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Plan

• Neutron-rich nuclei

• Two-neutron Borromean halo nuclei

• Neutrons as near-unitarity fermions: scaling 
dimensions of operators

• Coupling of neutron sector to the core nucleus: a 
renormalizable field theory
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Two-neutron halo nuclei 

• Near the neutron drip line, sometimes one cannot 
add one neutron but can add 2 
    (Z, A) is bound (core) 
    (Z, A+1) is unbound 
    (Z, A+2) is bound 

• Examples:  , , ,  
    

6He 8He 11Li 22C

n n

A



Two small energies

• Interaction between neutrons fine-tuned:  

          

• 3-body binding energy (2n separation energy) 
 
     
     
     Hammer Ji Phillips 2017

• Compare to the more typical energy scale 

           

a ≈ − 19 fm ϵn =
ℏ2

mna2
≈ 0.12 MeV

B(6He) = 0.975 MeV
B(11Li) = 0.369 MeV
B(22C) < 0.18 MeV?

r0 ≈ 2.75 fm
ℏ2

mnr2
0

≈ 5.5 MeV



Questions

• Is the 3-body system universal? 
 
Can any physical quantity can be written as 
 

   ,      

• Answer: almost

O = BΔO FO ( B
ϵn ) O(ω) = BΔO FO ( ω

B
,

B
ϵn )



Efimov effect?

• When the core-neutron scattering length is also 
large: Efimov effect, Borromean bound state 
inevitable

• But 3-body bound state can exist without the Efimov 
effect

strength of core-n
attraction

core-n bound
state appears

Efimov
effect

3-body bound
state appears

weakly-bound
halo nucleus



Simple model

V0

core-n bound
state appears

Efimov
effect

3-body bound
state appears

weakly-bound
halo nucleus

H = −
1
2

∇2
x −

1
2

∇2
y − V0(e−x2/2 + e−y2/2)

V0 ≈ 0.671V0 < 0.329 |a | /r0 < 0.5

unitary



Carbon-22

•  Mosby et al 2013: non-Efimovian

• large matter radius Togano et al 2016  small binding 
energy

• maybe it is here:

|a(n20C) | < 2.8 fm

→

3-body bound
state appears

weakly-bound
halo nucleus



Unitarity limit: 
Zeldovich’s 1960 paper

SOVIET PHYSICS JETP VOLUME 11, NUMBER 4 OCTOBER, 1960 

THE EXISTENCE OF NEW ISOTOPES OF LIGHT NUCLEI AND THE EQUATION OF 

STATE OF NEUTRONS 

Ya. B. ZEL'DOVICH 

Submitted to JETP editor October 22, 1959 

J. Exptl. Theoret. Phys. (U.S.S.R.) 38, 1123-1131 (April, 1960) 

The limits of. stability (relative to nucleon emission) of light nuclei are considered. The 
existence (in the sense of stability against decay with emission of a nucleon) of the follow-
ing nuclei is predicted: He8, Be12, 0 13 , B15•17 •19 , c16 - 20 , N18- 21 , Mg20 • The problem of the 
possibility of existence of heavy nuclei composed of neutrons only is considered. The prob-
lem is reduced to that of a Fermi gas with a resonance interaction between the particles. 
The energy of such a gas is proportional to w213, where w is its density. The accuracy 
of the calculations is not sufficient to determine the sign of the energy and answer the ques-
tion as to the existence of neutron nuclei. 

THE problem of the possible isotopes has been 
treated by Nemirovski11•2 for 8 =s Z =s 84, and by 
Baz' 3 for the region 17 =sA =s 40. The former 
uses the one-particle approximation, with an at-
tempt to find the dependence of the parameters of 
the well on the numbers of neutrons and protons. 
For nuclei with an excess of protons Baz' bases 
his discussion on the experimental data on the 
mirror nuclei (with excess of neutrons) and on 
the well-known expression for the Coulomb energy. 
For nuclei with an excess of neutrons he extrapol-
lates the binding energy in series of nuclei with 
constant isotopic spin. 

These papers predict the existence of many as 
yet unknown {3 -active isotopes. In the table given 
below the isotopes so predicted are enclosed in 
dashed-line squares. One of them has very re-
cently been observed experimentally. 4 

In the present paper (Sec. 1) we make addi-
tional predictions in the region of the lightest nu-
clei; the isotopes so predicted are enclosed in 
solid-line squares in the table. We point out par-
ticularly the conclusion that there is a large prob-
ability that He8 exists. For nuclei with an excess 
of neutrons the writer has tried to take the effect 
of shells and the pair interaction of neutrons into 
account as accurately as possible. 

In Sec. 2 the question is raised of the existence 
of nuclei composed solely of neutrons. In the lim-
iting case of a large number of neutrons, by using 
the data on resonance in the 1s scattering, one can 
find the general form of the dependence of the en-
ergy on the density of the nuclear matter, but the 
accuracy of the first approximation obtained in 
this paper is insufficient to give a definite answer 
to the question of the existence of such nuclei. 

