÷			τ.	-
		c		
	e 2			

BHF frameworl

Selfconsistency and solutions

Pairing and superfluidity 000 Concluding remarks

Dinucleons in infinite nuclear matter at sub-saturation densities

Hugo F. Arellano

University of Chile - DFI/FCFM

ECT* Nuclear Physics at the edge of stability, Trento, 4-8 July 2022

BHF framework

Selfconsistency and solutions 000000000000 Pairing and superfluidity 000 Concluding remarks

Itinerary

Introduction
0000

BHF framework

Selfconsistency and solutions

Pairing and superfluidity

Concluding remarks

Problem & motivation

- Genesis of the problem (personal): Collaboration w/Eric Bauge (CEA - Bruyères-le-Châtel) led to the conclusion that leading intrinsic medium effects in NA scattering take place at the surface of the target. [PRC 76,014613(2007) & PRC 78, 014608 (2008)]
- 2. Needed of accurate g matrices (BHF) at low densities...
- 3. but standard strategies resulted useless to get them due to unexpected instabilities.
- 4. Local *NN* effective interactions exclude parametrizations for $0 < k_F < 0.6 \text{ fm}^{-1}$:

5. This (puzzling) situation led to investigate further the origin of such instabilities and physics behind them.

BHF framewo

Selfconsistency and solutions

Pairing and superfluidity

・ロト ・四ト ・ヨト ・ヨト

3

Concluding remarks 000

Many-nucleon systems from the bare interaction

Introduction
0000

BHF framewor 000 Selfconsistency and solutions 000000000000 Pairing and superfluidity 000 Concluding remarks 000

About the bare NN interaction

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● ● ● ●

ntroduction	BHF framework	Selfconsistency and solutions	Pairing and superfluidity	Concluding rem
000	000	00000000000	000	000

Realistic NN potential models

- Chiral ($\lesssim 290 \text{ MeV}$)
- CD Bonn (≲ 350 MeV)
- Argonne v_{18} ($\lesssim 350$ MeV)
- Nijmegen I and II ($\leq 350 \text{ MeV}$)
- Bonn A and B (\lesssim 300 MeV)
- Paris (\lesssim 330 MeV)

- Entem et al., PRC68, 041001 (2003) Holt et al. PRC81, 024002 (2010)
 - Machleidt, PRC63, 024001 (2001)
 - Wiringa et al., PRC51, 38 (1995)
 - Stoks et al., PRC49, 2950 (1994)
- Machleidt et al. PhysRep149, 1 (1987)
 - Lacombe et al. PRC21, 861 (1980)

BHF framework

Selfconsistency and solutions

Pairing and superfluidity

Concluding remarks

Brueckner-Hartree-Fock (BHF) approach for infinite NM

- In Brueckner-Bethe-Goldstone theory: lowest order in hole-line expansion for the ground-state energy.
- ii.- In self-consistent Green's function (SCGF) theory: self-energy without hole-hole propagation.
- iii.- In either case *in-medium* 2-body scattering matrix calculated self-consistently with the s.p. energy spectrum e(k).

BHF framework

Selfconsistency and solutions

Pairing and superfluidity

Concluding remarks 000

Nonlinear structure for the g matrix in BHF

Integral equation for g

$$\langle \vec{\kappa}' | g_{\mathcal{K}}(\omega) | \vec{\kappa} \rangle = \langle \vec{\kappa}' | v | \vec{\kappa} \rangle + \int d\vec{q} \langle \vec{\kappa}' | v | \vec{q} \rangle \frac{\Theta(k_{+} - k_{F})\Theta(k_{-} - k_{F})}{\omega + i\eta - \frac{K^{2}}{4m} - \frac{q^{2}}{m} - \Sigma(\mathcal{K}, q)} \langle \vec{q} | g_{\mathcal{K}}(\omega) | \vec{\kappa} \rangle$$

Angular average:

$$\Sigma(K,q) = \left\langle U(|\frac{1}{2}\vec{K}+\vec{q}|) + U(|\frac{1}{2}\vec{K}-\vec{q}|) \right\rangle_{\hat{q}\cdot\hat{K}}$$

Self-consistency requirement

$$U(k) = \operatorname{Re}\left\{\sum_{p} n_{p} \left\langle \frac{k-p}{2} | g_{k+p}(e_{k}+e_{p}) | \frac{k-p}{2} \right\rangle \right\}$$

 $v = v_{NN}$ throughout!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

BHF framework

Selfconsistency and solutions

Pairing and superfluidity

Concluding remarks 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What can we learn from the $v_{NN} \leftrightarrow g$ link?

