# Dinucleons in infinite nuclear matter at sub-saturation densities 

Hugo F. Arellano

University of Chile - DFI/FCFM

ECT* Nuclear Physics at the edge of stability, Trento, 4-8 July 2022

## Itinerary

Introduction

BHF framework


Selfconsistefic) and solutions

Pairing and suquerfluidity

Concluding rema

## Problem \& motivation

1. Genesis of the problem (personal): Collaboration w/Eric Bauge (CEA - Bruyères-le-Châtel) led to the conclusion that leading intrinsic medium effects in NA scattering take place at the surface of the target. [PRC 76,014613(2007) \& PRC 78, 014608 (2008)]
2. Needed of accurate $g$ matrices (BHF) at low densities...
3. but standard strategies resulted useless to get them due to unexpected instabilities.
4. Local $N N$ effective interactions exclude parametrizations for $0<k_{F}<0.6 \mathrm{fm}^{-1}$ :

5. This (puzzling) situation led to investigate further the origin of such instabilities and physics behind them.

Many-nucleon systems from the bare interaction


About the bare $N N$ interaction

(p) n p n $\quad$ n $M_{D} c^{2}=m_{p} c^{2}+m_{n} c^{2}+(-2.22 \mathrm{MeV})(\exp ) ~ \begin{cases}S=1 & \text { (spin) } \\ T=0 & \text { (isospin) } \\ J^{\pi}=1^{+} & \text {(parity) }\end{cases}$

$$
\xrightarrow{J=1}, \overbrace{\underbrace{\frac{L=0}{}{ }^{3} S_{1}}}^{P_{D}=4-6 \%}|u\rangle
$$

$$
\begin{aligned}
& \int_{0}^{\infty}\left(u^{2}+w^{2}\right) d r=1 \\
& \int_{0}^{\infty} r^{2}\left(u^{2}+w^{2}\right) d r=4 R_{D}^{2} \\
& \quad R_{D}=2.14 \mathrm{fm} \quad(\exp )
\end{aligned}
$$

- Scattering amplitudes ( $E_{\text {Lab }}$ up to $\sim 300 \mathrm{MeV}$ )
- Static properties ${ }^{3} \mathrm{H},{ }^{3} \mathrm{He}, \ldots$


## Realistic NN potential models



$$
\begin{aligned}
& \frac{\hat{p}^{2}}{m} \varphi+V_{N N} \varphi=\frac{k^{2}}{m} \varphi \\
& \frac{d \sigma}{d \Omega}=\left|\sum_{L=0}^{\infty}(2 L+1) f_{L}(k) P_{L}(\cos \theta)\right|^{2} \\
& f_{L}(k)=\frac{1}{2 i k}\left(e^{i \delta_{L}(k)}-1\right)
\end{aligned}
$$

- Chiral ( $\lesssim 290 \mathrm{MeV})$
- CD Bonn ( $\lesssim 350 \mathrm{MeV})$
- Argonne $\boldsymbol{v}_{18}(\lesssim 350 \mathrm{MeV})$
- Nijmegen I and II ( $\lesssim 350 \mathrm{MeV})$
- Bonn A and B( $\lesssim 300 \mathrm{MeV})$
- Paris ( $\lesssim 330 \mathrm{MeV})$


Entem et al., PRC68, 041001 (2003)
Holt et al. PRC81, 024002 (2010)
Machleidt, PRC63, 024001 (2001)
Wiringa et al., PRC51, 38 (1995)
Stoks et al., PRC49, 2950 (1994)
Machleidt et al. PhysRep149, 1 (1987)
Lacombe et al. PRC21, 861 (1980)

## Brueckner-Hartree-Fock (BHF) approach for infinite NM

i.- In Brueckner-Bethe-Goldstone theory: lowest order in hole-line expansion for the ground-state energy.
ii.- In self-consistent Green's function (SCGF) theory: self-energy without hole-hole propagation.
iii.- In either case in-medium 2-body scattering matrix calculated self-consistently with the
 s.p. energy spectrum $e(k)$.

$$
\begin{aligned}
& \text { Infinite nuclear matter at density } \rho: \\
& \qquad \rho=v_{s i} \sum_{k} n_{k} \rightarrow v_{s i} \int \frac{d k}{(2 \pi)^{3}} n(k) \quad \begin{array}{r}
\mathrm{n} \text { Matter } \\
\rho=\frac{k_{F}^{3}}{3 \pi^{2}} \\
\rho=\frac{2 k_{F}^{3}}{3 \pi^{2}}
\end{array}
\end{aligned}
$$