1. LIGHT NUCLEI 

Following the method of Baz', 3 one easily con-
vinces oneself that there must exist a nucleus 0 13 

with a proton binding energy not smaller than 1.2 
Mev and with /3+ -decay energy 16 to 17 Mev. Using 
the data4 on the mass of 0 20, we conclude that the 
mirror nucleus Mg20 must exist with proton bind-
ing energy not less than 2. 7 Mev and /3+ -decay 
energy about 7 Mev. The existence of 0 12, Ne16, 
and Mg19 is not excluded (empty spaces in the 
table);* the corresponding mirror isotopes Be12, 
C16, and N19 are predicted in this paper (see later 
argument), but their energies cannot be predicted 
with enough accuracy to give a definite conclusion 
about 0 12, Ne16, and Mg19• The isotopes Ne17, 
Na19, Mg21 , and Mg22 are predicted by Baz'. 

Regarding all the other nuclei in the upper right-
hand part of the table we can assert with assurance 
that they are unstable against emission of a proton, 
i.e., they do not exist, which is shown in the table by 
the minus signs in all the upper cells. 

Let us turn to the nuclei with an excess of neu-
trons. A nucleus with an excess of neutrons does 
not exist in the case in which all the discrete levels 
are already filled up with neutrons. An important 
point here is that the nuclear forces fall off rapidly 
with distance, and therefore the number of levels 
in the field of the nuclear forces is limited (in 

*These nuclei may be unstable with respect to the emission 
of two protons at once. On the other hand, at the limit of stabil-
ity the expression for the Coulomb energy of the last proton, 
1.2(Z -l)A-'1., gives too large a result; for example, in the 
pair Li8 - a• we have for Li8 the binding energy Q0 = 2 Mev and 
for a• the value Qp = 0.2 Mev, so that the difference is 1.8 
Mev, whereas by the formula we would get 1.2 x 4 x 7-'ls = 2.5 
Mev. 

812 



Unitarity limit

• 2 particles with opposite spins at , 

• Wave function required to have asymptotics 
 

    

• Kinetic energy 

x y

ψ(x, y) =
1

|x − y |
f ( x + y

2 ) + o(1)



Neutrons sector:
fermions near unitarity

•      

• Introducing auxiliary field 

•

• Compute full propagator of 

L = iψ†(∂t +
∇2

2m )ψ − c0ψ†
↑ψ†

↓ψ↓ψ↑

d

L = iψ†(∂t +
∇2

2m )ψ − ψ†
↑ψ†

↓d − d†ψ↓ψ↑ +
d†d
c0

d

=

+

p2

+ +
...

=

=

+ +
...

Figure 6: Leading and subleading contributions arising from local operators. The unmarked vertex
is the C0 interaction, which is summed to all orders; the one marked “p2” is the C2 interaction,
etc.

contributions to the amplitude scaling as higher powers of p come from perturbative inser-
tions of derivative interactions, dressed to all orders by C0. The first three terms in the
expansion are

A−1 =
−C0[

1 + C0M
4π (µ + ip)

] ,

A0 =
−C2p2

[
1 + C0M

4π (µ + ip)
]2 ,

A1 =

(
(C2p2)2M(µ + ip)/4π
[
1 + C0M

4π (µ + ip)
]3 −

C4p4

[
1 + C0M

4π (µ + ip)
]2

)

, (146)

where the first two correspond to the Feynman diagrams in Fig. 6. The third term, A1,
comes from graphs with either one insertion of C4∇4 or two insertions of C2∇2, dressed to
all orders by the C0 interaction.

Comparing eq. (146) with the expansion of the amplitude eq. (138), the couplings C2n

are related to the low energy scattering data a, rn:

C0(µ) =
4π

M

(
1

−µ + 1/a

)
,

C2(µ) =
4π

M

(
1

−µ + 1/a

)2 r0

2
,

C4(µ) =
4π

M

(
1

−µ + 1/a

)3 [1

4
r2
0 +

1

2

r1

Λ2
(−µ + 1/a)

]
. (147)
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Renormalization
•

•
• Unitarity: fine-tuning so that 

• (scattering length: )

• Physically: fine-tune the attractive short-range potential 
to have a bound state at threshold

G−1
d (ω, p) = c−1

0 + one-loop integral

= c−1
0 + Λ + ( p2

4m
− ω)

1/2

c0 + Λ = 0

c0 + Λ =
1
a

=

+

p2

+ +
...

=

=

+ +
...

Figure 6: Leading and subleading contributions arising from local operators. The unmarked vertex
is the C0 interaction, which is summed to all orders; the one marked “p2” is the C2 interaction,
etc.

contributions to the amplitude scaling as higher powers of p come from perturbative inser-
tions of derivative interactions, dressed to all orders by C0. The first three terms in the
expansion are

A−1 =
−C0[

1 + C0M
4π (µ + ip)

] ,

A0 =
−C2p2

[
1 + C0M

4π (µ + ip)
]2 ,

A1 =

(
(C2p2)2M(µ + ip)/4π
[
1 + C0M

4π (µ + ip)
]3 −

C4p4

[
1 + C0M

4π (µ + ip)
]2

)

, (146)

where the first two correspond to the Feynman diagrams in Fig. 6. The third term, A1,
comes from graphs with either one insertion of C4∇4 or two insertions of C2∇2, dressed to
all orders by the C0 interaction.