(a) Binding energy of interacting Fermi system (nucleon):

$$\frac{B}{A} = \frac{\varepsilon}{\rho} = \frac{\sum_{k} n_{k} \frac{\hbar^{2} k^{2}}{2m} + \frac{1}{2} \sum_{k} n_{k} U(k)}{\sum_{k} n_{k}}$$

 $k_F^{sat} = 1.36 \pm 0.05 \text{ fm}^{-1}$ $(B/A)_{sat} = 16 \pm 1 \text{ MeV}$

(b) Equation of State (EoS) for nuclear matter:

$$p(\rho) = \rho^2 \frac{\partial(\varepsilon/\rho)}{\partial \rho})$$

 $\mathsf{TOV} + \mathsf{EoS} \to \mathsf{hydrostatic}$ equilibrium of neutron stars

(c) Fully off-shell g matrices for microscopic optical-model potentials

$$U(\vec{k}',\vec{k}) = \langle \hat{\rho} \otimes g \rangle \qquad p + A \rightarrow p + A$$

(d) Nuclear superfluid states: pairing, condensates

Selfconsistency and solutions •00000000000

Self-consistent search

- 1. Make a guess for $U(k) \leftarrow U_0$
- 2. Then evaluate mass operator

$$M(k; e_k) = \sum_{p} n_p \left\langle \frac{1}{2} (\boldsymbol{k} - \boldsymbol{p}) | g_{\boldsymbol{K}}(\underbrace{e_k + e_p}_{\omega}) | \frac{1}{2} (\boldsymbol{k} - \boldsymbol{p}) \right\rangle$$

by solving

$$g(\omega) = v + v \frac{Q}{\omega + i\eta - h_1 - h_2} g(\omega)$$

Continuous choice: k < 5.5 fm⁻¹; with J < 7

3. Take the real part of on-shell mass operator: $U(k) = \operatorname{Re} M(k; e_k) \rightarrow U_1$

イロト 不得 トイヨト イヨト

3

4. Compare U_0 with U_1 :

If
$$U_1 \simeq U_0 \longrightarrow$$
 self-consistency fullfilled
If $U_1 \neq U_0 \longrightarrow$ set $U_1 \rightarrow U_0$ and start over

	stion
mun	

BHF framework

Selfconsistency and solutions

Pairing and superfluidity

Concluding remarks

Difficulties at subsaturation densities...

- Instabilities: zigg-zagging U(k) in SNM $0.15 \lesssim k_F \lesssim 0.25 \text{ fm}^{-1}$ (feedback ambiguity)
- Sporadic but huge [\pm 1E60] contributions in ³SD₁ and ¹S₀ channels ($k_F \lesssim 1 \text{ fm}^{-1}$) Calculated U(k) becomes meaningless!
- Problem worsens when Fermi-motion integrals (Σ_k...) are made with thinner mesh (convergence dubious)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

BHF framework

Selfconsistency and solutions

Pairing and superfluidity 000 Concluding remarks

Search at sub-saturation densities $(k_F < 1 \text{ fm}^{-1})$

Control on Cooper eigenstates:

$$U(k) = \sum_{p} n_{p} g_{k+p}(e_{k} + e_{p})$$
$$\rightarrow \int dK \int_{q_{i}}^{q_{f}} dq n_{p} g_{K}(e_{k} + e_{p})$$

Whenever ω_C are found at K apply

$$g_{\mathcal{K}}(\omega)
ightarrow g_{\mathcal{K}}(\omega) rac{(\omega-\omega_{\mathcal{C}})^2}{(\omega-\omega_{\mathcal{C}})^2+\eta^2}$$

