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Problem & motivation

1. Genesis of the problem (personal):
Collaboration w/Eric Bauge (CEA - Bruyères-le-Châtel) led to the
conclusion that leading intrinsic medium effects in NA scattering take
place at the surface of the target. [PRC 76,014613(2007) & PRC 78,
014608 (2008)]

2. Needed of accurate g matrices (BHF) at low densities...

3. but standard strategies resulted useless to get them due to unexpected
instabilities.

4. Local NN effective interactions exclude parametrizations for
0 < kF < 0.6 fm−1:
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5. This (puzzling) situation led to investigate further the origin of such
instabilities and physics behind them.
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Many-nucleon systems from the bare interaction

N N

v
NN

π, ππ, ρ,..
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About the bare NN interaction
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NN data constraints

• Deuteron static properties

• Scattering amplitudes (E
Lab

up to ∼300 MeV)

• Static properties 3H, 3He, ...

p n

M
D
c2 = mpc

2 + mnc
2 + (−2.22 MeV) (exp)

p n
←−


S =1 (spin)

T =0 (isospin)

Jπ =1+ (parity)

J =1

L=0 3S1 |u〉

L=2 3D1

P
D

=4−6 %
|w〉

∫
∞

0
(u2+w2)dr =1∫

∞

0
r2 (u2+w2)dr =4R2

D

R
D

=2.14 fm (exp)
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Realistic NN potential models

θcm

DETECTOR

d σ/d Ω

BEAM TARGET

fL(k) =
1

2ik

(
e iδL (k)−1

)
dσ

dΩ
=
∣∣∑∞

L=0(2L+ 1)fL(k)PL(cosθ)
∣∣2

p̂2

m ϕ +VNN ϕ = k2

m ϕ

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0  50  100  150  200  250  300  350

1
S0δ

  
  
[ 
d
e
g
 ]

E   [ MeV ]

pp-data Paris (PR182,1714)
pp-Paris (paper)

GWU np-data basis
Paris (pn)

AV18
N3LO

Nijmegen I
Nijmegen II

• Chiral ( . 290 MeV ) Entem et al., PRC68, 041001 (2003)
Holt et al. PRC81, 024002 (2010)

• CD Bonn ( . 350 MeV ) Machleidt, PRC63, 024001 (2001)

• Argonne v18 ( . 350 MeV ) Wiringa et al., PRC51, 38 (1995)

• Nijmegen I and II ( . 350 MeV ) Stoks et al., PRC49, 2950 (1994)

• Bonn A and B ( . 300 MeV ) Machleidt et al. PhysRep149, 1 (1987)

• Paris ( . 330 MeV ) Lacombe et al. PRC21, 861 (1980)
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Brueckner-Hartree-Fock (BHF) approach for infinite NM

i.- In Brueckner-Bethe-Goldstone theory:
lowest order in hole-line expansion for the
ground-state energy.

ii.- In self-consistent Green’s function (SCGF)
theory: self-energy without hole-hole
propagation.

iii.- In either case in-medium 2-body scattering
matrix calculated self-consistently with the
s.p. energy spectrum e(k).

εF

v

n(k)

1

kkF

Infinite nuclear matter at density ρ:

ρ = νsi ∑
k

nk → νsi

∫
dk

(2π)3
n(k)

ρ =
k3
F

3π2

ρ =
2k3

F

3π2

n Matter

SNM

BHF g matrix

g(ω) = v +v
Q

ω + iη− ĥ1− ĥ2

g(ω)
Q|k1k2〉=(1−nk1

)(1−nk2
)|k1k2〉

ĥ1,2|k1k2〉=

[
k2

1,2

2m
+U(k1,2)

]
|k1k2〉
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Nonlinear structure for the g matrix in BHF

Integral equation for g

〈~κ ′|gK (ω)|~κ〉= 〈~κ ′|v |~κ〉+
∫

d~q 〈~κ ′|v |~q〉 Θ(k+−kF )Θ(k−−kF )

ω + iη− K 2

4m −
q2

m −Σ(K ,q)
〈~q|gK (ω)|~κ〉

Angular average:

Σ(K ,q) =
〈
U(| 12 ~K +~q|) +U(| 12 ~K −~q|)

〉
q̂·K̂

Self-consistency requirement

U(k) = Re

{
∑
p
np 〈 k−p

2 |gk+p(ek + ep)| k−p
2 〉

}

v = vNN throughout!
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What can we learn from the v
NN
↔g link?