Comparing eq. (146) with the expansion of the amplitude eq. (138), the couplings C2n

are related to the low energy scattering data a, rn:

C0(µ) =
4π

M

(
1

−µ + 1/a

)
,

C2(µ) =
4π

M

(
1

−µ + 1/a

)2 r0

2
,

C4(µ) =
4π

M

(
1

−µ + 1/a

)3 [1

4
r2
0 +

1

2

r1

Λ2
(−µ + 1/a)

]
. (147)
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Gd(ω, p) =
1

p2

4m − ω



Power counting

• Elementary exercise in QFT: counting operator 
dimensions. Set  
 

        

                                          

• Consistent with propagator: 
 

        

  

m = 1

S = ∫ dt d3x ψ†(i∂t +
∇2

2 )ψ [x] = − 1, [t] = − 2

[ψ] =
3
2

⟨ψ(t, x)ψ(0,0)⟩ ∼
eix2/2t

t3/2



Dimension of dimer operator

•

•     

• An operator in a nonrelativistic CFT

• a simplest “unnucleus” Hammer Son, 
arXiv:2103.12610

Gd(ω, p) =
1

p2

4m − ω

⟨d(t, x)d†(0,0)⟩ ∼
eix2/4t

t2
⇒ [d] = 2



Dimension of operators
• Local two-body operator in theory of particles at 

unitarity: 
 
        

• finite matrix element 
 
      

• dimension of : 
 

      

d(x) = lim
x→y

|x − y |ψ↑(x)ψ↓(y)

⟨0 |d(x) |Ψ2-body⟩ = lim
y→x

|x − y |Ψ(x, y)

d

[d] =
3
2

+
3
2

− 1 = 2



Effective theory of weakly-
bound halo nuclei

• Add two fields to the nonrelativistic CFT

• the core 

• the halo nucleus 

• Interaction:  

• dimension: : marginal

• leading-order EFT renormalizable

ϕ

h

h†dϕ + d†ϕ†h
3
2

+
3
2

+ 2 = 5



Effective Lagrangian

 

                  

       
halo = bound state of core and dimer

Scale invariant theory except for: 
     large but not infinite 
    three-body binding energy 

Logarithmic running of  (  in the IR, Landau pole in UV)

ℒ = h†
0 (i∂t +

∇2

2mh
+ B0)h0 + ϕ†(i∂t +

∇2

2mϕ
)ϕ + g0(h†

0 ϕd + ϕ†d†h0)

+ψ†(i∂t +
∇2

2m )ψ − ψ†
↑ψ†

↓d − d†ψ↓ψ↑ +
d†d
c0

ann
B ≠ 0

g g → 0



Renormalization

• Halo self-energy  

diverges quadratically

• Quadratic divergence almost cancelled by : 
fine-tuning for shallow 3-body bound state

• Remaining logarithmic divergence: wave function 
renormalization of halo field: , leads to 
logarithmic running of the coupling 

Σ(p) ∼ ∫ d4qD(p − q)G(q)

B0h†
0 h0

h0 = Z1/2h
g

1

— Supplementary Material —

Universal Properties of Weakly Coupled Two-Neutron Halo Nuclei

Masaru Hongo and Dam Thanh Son

S1. FIELD THEORY: FEYNMAN RULES, RENORMALIZATION

In terms of the bare fields and bare couplings, the Lagrangian of the theory of the halo nucleus is

L = h†
0

✓
i@t +

r2

2mh
+ B0

◆
h0 + �†

✓
i@t +

r2

2m�

◆
� + g0(h

†
0�d + �†d†h0) + Ln. (S1)

where Ln is written in Eq. (2). Define the renormalized halo field h and renormalized coupling g:

h0 =
p

Zh h, g =
p

Zh g0, (S2)

the Lagrangian is

L = Zhh†
✓

i@t +
r2

2mh
+ B0

◆
h + �†

✓
i@t +

r2

2m�

◆
� + g(h†�d + �†d†h) + Ln. (S3)

The Feynman rules are as follows. The dimer propagator is

iD(p) = �4i⇡fa

✓
p2

4
� p0 � i✏

◆
, (S4)

where we introduce the notation

fa(x) =
1

p
x � 1

a

. (S5)

The core propagator is

iG�(p) =
i

p0 � p2

2m�
+ i✏

, (S6)

and the halo-core-dimer vertex is ig.
The self-energy of the h field is given by a one-loop diagram, (Fig. S1)

⌃(p) = i(ig)2
Z

d4q

(2⇡)4
iD(p � q)iG�(q) = �4⇡ig2

Z
d4q

(2⇡)4
fa(

1
4 (p � q)2 � p0 + q0 � i✏)

q0 � q2

2m�
+ i✏

. (S7)

Closing the contour in the lower half-plane, we find

⌃(p) = �4⇡g2
Z

dq

(2⇡)3
fa

✓
�p0 +

1

4
(p � q)2 +

q2

2m�

◆
. (S8)

p p

p � q

q

�

d
h

1

FIG. S1. The self-energy of the halo nucleus. The dash line in the loop is the dimer propagator, while the solid line is the
propagator of the core.