BHF g matrix

$$
g(\omega)=v+v \frac{Q}{\omega+i \eta-\hat{h}_{1}-\hat{h}_{2}} g(\omega)
$$

$$
\left\langle\begin{array}{l}
Q\left|k_{1} k_{2}\right\rangle=\left(1-n_{k_{1}}\right)\left(1-n_{k_{2}}\right)\left|k_{1} k_{2}\right\rangle \\
\hat{h}_{1,2}\left|k_{1} k_{2}\right\rangle=\left[\frac{k_{1,2}^{2}}{2 m}+U\left(k_{1,2}\right)\right]\left|k_{1} k_{2}\right\rangle
\end{array}\right.
$$

Nonlinear structure for the $g$ matrix in BHF

Integral equation for $g$

$$
\left\langle\vec{\kappa}^{\prime}\right| g_{K}(\omega)|\vec{\kappa}\rangle=\left\langle\vec{\kappa}^{\prime}\right| v|\vec{\kappa}\rangle+\int d \vec{q}\left\langle\vec{\kappa}^{\prime}\right| v|\vec{q}\rangle \frac{\Theta\left(k_{+}-k_{F}\right) \Theta\left(k_{-}-k_{F}\right)}{\omega+i \eta-\frac{K^{2}}{4 m}-\frac{q^{2}}{m}-\Sigma(K, q)}\langle\vec{q}| g_{K}(\omega)|\vec{\kappa}\rangle
$$

Angular average:

$$
\Sigma(K, q)=\left\langle U\left(\left|\frac{1}{2} \vec{k}+\vec{q}\right|\right)+U\left(\left|\frac{1}{2} \vec{k}-\vec{q}\right|\right)\right\rangle_{\hat{q} \cdot \hat{K}}
$$

Self-consistency requirement

$$
U(k)=\operatorname{Re}\left\{\sum_{p} n_{p}\left\langle\frac{\boldsymbol{k}-\boldsymbol{p}}{2}\right| g_{k+p}\left(e_{k}+e_{p}\right)\left|\frac{\boldsymbol{k}-\boldsymbol{p}}{2}\right\rangle\right\}
$$

$$
v=v_{N N} \text { throughout! }
$$

What can we learn from the $v_{N N} \leftrightarrow g$ link?
(a) Binding energy of interacting Fermi system (nucleon):

$$
\begin{gathered}
\frac{B}{A}=\frac{\varepsilon}{\rho}=\frac{\sum_{k} n_{k} \frac{\hbar^{2} k^{2}}{2 m}+\frac{1}{2} \sum_{k} n_{k} U(k)}{\sum_{k} n_{k}} \\
k_{F}^{\text {sat }}=1.36 \pm 0.05 \mathrm{fm}^{-1} \quad(B / A)_{s a t}=16 \pm 1 \mathrm{MeV}
\end{gathered}
$$

(b) Equation of State (EoS) for nuclear matter:

$$
\left.p(\rho)=\rho^{2} \frac{\partial(\varepsilon / \rho)}{\partial \rho}\right)
$$

TOV + EoS $\rightarrow$ hydrostatic equilibrium of neutron stars
(c) Fully off-shell $g$ matrices for microscopic optical-model potentials

$$
U\left(\vec{k}^{\prime}, \vec{k}\right)=\langle\hat{\rho} \otimes g\rangle \quad p+A \rightarrow p+A
$$

(d) Nuclear superfluid states: pairing, condensates

## Self-consistent search

1. Make a guess for $U(k) \leftarrow U_{0}$
2. Then evaluate mass operator

$$
M\left(k ; e_{k}\right)=\sum_{p} n_{p}\left\langle\frac{1}{2}(\boldsymbol{k}-\boldsymbol{p})\right| g_{K}(\underbrace{e_{k}+e_{p}}_{\omega})\left|\frac{1}{2}(\boldsymbol{k}-\boldsymbol{p})\right\rangle
$$

by solving

$$
g(\omega)=v+v \frac{Q}{\omega+i \eta-h_{1}-h_{2}} g(\omega)
$$

Continuous choice; $k \leq 5.5 \mathrm{fm}^{-1}$; with $J \leq 7$
3. Take the real part of on-shell mass operator: $U(k)=\operatorname{Re} M\left(k ; e_{k}\right) \rightarrow U_{1}$
4. Compare $U_{0}$ with $U_{1}$ :

$$
\text { If } U_{1} \simeq U_{0} \quad \longrightarrow \quad \text { self-consistency fullfilled }
$$

$$
\text { If } U_{1} \neq U_{0} \quad \longrightarrow \quad \text { set } U_{1} \rightarrow U_{0} \text { and start over }
$$

## Difficulties at subsaturation densities...

- Instabilities: zigg-zagging $U(k)$ in SNM $0.15 \lesssim k_{F} \lesssim 0.25 \mathrm{fm}^{-1}$ (feedback ambiguity)
- Sporadic but huge [ $\pm 1 \mathrm{E} 60$ ] contributions in ${ }^{3} \mathrm{SD}_{1}$ and ${ }^{1} \mathrm{~S}_{0}$ channels $\left(k_{F} \lesssim 1 \mathrm{fm}^{-1}\right)$
Calculated $U(k)$ becomes meaningless!
- Problem worsens when Fermi-motion integrals $\left(\sum_{k} \cdots\right)$ are made with thinner mesh (convergence dubious)