(a) Binding energy of interacting Fermi system (nucleon):

B

A
=

ε

ρ
=

∑k nk
h̄2k2

2m + 1
2 ∑k nkU(k)

∑k nk

ksatF =1.36±0.05 fm−1 (B/A)sat = 16±1 MeV

(b) Equation of State (EoS) for nuclear matter:

p(ρ) = ρ
2 ∂ (ε/ρ)

∂ρ
)

TOV + EoS → hydrostatic equilibrium of neutron stars

(c) Fully off-shell g matrices for microscopic optical-model potentials

U(~k ′,~k) = 〈ρ̂⊗g〉 p+A→ p+A

(d) Nuclear superfluid states: pairing, condensates



Introduction BHF framework Selfconsistency and solutions Pairing and superfluidity Concluding remarks

Self-consistent search

1. Make a guess for U(k)← U0

2. Then evaluate mass operator

M(k;ek) = ∑
p
np 〈 1

2 (k−p)|gK (ek + ep︸ ︷︷ ︸
ω

)| 12 (k−p)〉

by solving

g(ω) = v +v
Q

ω + iη−h1−h2
g(ω)

Continuous choice; k ≤ 5.5 fm−1; with J ≤ 7

3. Take the real part of on-shell mass operator: U(k) = ReM(k;ek)→ U1

4. Compare U0 with U1:

If U1wU0 −→ self-consistency fullfilled

If U1 6= U0 −→ set U1→ U0 and start over
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Difficulties at subsaturation densities...

• Instabilities:
zigg-zagging U(k) in SNM 0.15 . kF . 0.25 fm−1 (feedback ambiguity)

• Sporadic but huge [±1E60] contributions in 3SD1 and 1S0 channels
(kF . 1 fm−1)
Calculated U(k) becomes meaningless!

• Problem worsens when Fermi-motion integrals (∑k · · ·) are made with
thinner mesh (convergence dubious)

Cooper-pair eigenstates

g(ω) = v +v ΛK (ω)g(ω)

[1−v ΛK (ω)]g(ω) = v

det [1−v ΛK (ω)] = 0

0 1 2 3
- ( ω − ω

 Th
 )     [ MeV ]

-2

0

2

4

D
α
 (

K
; 

ω
 )

  
  
[ 

A
rb

it
ra

ry
 u

n
it

s 
]

k
F
 = 0.6 fm

-1

1
S

0

3
SD

1



Introduction BHF framework Selfconsistency and solutions Pairing and superfluidity Concluding remarks

Search at sub-saturation densities (kF < 1 fm−1)

Control on Cooper eigenstates:

U(k) = ∑
p
np gk+p(ek + ep)

→
∫

dK
∫ qf

qi
dq np gK (ek + ep)

Whenever ωC are found at K apply

gK (ω)→ gK (ω)
(ω−ωC )2

(ω−ωC )2 + η2

• η = 100 keV adequate

q
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Results for U(k) at 0.35≤ kF ≤ 1.75 fm−1

Symmetric nuclear matter based on AV18

012345

0.4
0.8

1.2
1.6

-150

-100

-50

 0

 50

 100

U
  
[ 

M
e
V

 ]

k   [ fm
-1

 ]
kF   [ fm

-1
 ]

-150

-100

-50

 0

 50

 100



Introduction BHF framework Selfconsistency and solutions Pairing and superfluidity Concluding remarks

Coexisting solutions (low densities)

• At a same kF two solutions satisfy BHF

• Two families of solutions are found:
Phase I: kF ≤ 0.285 fm−1

Phase II: kF ≥ 0.130 fm−1

• Range of overlap (coexistence): 0.130≤ kF ≤ 0.285 fm−1
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Features of s.p. solutions:

• s.p. energies e(k) grow monotonically.