Charge radius

• Charge radius    , 

                                                       

          

• not completely “universal”:  depends logarithmically 
on the UV cutoff   
 
                                        

⟨r2
c ⟩ =

4
π

A1/2

(A + 2)5/2

g2

B
fc(β)

fc(β) =
1

1 − β2
−

β arccos β
(1 − β2)3/2

g2

2

d

 

 

1

FIG. 1. The self-energy of the dimer.

From now on we set mn = 1. Using a Hubbard-
Stratonovich transformation, the Lagrangian can be
transformed into

Ln =
X

�

 †
�

✓
i@t +

r2

2

◆
 � � 1

c0
d†d +  †

" 
†
#d + d† # ".

(3)
Computing the self-energy of the dimer d, which, in the
nonrelativistic theory, is exactly given by the one-loop
diagram in Fig. 1, we find the full dimer propagator

D(p) = � 4⇡q
�p0 + p2

4 � 1
a

, (4)

where a denotes the s-wave scattering length given by

1

4⇡a
= � 1

c0
+

Z
dq

(2⇡)3
1

q2
. (5)

The integral on the right-hand side linearly diverges in
the UV and is proportional to the UV cuto↵. The
fine-tuning of c0 leads to an unnaturally large scatter-
ing length a. Note that the UV behavior of the dimer
propagator is di↵erent from that of a free field. In fact,
the UV behavior corresponds to a field of dimension 2:
[d] = 2 [13] [14].

To construct the EFT describing the halo nucleus, we
add into the theory a field � describing the core and h
describing the halo nucleus. They can be either bosonic
or fermionic. The e↵ective Lagrangian is now [15]

L = h†
✓

i@t +
r2

2mh
+ B

◆
h + �†

✓
i@t +

r2

2m�

◆
�

+ g(h†�d + �†d†h) + Ln + counterterms. (6)

where m� = Amn and mh = (A + 2)mn are the masses
of the core and the halo nucleus, respectively. As [d] = 2
and [�] = [ ] = 3

2 , the dimension of the interaction h†�d
is 5, which means that g is dimensionless. One can check
that terms not included in Eq. (6) are all irrelevant. One
can compute the beta function for g,

@g

@ ln E
= �(g) =

2

⇡

✓
A

A + 2

◆3/2

g3. (7)

The solution to this equation is

g2(E) =
⇡

4

✓
A + 2

A

◆3/2 1

ln E0
E

, (8)

where E0 is the energy of the Landau pole. Due to the
properties of the nonrelativistic theory, our subsequent
calculations can be done to all order in g2.

One can arrive at the e↵ective Lagrangian (6) by start-
ing from a theory where the core � and the resonantly
interacting neutron coupled to each other by a contact
interaction C0�†d†d�, with a UV cuto↵ at the Landau
pole scale. Through a Hubbard-Stratonovich transfor-
mation, one introduces an auxiliary field h with the cou-
pling h†d� + h.c. Integrating out degrees of freedom in
a energy shell between E0 and E1 < E0, one generates a
kinetic term for h, and arrive to (6) [16].
Charge and matter radii.—We now proceed to extract

physical observables from the Lagrangian (6). The mean-
square (rms) charge radius (the rms of the deviation of
the coordinates of the core from the center of mass [17])
can be extracted from the electric form-factor of the halo
nucleus: F (k) = 1 � 1

6k2hr2c i. The electric form factor
is given by the Feynman diagram in Fig. 2; it is propor-
tional to g2 and by dimensional analysis one should have
hr2c i = g2B�1f(�), where we introduce the dimensionless
parameter

� =
1

�a
p

B
=

r
✏n
B

, (9)

where ✏n = 1/a2 (we assume a < 0). Computing the
Feynman diagram, we find [18]

hr2c i =
4

⇡

A1/2

(A + 2)5/2
g2

B
fc(�), (10)

where

fc(�) =

8
>>>><

>>>>:

1

1 � �2
� � arccos�

(1 � �2)3/2
, � < 1,

� 1

�2 � 1
+
� arccosh�

(�2 � 1)3/2
, � > 1.

(11)

One can further define the “neutron radius” by imag-
ining that there is a U(1) gauge boson coupled to the
neutrons outside the core [19]. The Feynman diagram
determining the form-factor of the halo nucleus with re-
spect to this “neutron-number photon” is drawn in Fig. 3,
where the e↵ective coupling of the dimer to the photon
is as in Fig. 4.

h

�

d

1

FIG. 2. The Feynman diagram determining the charge form-
factor of the halo nucleus. The double line represents the
halo nucleus, the single line—the core, and the dotted line—
the neutron dimer, whose propagator is given in Eq. (4).

