46(4)
1-	10.58(4)	416	0.15(5)	10.8(3)	630	0.29(4)
1-	13.730(2)	780	0.2(1)	14.3(3)	400	0.10(4)
2+	9.19(3)	265	0.21(2)	9.79(6)	90	0.10(3)
2+	10.94(6)	1302	0.52(3)	12.21(8)	1000	0.37(9)
2+	13.4 (2)	1755	0.45(8)	12.8(3)	4800	1.56(13)
2+	16.9(2)	1515	0.3(2)			
3-				8.29(6)	2.9	0.18(1)
3-	8.77(8)	419	1.0(4)	9.35(2)	110	0.48(13)
3-	11.0(1)	497	0.28(7)	11.95(1)	300	0.17(2)
3-	12.7(2)	2025	0.7(2)	12.98(4)	770	0.32(5)
3-	14.8(2)	3967	1.0(2)	14.0(2)	2100	0.7(1)
4+	8.16	31	0.8(3)	7.11*		
4+	13.3(3)	845	0.37(4)	13.46(2)	210	0.12(1)
4+	14.15(21)	375	0.14(10)	14.77(5)	680	0.28(2)
5-	11.31(4)	15	0.03(2)	11.63(1)	30	0.13(1)
5-	12.9(2)	532	0.48(12)	13.08(1)	120	0.17(1)
5-	13.79(8)	219	0.14(10)	14.1(1)	260	0.23(2)
5-	14.6(7)	521	0.27(20)	14.7(1)	230	0.16(6)
6+	11.8(2)	54	0.30(7)	11.69(5)	12	0.23(1)
6+	12.4(2)	167	0.56(26)	12.57(1)	50	0.38(8)

M. Barbui, et al., Alpha-Cluster Structure Of 18Ne, (2022) https://arxiv.org/abs/2206.10659

Acknowledgements:

Funding: U.S. DOE contract DE-SC0009883.

Publications:

V. Z. Goldberg, et al. Phys. Rev. C 105 (2022) 014615.
M. Barbui, et al.,(2022) https://arxiv.org/abs/2206.10659
A. Volya, et al. Phys. Rev. C 105 (2022) 014614.
K. Kravvaris, A. Volya, Phys. Rev. C 100 (2019) 034321.
A. Volya, EPL 130 (2020) 12001.
A. Spyrou et al., Phys. Rev. Lett. 108 (2012) 102501.

A. Volya, V. Zelevinsky, Phys. Rev. C 67 (2003) 054322.

Special thanks to: M. Barbui, V. Z. Goldberg, G. Rogachev, V. Zelevinsky