Cooper-pair eigenstates

$$
\begin{aligned}
& g(\omega)=v+v \Lambda_{K}(\omega) g(\omega) \\
& {\left[1-v \Lambda_{K}(\omega)\right] g(\omega)=v}
\end{aligned}
$$

$$
\operatorname{det}\left[1-v \Lambda_{K}(\omega)\right]=0
$$



Search at sub-saturation densities ( $k_{F}<1 \mathrm{fm}^{-1}$ )

Control on Cooper eigenstates:

$$
\begin{aligned}
U(k) & =\sum_{p} n_{p} g_{k+p}\left(e_{k}+e_{p}\right) \\
& \rightarrow \int d K \int_{q_{i}}^{q_{f}} d q n_{p} g_{K}\left(e_{k}+e_{p}\right)
\end{aligned}
$$

Whenever $\omega_{C}$ are found at $K$ apply

$$
g_{K}(\omega) \rightarrow g_{K}(\omega) \frac{\left(\omega-\omega_{C}\right)^{2}}{\left(\omega-\omega_{C}\right)^{2}+\eta^{2}}
$$



- $\eta=100 \mathrm{keV}$ adequate


## Results for $U(k)$ at $0.35 \leq k_{F} \leq 1.75 \mathrm{fm}^{-1}$

Symmetric nuclear matter based on AV18


## Coexisting solutions (low densities)

- At a same $k_{F}$ two solutions satisfy BHF
- Two families of solutions are found:

Phase I: $k_{F} \leq 0.285 \mathrm{fm}^{-1}$
Phase II: $k_{F} \geq 0.130 \mathrm{fm}^{-1}$

- Range of overlap (coexistence): $0.130 \leq k_{F} \leq 0.285 \mathrm{fm}^{-1}$


Features of s.p. solutions:

- s.p. energies $e(k)$ grow monotonically.
- Slope $(\partial U / \partial k)_{k_{F}}$ negative. $\Rightarrow m^{*}>m$
- Effective-mass approximation $\left(U \sim A+B k^{2}\right)$ not valid at low densities

$$
e(k)=\frac{k^{2}}{2 m}+U(k) \nrightarrow \frac{k^{2}}{2 m^{*}}+U_{0}
$$



Properties at saturation

$k_{F}^{\text {sat }}=1.53 \mathrm{fm}^{-1}$ vs $1.36 \pm 0.05 \mathrm{fm}^{-1}$ $\left(\frac{B}{A}\right)_{\text {sat }}=-16.8 \mathrm{MeV}$ vs $16 \pm 1 \mathrm{MeV}$ $K_{\infty}=213 \mathrm{MeV}$ vs $220 \pm 20 \mathrm{MeV}$

Incompressibility:

$$
K_{\infty}=9 \rho^{2} \frac{\partial^{2}(B / A)}{\partial^{2} \rho}
$$

Masses and energies

- Effective $k$-mass:

$$
\frac{m^{*}}{m}=\left[1+\frac{m}{k} \frac{\partial U(k)}{\partial k}\right]_{k_{F}}^{-1}
$$

- Binding energies
$E=\omega_{C}-2 e_{F}$
(channels ${ }^{1} \mathrm{~S}_{0}$ and ${ }^{3} \mathrm{SD}_{1}$ )
- Pair c.m. motion $K=0$



## Eigenfunctions

- Condition for pair eigenstate: $\operatorname{det}\left[1-v \Lambda_{K}(\omega)\right]=0$
- Considering the spectral representation $\ldots g(\omega)=v+\mathcal{f}_{\alpha} \frac{v Q|\alpha\rangle\langle\alpha| Q v}{\omega-\varepsilon_{\alpha}}$
... the $g$ matrix near eigenenergy $\varepsilon_{\beta}$ satisfies

$$
\lim _{\eta \rightarrow 0} i \eta g\left(\varepsilon_{\beta}+i \eta\right)=v Q|\beta\rangle\langle\beta| Q v \equiv \hat{M}_{\beta}
$$

- To get the eigenfunction (momentum space) do

$$
\langle k|\left(\varepsilon_{\beta}-2 e(k)\right)|\beta\rangle=\langle k| v Q|\beta\rangle \Rightarrow\langle k \mid \beta\rangle=\operatorname{Sgn} \times \frac{\sqrt{\langle k| \hat{M}_{\beta}|k\rangle}}{\varepsilon_{\beta}-2 e(k)}
$$

- In coordinate space

$$
\langle\vec{r} \mid \beta\rangle=\int d \vec{k} e^{i \vec{k} \cdot \vec{r}}\langle\vec{k} \mid \beta\rangle
$$

Probability density $|\Psi(r)|^{2}$
$\langle r \mid \beta\rangle=\Psi(r)$

In-medium S-wave radial probability density $r^{2}|\Psi(r)|^{2} \quad\left(k_{F}=0.25 \mathrm{fm}^{-1}\right)$.


