Resonance Ghost Anomaly in 3α -system

Souichi Ishikawa @Hosei University

CONTENTS

- 1. Introduction
 - What is Resonance Ghost?
- 2. Ghost Peak in 3α -system
- 3. 3α model
- 4. Monopole strength function in 3α model
- 5. Comparison with R-matrix theory
- 6. Nature of the 0^+_{Δ} peak
- 7. ¹²C(α, α')3 α reaction in 3 α -model
- 8. Summary

1. Introduction (1)

- Information of 'unstable' object *X* from Y(a, b)X $a + Y \rightarrow b + X, \quad X \rightarrow c + d + \cdots$
- Combination of $a + x' \rightarrow b \& X' \rightarrow X$ Transition amplitude:

$$T \propto f(a + x' \to b) \langle \Psi_{X \to c + d + \cdots} | \hat{O} | \Psi_{X'} \rangle$$

Transition strength function

$$S(E) = \int df \left| \left\langle \Psi_{X \to c+d+\dots} \middle| \hat{\partial} \middle| \Psi_{X'} \right\rangle \right|^2 \delta(E - E_f) = -\frac{1}{\pi} \operatorname{Im} \left\langle \Psi_{X'} \middle| \hat{\partial}^{\dagger} \frac{1}{E + i\varepsilon - H_x} \hat{\partial} \middle| \Psi_{X'} \right\rangle$$
$$H_X \left| \Psi_X \right\rangle = E \left| \Psi_X \right\rangle, \quad E > 0$$

- If the system X has a complex energy eigen value, $E_r \frac{i}{2}\Gamma$: $\rightarrow S(E) = \frac{S_r}{\pi} \frac{1}{(E-E_r)^2 + (\frac{1}{2}\Gamma)^2}$
- When the complex energy is close to real axis (i.e. Γ is small enough) so that S(E) has a peak around $E = E_r$, it is called as a resonance peak.

1. Introduction (2)

Does a peak in S(E) always indicate the existence of a resonance ?

1. Introduction (3)

An explanation of the ghost peak

• Resonance formula (R-matrix theory) with energy-dependent width: $\Gamma(E) = 2P(E)\gamma^2$

 $\rho(E) = \frac{\frac{\Gamma(E)}{2}}{(E - \Delta(E) - E_r)^2 + \left(\frac{1}{2}\Gamma(E)\right)^2}, \qquad P(E): \text{Penetration factor, } \gamma^2: \text{Reduced width}$

• Sharp resonance at low energy: $E \gg E_r$, $\Gamma(E_r)$ $\rho(E) \approx \frac{P(E)\gamma^2}{E^2}$ at higher energies

- P(E) increases as E goes through the Coulomb barrier
- Competition of the energy dependence of P(E) vs. $\frac{1}{E^2} \rightarrow a$ broad peak

- In this presentation:
- 1. Experiments that show the existence of ghost peak in 3α -system
- 2. Calculations in 3α -model
 - Monopole strength function
 - ${}^{12}C(\alpha, \alpha')3\alpha$ reaction

2. Ghost Peak in 3α -system (1)

- Experimental studies on low-energy excited states of ${}^{12}C[3\alpha]$
- 1. M. Itoh et al. PRC**84** (2011) 054308 ${}^{12}C(\alpha, \alpha'){}^{12}C^*@$ 386 MeV

Multipole Decomposition Analysis $N(E) = \sum_{\lambda} a_{\lambda} S_{\lambda}(E)$ $S_{\lambda}(E)$: transition-strength function

2. K. C. W. Li et al., PRC105 (2022) 024308; PLB827 (2022) 136928 ¹²C(α, α')¹²C* @ 118 MeV, 160 MeV, 196 MeV ¹⁴C(p, t)¹²C*@ 67.5 MeV, 100 MeV, 196 MeV