β =
ϵn

B



Charge and matter radii

• Charge radius    , 

                                                       

          

• Matter radius    

 

                                         

• Universal ratio 

    =

⟨r2
c ⟩ =

4
π

A1/2

(A + 2)5/2

g2

B
fc(β)

fc(β) =
1

1 − β2
−

β arccos β
(1 − β2)3/2

⟨r2
m⟩ =

2
2π

A3/2

(A + 2)5/2

g2

B
[ fc(β) + fn(β)]

fn(β) =
1
β3 [π − 2β + (β2 − 2)

arccos β

1 − β2 ]

⟨r2
m⟩

⟨r2
c ⟩

=
A
2 [1 +

fn(β)
fc(β) ] {

2
3 A B ≫ ϵn

A B ≪ ϵn

β =
ϵn

B



E1 dipole strength function

•

• can be mapped to current-current correlation 
 

 

• similar to deep inelastic scatterings

dB(E1)
dω

(ω) ∼ ∑
n

|⟨n | (rc − Rcm) |0⟩ |2

dB(E1)
dω

(ω) ∼
1

ω2
Im ⟨JJ⟩(ω)

6

where ! = (!,0). Closing the contour in the lower half-plane, the imaginary part comes from the pole in G(q + !).

Im GJJ(!) = (Ze)2
g2

m2
�!2

Z
dq

(2⇡)3
q2 Im D

✓
! � B � q2

2m�
, �q

◆

= �(Ze)2
4⇡g2

m2
�!2

Z
dq

(2⇡)3
q2

q
! � B � q2

2µ

! � B � q2

2µ + 1
a2

✓

✓
! � B � q2

2µ

◆
. (S43)

Evaluating the integral one finds

Im GJJ(!) = �(Ze)2
3g2

8

(2µ)5/2

m2
�

(! � B)2

!2
fE1

✓
1

(�a)
p

! � B

◆
, (S44)

with the function fE1(x) defined in Eq. (30). From this one obtains Eq. (29).

! !
# #

p p

p � q

q + !

q q

1

FIG. S5. The Feynman diagram determining the E1 dipole strength function. A second diagram obtained by reversing the
direction of momentum flow on the two photon lines contributes to GJJ but not to its imaginary part when ! > 0.

S5. RELATIONSHIPS BETWEEN VARIOUS MEAN SQUARE RADII

Let rc denote the position of the core, and r1 and r2 those of the two neutrons. Assume that the center of mass is
at the origin,

Arc + r1 + r2 = 0, (S45)

then the coordinates of every particle can be express through rc and rnn = r1 � r2:

r1 = �A

2
rc +

1

2
rnn, (S46)

r2 = �A

2
rc � 1

2
rnn. (S47)

Now notice that hrc · rnni = 0 due to the symmetry of the ground-state wavefunction of the halo with respect to
exchanging r1 and r2, one can derive relationships between di↵erent mean-square radii. For example

hr2ni = hr21i =
A2

4
hr2c i +

1

4
hr2nni ) hr2nni = 4hr2ni � A2hr2c i. (S48)

Analogously

hr2mi =
1

A + 2

�
Ahr2c i + hr21i + hr22i

�
=

2

A + 2
hr2ni +

A

A + 2
hr2c i, (S49)

hr2cni =
1

2

⇥
h(r1 � rc)

2i + h(r2 � rc)
2i
⇤

= hr2ni + (A + 1)hr2c i, (S50)

where we used Eq. (S45) to derive the second relation.



Dipole strength in unitarity 
limit

• When neutrons are in the unitarity limit, the dipole 
strength has a very simple shape 
 

             

• Overall coefficient  and is logarithmically 
dependent on the UV cutoff

dB(E1)
dω

∼
(ω − B)2

ω4

∼ g2



Result for dipole strength

4

1

FIG. 5. The Feynman diagram for the E1 dipole strength
function.

and express it as the imaginary part of a two-point
Green’s function of the current operator

dB(E1)

d!
= � 3

4⇡

1

⇡!2
Im GJJ(!), (27)

where

iGJJ(!) =

Z
dt ei!th0|TJ(t)J(0)|0i. (28)

The problem is now similar to that of deep inelastic scat-
tering in quantum chromodynamics [21]. Computing the
Feynman diagram in Fig. 5, we find
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where

fE1(x) = 1 � 8

3
x(1 + x2)3/2 + 4x2
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1 +

2

3
x2

◆
. (30)

The formula is more complicated than the formula for
one-neutron halo nuclei [22], but is still explicit.