Eigenfunctions in the $r-k_{F}$ plane

$$
{ }^{3} \mathrm{~S}_{1}(\mathrm{I}) \longrightarrow{ }^{3} \mathrm{~S}_{1}(\mathrm{II})
$$





Transition ( ${ }^{1} \mathrm{~S}_{0} \rightarrow{ }^{3} \mathrm{SD}_{1}$ )


Correlation length


We evaluate $F(s)=\int_{0}^{\infty} e^{-s r}|\Psi(r)|^{2} r^{2} d r$
Expand $F(s)$ for small $s$ to extract $\langle r\rangle,\left\langle r^{2}\right\rangle$, etc.
[EPJA 57,7(2015)]

## Pairing and superfluidity

- Presence of Cooper eigenstates alter the s.p. picture of BHF approach.
- Beyond BHF $\rightarrow$ SCGF theory.The tools we have developed may help in doing so.
- Still, it becomes instructive to assess how important is the role of consensation.

- Gap equation with anisotropic kernel angle-averaged:

$$
\Delta_{L}(k)=-\frac{2}{\pi} \int_{0}^{\infty} k^{\prime 2} d k^{\prime} \sum_{L^{\prime}} i^{L-L^{\prime}} v_{L L^{\prime}}\left(k, k^{\prime}\right) \frac{\Delta_{L^{\prime}}\left(k^{\prime}\right)}{2 E\left(k^{\prime}\right)}
$$

- Quasiparticle energy

$$
E(k)^{2}=\left(e_{k}-\mu\right)^{2}+\sum_{L} \Delta_{L}(k)^{2}
$$

- Normal density distribution

$$
n(k)=\frac{1}{2}\left[1-\frac{e_{k}-\mu}{E(k)}\right]
$$

- Chemical potential $\mu$ must satisfy (SNM)

$$
\rho=4 \int \frac{d^{3} k}{(2 \pi)^{3}} n(k)
$$

Energy gap $\Delta_{F}=\Delta\left(k_{F}\right)$ as function of $k_{F}$ (SNM)


## Normal vs superfluid matter

- Investigate energy per nucleon including the condensation energy [Lombardo et al, PRC59, 2927(1999).]

$$
\frac{B}{A}=\frac{1}{\rho} \sum_{k}\left\{4 n(k)\left[\frac{k^{2}}{2 m}+\frac{1}{2} U(k)\right]-2 \frac{\Delta^{2}(k)}{2 E(k)}\right\}
$$

- Define:

$$
\begin{aligned}
& U_{B H F}=\frac{2}{\rho} \sum_{k} n(k) U(k) \\
& U_{B C S}=-\frac{1}{\rho} \sum_{k} \frac{\Delta^{2}(k)}{E(k)}
\end{aligned}
$$

- Selfconsistency not met:

$$
U(k)=\operatorname{Re} \sum_{p} n_{p} g_{K}\left(e_{k}+e_{p}\right)
$$



## Concluding remarks

- Cooper eigenstates are the cause of instabilities in BHF at subsaturation densities. Their presence is tractable.
- Effective-mass approximation for $U(k)$ inadequate at subsaturation densities.
- Coexisting self-consistent s.p. fields in the range $0.13 \leq k_{F} \leq 0.285 \mathrm{fm}^{-1}$, $\overline{10^{11.4}} \lesssim \rho_{\text {mass }} \lesssim 10^{12.4} \mathrm{~g} \mathrm{~cm}^{-3}$.
- Size of Cooper eigenstates greater than internucleon separation. They could get as large as 100 fm !
- Condensate energy $U_{B C S}$ 'small' at normal densities.
- Condensate energy comparable to that from normal state at sub-saturation densities $\Rightarrow$ need to include hole-hole propagation. (Matías Gutierrez, U Chile).
- The EoS for nuclear matter has to be a continuous function, even in the overlap of phases I and II.

Credits: Collaborators ... (alphabetical)
Jean-Paul Delaroche, CEA, France Felipe Isaule, U Glashow, Scotland
Arnau Rios, U Barcelona, Spain
Grad students ...
Matías Gutierrez, U Chile (SCGF w/hh propagation)
Sebastián Vargas, U Chile (BHF at finite temperature)
Nelson Adriazola, U Chile (Neutron start stability) José Fuentealba, U Chile (NA scattering with exotic nuclei)

## Thank you all !