Multi-level, multi-channel R-matrix theory

2. Ghost Peak in 3α -system (2) - ${}^{12}C(\alpha, \alpha')3\alpha @ 386$ MeV, $\theta_{Lab} = 0^{\circ}$

2. Ghost Peak in 3α -system (3) - ${}^{12}C(\alpha, \alpha')3\alpha \otimes 118 \text{ MeV}, \theta_{\text{Lab}} = 0^{\circ}$

$$^{12}C(\alpha, \alpha')^{12}C^*$$
 $E_{\alpha} = 118 \text{ MeV}$ $\theta_{\text{Lab}} = 0^{\circ}$

Multi-level, multi-channel R-matrix theory

1. 0^+_2 Hoyle state (with ghost peak)

2.
$$0_2^+ + 0_3^+$$
(1-peak)
 $E(0_3^+) = 2.92 \text{ MeV}$ $\Gamma(0_3^+) = 2.28 \text{ MeV}$

3.
$$0_2^+ + 0_{\Delta}^+ + 0_3^+$$

 $E(0_{\Delta}^+) = 2.28 \text{ MeV}$ $\Gamma(0_{\Delta}^+) = 3.38 \text{ MeV}$
 $E(0_3^+) = 3.64 \text{ MeV}$ $\Gamma(0_2^+) = 1.45 \text{ MeV}$

 0^+ $1^ 2^+$ 3^- Fit residuals

K. C. W. Li et al., PRC105 (2022) 024308; PLB827 (2022) 136928

Background

Contaminant

Total fit

Fit residuals

2+

3

4+

 $\pi = (-1)^{J+1}$

3. 3α model (1) - Hamiltonian

- Alpha particle is treated as a structureless 0^+ boson.
- 3α Hamiltonian $H_{3\alpha}$

$$H_{3\alpha} = K + V_{12} + V_{23} + V_{31} + V_{3\alpha}$$

 Phenomenological αα potential: Ali-Bodmer Model D (L=0,2,4) Ref.: NP80 (1966) 99

• Gaussian 3α potential

$$V_{3\alpha} = W_3 \exp\left[-\frac{r_{12}^2 + r_{23}^2 + r_{31}^2}{a^2}\right]$$

3. 3α model (2) - Transition Strength Function

• Transition strength function for the bound state Ψ_b to 3α continuum states by operator \hat{O} :

$$S_{\hat{O}}(E) = \int df \left| \left\langle \Psi_{f}^{(-)} \middle| \hat{O} \middle| \Psi_{b} \right\rangle \right|^{2} \delta(E - E_{f}) = -\frac{1}{\pi} \operatorname{Im} \left\langle \Psi_{b} \middle| \hat{O}^{\dagger} \frac{1}{E + i\varepsilon - H_{3\alpha}} \hat{O} \middle| \Psi_{b} \right\rangle$$

• Def. $|\Psi\rangle$: wave function corresponding to the process ${}^{12}C(0_1^+) \rightarrow 3\alpha$:

$$\begin{split} |\Psi\rangle &= \frac{1}{E + i\varepsilon - H_{3\alpha}} \hat{O} |\Psi_b\rangle \to N \frac{e^{iKR}}{R^{5/2}} \left\langle \Psi_f^{(-)} \left| \hat{O} \right| \Psi_b \right\rangle \\ R &= \sqrt{x^2 + \frac{4}{3}y^2} \quad K = \sqrt{\frac{m}{\hbar^2}E} \end{split}$$

• Calculate $|\Psi\rangle$ by Faddeev methods, from which 3-body breakup amplitude $\langle \Psi_f^{(-)} | \hat{0} | \Psi_b \rangle$ is obtained:

References: Faddeev calculations for $3\alpha(0^+)$ systems: S. I. : PRC **87** (2013) 055804, PRC **90** (2014) 061604, PRC **94** (2016) 061603

4. Monopole strength function in 3α model (1)

- Monopole strength function: $\hat{O} = \sum_{i=1,3} r_i^2$
- Phenomenological αα potential: Ali-Bodmer Model D (L=0,2,4) Ref.: NP80 (1966) 99
- Gaussian 3α potential $V_{3\alpha} = W_3 \exp\left[-\frac{r_{12}^2 + r_{23}^2 + r_{31}^2}{a^2}\right]$
 - Model1~Model5: $a = 4.0 \sim 2.4$ [fm]
 - Strength parameter W_3 : fitted to the Hoyle state energy