• $\eta = 100$ keV adequate

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

BHF framework

Selfconsistency and solutions

Pairing and superfluidity 000 Concluding remarks

Results for U(k) at $0.35 \le k_F \le 1.75$ fm⁻¹

Symmetric nuclear matter based on AV18

÷			-

BHF framework 000 Selfconsistency and solutions

Pairing and superfluidity 000 Concluding remarks

Coexisting solutions (low densities)

- At a same k_F two solutions satisfy BHF
- Two families of solutions are found: Phase I: $k_F \le 0.285 \text{ fm}^{-1}$ Phase II: $k_F \ge 0.130 \text{ fm}^{-1}$
- Range of overlap (coexistence): 0.130 ≤ k_F ≤ 0.285 fm⁻¹

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

BHF framework 000 Selfconsistency and solutions

Features of s.p. solutions:

- s.p. energies e(k) grow monotonically.
- Slope $(\partial U/\partial k)_{k_F}$ negative. $\Rightarrow m^* > m$
- Effective-mass approximation (U~A+Bk²) not valid at low densities

$$e(k) = \frac{k^2}{2m} + U(k) \twoheadrightarrow \frac{k^2}{2m^*} + U_0$$

Concluding remarks

Properties at saturation

$$\begin{array}{l} k_F^{sat}\!=\!1.53~{\rm fm}^{-1}~{\rm vs}~1.36\!\pm\!0.05~{\rm fm}^{-1}\\ (\frac{B}{A})_{sat}\!=\!-16.8~{\rm MeV}~{\rm vs}~16\!\pm\!1~{\rm MeV}\\ K_\infty\!=\!213~{\rm MeV}~{\rm vs}~~220\!\pm\!20~{\rm MeV} \end{array}$$

Incompressibility:

$$K_{\infty} = 9\rho^2 \frac{\partial^2 (B/A)}{\partial^2 \rho}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

ntroduction	BHF framework	Selfconsistency and solutions	Pairing and superfluidity	Concluding
0000	000	00000000000	000	000

Masses and energies

• Effective k-mass:

 $\frac{m^*}{m} = \left[1 + \frac{m}{k} \frac{\partial U(k)}{\partial k}\right]_{k_F}^{-1}$

Binding energies

 $E = \omega_C - 2 e_F$

(channels $^1\mathsf{S}_0$ and $^3\mathsf{SD}_1)$

• Pair c.m. motion K=0

oduction	BHF framework	Selfconsistency and solutions	Pairing and superfluidity	Concluding remar
00	000	00000000000	000	000

Eigenfunctions

- Condition for pair eigenstate: $det[1 v \Lambda_{\mathcal{K}}(\omega)] = 0$
- Considering the spectral representation ... $g(\omega) = v + \sum_{\alpha} \frac{vQ|\alpha\rangle\langle\alpha|Qv}{\omega \varepsilon_{\alpha}}$... the g matrix near eigenenergy ε_{β} satisfies

$$\lim_{\eta\to 0} i\eta \, g(\varepsilon_{\beta} + i\eta) = v Q |\beta\rangle \langle \beta | Qv \equiv \hat{M}_{\beta}$$

• To get the eigenfunction (momentum space) do

$$\langle k | (\epsilon_{\beta} - 2e(k)) | \beta \rangle = \langle k | vQ | \beta \rangle \implies \langle k | \beta \rangle = \operatorname{Sgn} \times \frac{\sqrt{\langle k | \hat{M}_{\beta} | k \rangle}}{\epsilon_{\beta} - 2e(k)}$$

In coordinate space

$$\langle \vec{r}|\beta\rangle = \int d\vec{k} \, e^{i\vec{k}\cdot\vec{r}}\langle \vec{k}|\beta\rangle$$

BHF framework Selfconsistency and solutions Pairing

Pairing and superfluidity 000 Concluding remarks

Probability density $|\Psi(r)|^2$

 $\langle r|\beta\rangle = \Psi(r)$

In-medium S-wave radial probability density $r^2|\Psi(r)|^2$

 $(k_F = 0.25 \text{ fm}^{-1}).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Eigenfunctions in the $r-k_F$ plane