• Slope (∂U/∂k)kF negative. ⇒m∗ >m

• Effective-mass approximation (U∼A+Bk2)
not valid at low densities

e(k) = k2

2m +U(k) 999 k2

2m∗ +U0
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Properties at saturation

ksatF =1.53 fm−1 vs 1.36±0.05 fm−1

(BA )sat =−16.8 MeV vs 16±1 MeV

K∞ = 213 MeV vs 220±20 MeV

Incompressibility:

K∞ = 9ρ
2 ∂ 2(B/A)

∂ 2ρ
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Masses and energies

• Effective k-mass:

m∗

m
=

[
1 +

m

k

∂U(k)

∂k

]−1

kF

• Binding energies

E = ωC −2eF

(channels 1S0 and 3SD1)

• Pair c.m. motion K =0
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Eigenfunctions

• Condition for pair eigenstate: det[1−v ΛK (ω)] = 0

• Considering the spectral representation ... g(ω) = v +
∫
∑

α

vQ|α〉〈α|Qv

ω− εα

... the g matrix near eigenenergy εβ satisfies

lim
η→0

iη g(εβ + iη) = vQ|β 〉〈β |Qv ≡ M̂β

• To get the eigenfunction (momentum space) do

〈k|(εβ −2e(k))|β 〉= 〈k|vQ|β 〉 ⇒ 〈k|β 〉= Sgn×

√
〈k|M̂β |k〉

εβ −2e(k)

• In coordinate space

〈~r |β 〉=
∫

d~k e i
~k·~r 〈~k|β 〉
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Probability density |Ψ(r)|2 〈r |β 〉= Ψ(r)

In-medium S-wave radial probability density r2|Ψ(r)|2 (kF = 0.25 fm−1).
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Eigenfunctions in the r -kF plane

1S0 (I) 1S0 (II)

3S1 (I) 3S1 (II)
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Transition (1S0→3SD1)
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Correlation length

We evaluate F (s) =
∫

∞

0
e−sr |Ψ(r)|2r2dr

Expand F (s) for small s to extract 〈r〉, 〈r2〉, etc. [EPJA 57,7(2015)]
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Pairing and superfluidity

• Presence of Cooper eigenstates alter the
s.p. picture of BHF approach.

• Beyond BHF → SCGF theory.The tools we
have developed may help in doing so.

• Still, it becomes instructive to assess how
important is the role of consensation.

• Gap equation with anisotropic kernel angle-averaged:

∆L(k) =− 2

π

∫
∞

0
k ′2 dk ′∑

L′
iL−L

′
vLL′(k,k

′)
∆L′(k

′)

2E(k ′)

• Quasiparticle energy E(k)2 = (ek −µ)2 +∑
L

∆L(k)2

• Normal density distribution n(k) =
1

2

[
1− ek −µ

E(k)

]
• Chemical potential µ must satisfy (SNM) ρ = 4

∫
d3k

(2π)3
n(k)
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Energy gap ∆F = ∆(kF ) as function of kF (SNM)
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Normal vs superfluid matter

• Investigate energy per nucleon including the condensation energy
[Lombardo et al, PRC59, 2927(1999).]

B

A
=

1

ρ
∑
k

{
4n(k)

[
k2

2m
+

1

2
U(k)

]
−2

∆2(k)

2E(k)

}

• Define:

UBHF =
2

ρ
∑
k

n(k)U(k)

UBCS =− 1

ρ
∑
k

∆2(k)

E(k)

• Selfconsistency not met:

U(k)=Re∑
p
np gK (ek+ep)
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Concluding remarks

• Cooper eigenstates are the cause of instabilities in BHF at subsaturation
densities. Their presence is tractable.

• Effective-mass approximation for U(k) inadequate at subsaturation
densities.

• Coexisting self-consistent s.p. fields in the range 0.13≤ kF ≤ 0.285 fm−1,

1011.4 . ρmass . 1012.4 g cm−3.

• Size of Cooper eigenstates greater than internucleon separation. They
could get as large as 100 fm!

• Condensate energy UBCS ‘small’ at normal densities.

• Condensate energy comparable to that from normal state at
sub-saturation densities ⇒ need to include hole-hole propagation. (Mat́ıas
Gutierrez, U Chile).

• The EoS for nuclear matter has to be a continuous function, even in the
overlap of phases I and II.
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Thank you all !


	Introduction
	BHF framework
	Selfconsistency and solutions
	Pairing and superfluidity
	Concluding remarks