Model	<i>a</i> [fm]	<i>W</i> ₃ [MeV]
Model-1	4.0	-48.54
Model-2	3.4	-92.85
Model-3	3.0	-156.9
Model-4	2.6	-303.66
Model-5	2.4	-431.1

4. Monopole strength function in 3α model (2) - Calculations

 $0_{\Delta}^+, 0_3^+$: Following the notation of K. C. W. Li et al., PRC105, 024308 (2022);

5. Comparison with R-matrix theory (1)

- Comparison of the 3α calculations with he R-matrix theory
- R-matrix

$$S(E) = \frac{B}{\pi} \frac{\frac{\Gamma(E)}{2}}{(E - \Delta(E) - E_r)^2 + \left(\frac{1}{2}\Gamma(E)\right)^2}$$

$$\begin{split} \Gamma(E) &= 2P(E)\gamma^{2} \\ P(E) &= \frac{ka}{F_{\ell}(\eta, ka)^{2} + G_{\ell}(\eta, ka)^{2}} \\ \Delta(E) &= -[S(E) - S(E_{r})]\gamma^{2} \\ S(E) &= \frac{ka[F_{\ell}(\eta, ka)F_{\ell}'(\eta, ka) + G_{\ell}(\eta, ka)G_{\ell}'(\eta, ka)]}{F_{\ell}(\eta, ka)^{2} + G_{\ell}(\eta, ka)^{2}} \end{split}$$

5. Comparison with R-matrix theory (2)

Input parameters: E_r , $\Gamma(E_r)$, B, a

 $E_r, \Gamma(E_r), B \rightarrow$ taken from the calculated values of the model-2 $E_r = 0.379177 \text{ MeV}, \Gamma(E_r) = 6.8 \text{ eV}, B = 28.9 \text{ fm}^4$

Channel radius $a = 5 \text{ fm} \dots 11 \text{ fm}$

5. Comparison with R-matrix theory (3)

• The monopole strength function in 3α -model gives the 0^+_{Δ} -peak, which is higher than one by R-matrix theory.

In the next:

• Is the 0^+_{Δ} -peak corresponding to a resonance?

• Does the 0^+_Δ -peak have enough strength to explain the experimental data ?

6. Nature of the 0^+_{Δ} peak (1)

1. Volume integral of the absolute square of the wave-function $|\Psi\rangle$, $|\Psi\rangle = \frac{1}{E + i\varepsilon - H_{3\alpha}} \hat{O} |\Psi_b\rangle$

with the integration range being restricted as $x \le 12$ fm and $y \le 12$ fm.

FIG. 2. The volume integral $N_{12}(E)$ defined in the text.

6. Nature of the 0^+_{Δ} peak (2)

2. When fictional attractive effects are added, in general, the energy of a resonance decreases and the resonance becomes a bound state.

In this work, attractive effects will be given by $3\alpha P$ of the same range

parameter a with the original Hamiltonian

$$\Delta V_{3\alpha} = \delta_3 \exp\left[-\frac{r_{12}^2 + r_{23}^2 + r_{31}^2}{a^2}\right]$$

No change for the nuclear and Coulomb parts of $\alpha\alpha$ -potential to keep ${}^{8}Be(0_{1}^{+})$ (2 α -resonance).

6. Nature of the 0^+_{Δ} peak (3) - 3α energy δ_3 -dependence

 δ_3 -dependence of 3α (peak) energy

6. Nature of the 0^+_{Δ} peak (4)

$$\delta_3 = -0$$
 MeV,
 $\delta_3 = -7$ MeV,
 $\delta_3 = -17$ MeV,
 $\delta_3 = -27$ MeV

$$\delta_3 = -27 \text{ MeV},$$

$$\delta_3 = -32 \text{ MeV},$$

$$\delta_3 = -37 \text{ MeV},$$

$$\delta_3 = -47 \text{ MeV}$$

• The 0^+_{Δ} peak

No concentration of the wave function at interior region. No bound state as attraction of the interaction is enhanced.