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー わえの

BHF framework

Selfconsistency and solutions

Pairing and superfluidity

イロト イヨト イヨト イヨト

æ

Concluding remarks

Transition $({}^{1}S_{0} \rightarrow {}^{3}SD_{1})$

BHF framework

Selfconsistency and solutions

Pairing and superfluidity 000 Concluding remarks 000

Correlation length

We evaluate $F(s) = \int_0^\infty e^{-sr} |\Psi(r)|^2 r^2 dr$

Expand F(s) for small s to extract $\langle r \rangle$, $\langle r^2 \rangle$, etc. [EPJA 57,7(2015)]

< ロ > < 同 > < 回 > < 回 >

BHF framework

Selfconsistency and solutions

Pairing and superfluidity •00

Concluding remarks

Pairing and superfluidity

- Presence of Cooper eigenstates alter the s.p. picture of BHF approach.
- Beyond BHF \rightarrow SCGF theory. The tools we have developed may help in doing so.
- Still, it becomes instructive to assess how important is the role of consensation.

 $\rho = 4 \int \frac{d^3k}{(2\pi)^3} n(k)$

Gap equation with anisotropic kernel angle-averaged:

$$\Delta_L(k) = -\frac{2}{\pi} \int_0^\infty k'^2 \, dk' \sum_{L'} i^{L-L'} v_{LL'}(k,k') \, \frac{\Delta_{L'}(k')}{2E(k')}$$

 $n(k) = \frac{1}{2} \left[1 - \frac{e_k - \mu}{F(k)} \right]$

- Quasiparticle energy $E(k)^2 = (e_k \mu)^2 + \sum_L \Delta_L(k)^2$
- Normal density distribution

Chemical potential
$$\mu$$
 must satisfy (SNM)

BHF framework 000 Selfconsistency and solutions

Pairing and superfluidity

Concluding remarks

Energy gap $\Delta_F = \Delta(k_F)$ as function of k_F (SNM)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

BHF	framework
000	

Selfconsistency and solutions

Pairing and superfluidity

Concluding remarks

Normal vs superfluid matter

 Investigate energy per nucleon including the condensation energy [Lombardo et al, PRC59, 2927(1999).]

$$\frac{B}{A} = \frac{1}{\rho} \sum_{k} \left\{ 4n(k) \left[\frac{k^2}{2m} + \frac{1}{2} U(k) \right] - 2 \frac{\Delta^2(k)}{2E(k)} \right\}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

BHF framework	Selfconsistency and solutions
000	000000000000

Pairing and superfluidity 000 Concluding remarks

Concluding remarks

- Cooper eigenstates are the cause of instabilities in BHF at subsaturation densities. Their presence is tractable.
- Effective-mass approximation for U(k) inadequate at subsaturation densities.
- Coexisting self-consistent s.p. fields in the range $0.13 \le k_F \le 0.285 \text{ fm}^{-1}$, $10^{11.4} \le \rho_{mass} \le 10^{12.4} \text{ g cm}^{-3}$.
- Size of Cooper eigenstates greater than internucleon separation. They could get as large as 100 fm!
- Condensate energy U_{BCS} 'small' at normal densities.
- Condensate energy comparable to that from normal state at sub-saturation densities ⇒ need to include hole-hole propagation. (Matías Gutierrez, U Chile).
- The EoS for nuclear matter has to be a continuous function, even in the overlap of phases I and II.

ntroduction	BHF framework	Selfconsistency and solutions	Pairing and superfluidity	Concluding remarks
0000	000	0000000000	000	000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Credits: Collaborators ... (alphabetical)

Jean-Paul Delaroche, CEA, France Felipe Isaule, U Glashow, Scotland Arnau Rios, U Barcelona, Spain

Grad students ...

Matías Gutierrez, U Chile (SCGF w/hh propagation) Sebastián Vargas, U Chile (BHF at finite temperature)

Nelson Adriazola, U Chile (Neutron start stability) José Fuentealba, U Chile (NA scattering with exotic nuclei)

BHF framework

Selfconsistency and solutions

Pairing and superfluidity 000 Concluding remarks

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thank you all !