One can check that the E1 dipole strength satisfies the
sum rule

1Z

0

d!
dB(E1)

d!
=

3

4⇡
Z2e2hr2c i, (31)

with the charge radius given by Eq. (10). The energy-
weighted sum rule,

1Z

0

d! !
dB(E1)

d!
=

3

4⇡
Z2e2

3

A(A + 2)
, (32)

is also valid if the logarithmic divergence of the integral
on the left-hand side is regularized by a UV cuto↵ at
the energy of the Landau pole. The two sum rules are
nontrivial checks of the self-consistency of our theoretical
approach. The predicted shape of the E1 dipole strength
is plotted in Fig. 6 as a function of !/B for various values
of �. One sees that the weight of the dipole strength
shifts to larger !/B as B/✏n decreases.

Applicability to real systems.—The theory described
above is applicable when the binding energy of the halo B
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FIG. 6. The E1 dipole strength function, plotted as function
of !/B, for B = 3✏n, B = ✏n, and B = 1

3 ✏n. The functions
are so normalized by N that the area under the theoretical
curve, extended to !/B = 1, is 1.

and the n-n two-body virtual energy ✏n are smaller than
any other energy scales in the problem. In the real word,
✏n ⇡ 0.12 MeV is indeed small. For 6He and 11Li, the
two-neutron separation energy somewhat larger (0.975
and 0.369 MeV, respectively); in addition, the existence
of near-threshold resonances in the 5He and 10Li subsys-
tem makes the applicability of our theory doubtful.

Nevertheless, let us try to compare our results with
existing experimental data and previous theoretical cal-
culations. For 6He, Eq. (19) predicts that hr2mi/hr2c i ⇡
0.686A. In Ref. [23] it has been argued that the data
for 6He fits the formula hr2mi/hr2c i = 0.862A, which the
authors derived approximately. Our value is o↵ by about
20%. For 11Li we compare our results with those of
Ref. [7] where B = 247 keV, ✏n = 116.04 keV were
used. Setting the logarithm in Eq. (8) to 1 we findp

hr2c i = 0.86 fm,
p

hr2ni = 4.7 fm, near the center of
the error bands predicted for large energies of the 10Li
resonance. The opening angle ✓nn (defined as the vertex
angle of the isosceles triangle with sides

p
hr2cni,

p
hr2cni,p

hr2nni) is close to 60� and is again within the error band.
However, for the reasons listed above, it is possible that
the EFT provides only a qualitative guide for 11Li.

The theory presented here may be quantitatively useful
for the 22C nucleus if its two-neutron separation energy is
indeed as small as 100 keV [3]. A correction to the EFT
comes from the scattering between the core and one neu-
tron, parametrized by the irrelevant dimension-6 term
acn�† † �. The contributions from this term to physi-
cal quantities should be suppressed by acn(2mnB)1/2 rel-
ative to the leading-order results, where acn is the core-
neutron scattering length. Experiment [5] indicates that
|acn| < 2.8 fm, so this factor is  0.2 (0.25 or 0.4 if the
upper limit on B is taken as 180 keV or 400 keV, respec-
tively). Another dimension-6 operator, d†(i@t + 1

4r2)d,
has its coe�cient fixed by the e↵ective range of the s-
wave neutron-neutron scattering; its e↵ect is expected
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FIG. 5. The Feynman diagram for the E1 dipole strength
function.

and express it as the imaginary part of a two-point
Green’s function of the current operator

dB(E1)

d!
= � 3

4⇡

1

⇡!2
Im GJJ(!), (27)

where

iGJJ(!) =

Z
dt ei!th0|TJ(t)J(0)|0i. (28)

The problem is now similar to that of deep inelastic scat-
tering in quantum chromodynamics [21]. Computing the
Feynman diagram in Fig. 5, we find

dB(E1)

d!
=

3

4⇡
Z2e2

12g2

⇡

A1/2

(A + 2)5/2
(!�B)2

!4

⇥ fE1

✓
1

�a
p
!�B

◆
, (29)

where
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The formula is more complicated than the formula for
one-neutron halo nuclei [22], but is still explicit.

One can check that the E1 dipole strength satisfies the
sum rule

1Z

0

d!
dB(E1)

d!
=

3

4⇡
Z2e2hr2c i, (31)

with the charge radius given by Eq. (10). The energy-
weighted sum rule,
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dB(E1)
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3

A(A + 2)
, (32)

is also valid if the logarithmic divergence of the integral
on the left-hand side is regularized by a UV cuto↵ at
the energy of the Landau pole. The two sum rules are
nontrivial checks of the self-consistency of our theoretical
approach. The predicted shape of the E1 dipole strength
is plotted in Fig. 6 as a function of !/B for various values
of �. One sees that the weight of the dipole strength
shifts to larger !/B as B/✏n decreases.

Applicability to real systems.—The theory described
above is applicable when the binding energy of the halo B
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curve, extended to !/B = 1, is 1.

and the n-n two-body virtual energy ✏n are smaller than
any other energy scales in the problem. In the real word,
✏n ⇡ 0.12 MeV is indeed small. For 6He and 11Li, the
two-neutron separation energy somewhat larger (0.975
and 0.369 MeV, respectively); in addition, the existence
of near-threshold resonances in the 5He and 10Li subsys-
tem makes the applicability of our theory doubtful.