The 0^+_{Δ} peak may not be caused by a 3α resonant state.

• Is the 0^+_{Δ} peak in 3α -model enough to explain the experimental data ?

7. ¹²C(α , α')3 α reaction in 3 α -model (1)

• Spectrum of inelastic scattering ${}^{12}C(\alpha, \alpha')3\alpha$

$$\frac{d^2\sigma}{d\Omega dE} = \sum_{\lambda=0}^{3} a_{\lambda} \frac{c_{\lambda}(Q)}{Q^4} S_{\lambda}(E)$$

Multipole strength functions

$$S_{\lambda}(E) = \int dE' \int dqdp \left| \left\langle \Psi_{3\alpha}^{(-)}(E';q,p) \left| \hat{O}_{\lambda} \right| \Psi(^{12}C) \right\rangle \right|^{2} \delta(E-E')$$

$$\hat{O}_{\lambda} = \begin{bmatrix} r^2, & r^3 Y_1(\hat{r}), & r^{\lambda} Y_{\lambda}(\hat{r}) \end{bmatrix} \quad (\lambda = 0, \lambda = 1, \lambda \ge 2)$$

- Gauss convolution FWHM=100keV
- Fitting parameters (a_0, a_1, a_2, a_3)

 $\Psi_{3\alpha}^{(-)}(E;q,p)$

 \vec{Q}

 $^{12}C[0_1^+]$

Q: Momentum transfer

7. ¹²C(α , α')3 α reaction in 3 α -model (2) - Multipole strength functions

- Transition strength functions $S_{\lambda}(E)$ for $\hat{O}_{\lambda} = \begin{bmatrix} r^2, & r^3 Y_1(\hat{r}), & r^{\lambda} Y_{\lambda}(\hat{r}) \end{bmatrix} \quad (\lambda = 0, \lambda = 1, \lambda \ge 2)$
- α - α - α Potentials

$$V_{3\alpha} = \sum_{J} \hat{P}_{J} W_{3}^{[J]} \exp\left[-\frac{r_{12}^{2} + r_{23}^{2} + r_{31}^{2}}{a^{2}}\right]$$

• Fitted to

$$E[0_2^+] = 0.379 \text{ MeV}, \qquad E[1_1^-] = 3.569 \text{MeV}$$

 $E[2_1^+] = -2.836 \text{ MeV}, \qquad E[3_1^-] = 2.336 \text{ MeV}$

Model	<i>a</i> [fm]	$W_3^{[0]}$ [MeV]	$W_3^{[1]}$ [MeV]	$W_3^{[2]}$ [MeV]	$W_3^{[3]}$ [MeV]
Model-1	4.0	-48.54	-15	-25.5	6.03
Model-2	3.39	-92.85	-37	-46.0	12.69
Model-3	3.0	-156.9	-79	-78.3	25.0
Model-4	2.61	-303.66	-193	-158.1	63.6
Model-5	2.43	-431.1	-300	-231.	108.3

7. ¹²C(α , α')3 α reaction in 3 α -model (3)Numerical results

 $^{12}C(0_1^+) \rightarrow 3\alpha(\lambda)$ Transition Strength Function $S_{\lambda}(E)$

7. ¹²C(α , α')3 α reaction in 3 α -model (4)

Data from M. Itoh et al. PRC84 (2011) 054308

8. Summary

- 1. A broad and weak peak in the monopole strength function for the transition, ${}^{12}C(0_1^+) \rightarrow 3\alpha[0^+]$, reported in recent experiments is studied.
- 2. The monopole strength functions in 3α models have such peak (0^+_{Δ} peak).
- 3. When (attractive) strength of the 3α -potential is increased, no bound state appeared corresponding to the 0^+_{Δ} -peak, while another peaks $(0^+_2, 0^+_3)$ transfer to bound states.
- 4. The 0^+_{Δ} -peak in 3α model has enough strength to explain the ${}^{12}C(\alpha, \alpha')3\alpha$ experimental data.
- 5. The 0^+_{Δ} -peak is Ghost of the Hoyle state.