Nevertheless, let us try to compare our results with
existing experimental data and previous theoretical cal-
culations. For 6He, Eq. (19) predicts that hr2mi/hr2c i ⇡
0.686A. In Ref. [23] it has been argued that the data
for 6He fits the formula hr2mi/hr2c i = 0.862A, which the
authors derived approximately. Our value is o↵ by about
20%. For 11Li we compare our results with those of
Ref. [7] where B = 247 keV, ✏n = 116.04 keV were
used. Setting the logarithm in Eq. (8) to 1 we findp

hr2c i = 0.86 fm,
p

hr2ni = 4.7 fm, near the center of
the error bands predicted for large energies of the 10Li
resonance. The opening angle ✓nn (defined as the vertex
angle of the isosceles triangle with sides

p
hr2cni,

p
hr2cni,p

hr2nni) is close to 60� and is again within the error band.
However, for the reasons listed above, it is possible that
the EFT provides only a qualitative guide for 11Li.

The theory presented here may be quantitatively useful
for the 22C nucleus if its two-neutron separation energy is
indeed as small as 100 keV [3]. A correction to the EFT
comes from the scattering between the core and one neu-
tron, parametrized by the irrelevant dimension-6 term
acn�† † �. The contributions from this term to physi-
cal quantities should be suppressed by acn(2mnB)1/2 rel-
ative to the leading-order results, where acn is the core-
neutron scattering length. Experiment [5] indicates that
|acn| < 2.8 fm, so this factor is  0.2 (0.25 or 0.4 if the
upper limit on B is taken as 180 keV or 400 keV, respec-
tively). Another dimension-6 operator, d†(i@t + 1

4r2)d,
has its coe�cient fixed by the e↵ective range of the s-
wave neutron-neutron scattering; its e↵ect is expected
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FIG. 5. The Feynman diagram for the E1 dipole strength
function.

and express it as the imaginary part of a two-point
Green’s function of the current operator

dB(E1)
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= � 3
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⇡!2
Im GJJ(!), (27)

where

iGJJ(!) =

Z
dt ei!th0|TJ(t)J(0)|0i. (28)

The problem is now similar to that of deep inelastic scat-
tering in quantum chromodynamics [21]. Computing the
Feynman diagram in Fig. 5, we find
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where
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The formula is more complicated than the formula for
one-neutron halo nuclei [22], but is still explicit.

One can check that the E1 dipole strength satisfies the
sum rule

1Z

0

d!
dB(E1)

d!
=

3

4⇡
Z2e2hr2c i, (31)

with the charge radius given by Eq. (10). The energy-
weighted sum rule,
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dB(E1)
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3

4⇡
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3

A(A + 2)
, (32)

is also valid if the logarithmic divergence of the integral
on the left-hand side is regularized by a UV cuto↵ at
the energy of the Landau pole. The two sum rules are
nontrivial checks of the self-consistency of our theoretical
approach. The predicted shape of the E1 dipole strength
is plotted in Fig. 6 as a function of !/B for various values
of �. One sees that the weight of the dipole strength
shifts to larger !/B as B/✏n decreases.

Applicability to real systems.—The theory described
above is applicable when the binding energy of the halo B
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and the n-n two-body virtual energy ✏n are smaller than
any other energy scales in the problem. In the real word,
✏n ⇡ 0.12 MeV is indeed small. For 6He and 11Li, the
two-neutron separation energy somewhat larger (0.975
and 0.369 MeV, respectively); in addition, the existence
of near-threshold resonances in the 5He and 10Li subsys-
tem makes the applicability of our theory doubtful.

Nevertheless, let us try to compare our results with
existing experimental data and previous theoretical cal-
culations. For 6He, Eq. (19) predicts that hr2mi/hr2c i ⇡
0.686A. In Ref. [23] it has been argued that the data
for 6He fits the formula hr2mi/hr2c i = 0.862A, which the
authors derived approximately. Our value is o↵ by about
20%. For 11Li we compare our results with those of
Ref. [7] where B = 247 keV, ✏n = 116.04 keV were
used. Setting the logarithm in Eq. (8) to 1 we findp

hr2c i = 0.86 fm,
p

hr2ni = 4.7 fm, near the center of
the error bands predicted for large energies of the 10Li
resonance. The opening angle ✓nn (defined as the vertex
angle of the isosceles triangle with sides

p
hr2cni,

p
hr2cni,p

hr2nni) is close to 60� and is again within the error band.
However, for the reasons listed above, it is possible that
the EFT provides only a qualitative guide for 11Li.

The theory presented here may be quantitatively useful
for the 22C nucleus if its two-neutron separation energy is
indeed as small as 100 keV [3]. A correction to the EFT
comes from the scattering between the core and one neu-
tron, parametrized by the irrelevant dimension-6 term
acn�† † �. The contributions from this term to physi-
cal quantities should be suppressed by acn(2mnB)1/2 rel-
ative to the leading-order results, where acn is the core-
neutron scattering length. Experiment [5] indicates that
|acn| < 2.8 fm, so this factor is  0.2 (0.25 or 0.4 if the
upper limit on B is taken as 180 keV or 400 keV, respec-
tively). Another dimension-6 operator, d†(i@t + 1

4r2)d,
has its coe�cient fixed by the e↵ective range of the s-
wave neutron-neutron scattering; its e↵ect is expected

4

1

FIG. 5. The Feynman diagram for the E1 dipole strength
function.

and express it as the imaginary part of a two-point
Green’s function of the current operator

dB(E1)
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⇡!2
Im GJJ(!), (27)

where

iGJJ(!) =

Z
dt ei!th0|TJ(t)J(0)|0i. (28)

The problem is now similar to that of deep inelastic scat-
tering in quantum chromodynamics [21]. Computing the
Feynman diagram in Fig. 5, we find
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The formula is more complicated than the formula for
one-neutron halo nuclei [22], but is still explicit.

One can check that the E1 dipole strength satisfies the
sum rule

1Z

0

d!
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4⇡
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with the charge radius given by Eq. (10). The energy-
weighted sum rule,
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is also valid if the logarithmic divergence of the integral
on the left-hand side is regularized by a UV cuto↵ at
the energy of the Landau pole. The two sum rules are
nontrivial checks of the self-consistency of our theoretical
approach. The predicted shape of the E1 dipole strength
is plotted in Fig. 6 as a function of !/B for various values
of �. One sees that the weight of the dipole strength
shifts to larger !/B as B/✏n decreases.

Applicability to real systems.—The theory described
above is applicable when the binding energy of the halo B

B=3�n
B=�n
B=�n/3

0 2 4 6 8 10

0.02

0.04

0.06

0.08

0.10

0.12

<latexit sha1_base64="HTEK6uBAm75EC/gJPjjPICQZlG0="></latexit>

1

N

dB(E1)

d!

<latexit sha1_base64="cRK+MTN8/dMF9cG9kIex8oGBed8="></latexit>

!/B

FIG. 6. The E1 dipole strength function, plotted as function
of !/B, for B = 3✏n, B = ✏n, and B = 1
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curve, extended to !/B = 1, is 1.

and the n-n two-body virtual energy ✏n are smaller than
any other energy scales in the problem. In the real word,
✏n ⇡ 0.12 MeV is indeed small. For 6He and 11Li, the
two-neutron separation energy somewhat larger (0.975
and 0.369 MeV, respectively); in addition, the existence
of near-threshold resonances in the 5He and 10Li subsys-
tem makes the applicability of our theory doubtful.

Nevertheless, let us try to compare our results with
existing experimental data and previous theoretical cal-
culations. For 6He, Eq. (19) predicts that hr2mi/hr2c i ⇡
0.686A. In Ref. [23] it has been argued that the data
for 6He fits the formula hr2mi/hr2c i = 0.862A, which the
authors derived approximately. Our value is o↵ by about
20%. For 11Li we compare our results with those of
Ref. [7] where B = 247 keV, ✏n = 116.04 keV were
used. Setting the logarithm in Eq. (8) to 1 we findp

hr2c i = 0.86 fm,
p

hr2ni = 4.7 fm, near the center of
the error bands predicted for large energies of the 10Li
resonance. The opening angle ✓nn (defined as the vertex
angle of the isosceles triangle with sides

p
hr2cni,

p
hr2cni,p

hr2nni) is close to 60� and is again within the error band.
However, for the reasons listed above, it is possible that
the EFT provides only a qualitative guide for 11Li.

The theory presented here may be quantitatively useful
for the 22C nucleus if its two-neutron separation energy is
indeed as small as 100 keV [3]. A correction to the EFT
comes from the scattering between the core and one neu-
tron, parametrized by the irrelevant dimension-6 term
acn�† † �. The contributions from this term to physi-
cal quantities should be suppressed by acn(2mnB)1/2 rel-
ative to the leading-order results, where acn is the core-
neutron scattering length. Experiment [5] indicates that
|acn| < 2.8 fm, so this factor is  0.2 (0.25 or 0.4 if the
upper limit on B is taken as 180 keV or 400 keV, respec-
tively). Another dimension-6 operator, d†(i@t + 1

4r2)d,
has its coe�cient fixed by the e↵ective range of the s-
wave neutron-neutron scattering; its e↵ect is expected



Corrections to EFT

• Corrections to EFT are irrelevant terms EFT

• Effective range in n-n scattering:  

• s-wave core-neutron scattering 

• exp upper bound on n-20C scattering length: 
correction is estimated to be < 25%

• p-wave core-neutron resonance (i.e., 5He) can also be 
included

r0d†(i∂t−
1
4 ∇2)d

acnϕ†ψ†ψϕ



Conclusion

• Weakly bound two-neutron halo nuclei are next to 
simplest objects to described by EFT (after deuteron)

• Logarithmic running of coupling

• Ratios of lengths and shape of E1 dipole function are 
universal

• Next: nn scattering length correction (relatively easy), 
core-neutron scattering length or p-wave resonance 
(3-loop graphs)


