ECT* workshop 23 June 2022

Resonant Shattering Flares in BHNS and NSNS mergers

Duncan Neill*, David Tsang, Hendrik van Eerten, Geoffrey Ryan, and William G. Newton

* dn431@bath.ac.uk

Resonant Shattering Flares

Tsang D. et al., 2012, Resonant Shattering of T Neutron Star Crusts Phys. Rev. Lett., 108, 011102

Tsang D., Shattering Flares During Close Encounters of Neutron Stars, 2013, ApJ, 777, 103

Resonant Shattering Flares

2021, MNRAS, 504, 1129

Resonant Shattering Flares

Bayesian parameter inference

- Injected precursor flare (RSF) detection when f_{GW} ≈ 264 Hz (random value)
- Neutron star built from a Skyrme interaction which has the symmetry energy parameters as inputs
- Prior from causality, NICER's pulsar mass-radius constraints, and GW170817's tidal deformability (no nuclear data → high J allowed)
- We learn a lot about the combined J-L constraint, and relatively little about the NS core

Neill D., et al., in-prep.

SGRB precursor flares

- A few percent of SGRBs are preceded by short precursors
- The cause of these flares is unclear, could they be RSFs?

Zhong S.-Q. et al., Precursors in Short Gamma-Ray Bursts as a Possible Probe of Progenitors, 2019, ApJ, 884,25

SGRB jet model

- Jet with more and less dense regions
- Dense regions collide, producing shocks
- Gamma-ray emission at shocks (synchrotron)

RSF shell model

- Approximately spherical shells
- Variable shell masses, so some shells are faster
- Shells collide, shocks form
- Repeated shell emission for the duration of the resonance
- Shell emission rate determined by magnetic field strength

Non-thermal emission: colliding shells

- Resonance duration \approx Flare duration
- Luminosity strongly dependent on surface magnetic field strength

Neill D., Tsang D., van Eerten H., Ryan G., Newton W. G., 2021, preprint (arXiv:2111.03686)

Non-thermal emission: colliding shells

- Resonance duration \approx Flare duration
- Luminosity strongly dependent on surface magnetic field strength

Neill D., Tsang D., van Eerten H., Ryan G., Newton W. G., 2021, preprint (arXiv:2111.03686)

Beyond the death line, the population is unknown

MSPs: spun-up, so they are a different population

Gourgouliatos, Wood, & Hollerbach (2016) PNAS, 113, 15, 3944

NS magnetic fields

Fields that thread the superfluid core are long lived

Fields that do not penetrate the core decay in < 10⁶ years

Ho, Andersson & Graber (2017) PRC, 96, 065801

Konenkov & Geppert (2000) MNRAS, 313, 1, 66

Rate of RSFs

• ATNF pulsar catalogue used to estimate NS birth magnetic field distribution

Rate of RSFs

- ATNF pulsar catalogue used to estimate NS birth magnetic field distribution
- Upper and lower bounds for magnetic field decay (which is highly uncertain)

Rate of RSFs

- ATNF pulsar catalogue used to estimate NS birth magnetic field distribution
- Upper and lower bounds for magnetic field decay (which is highly uncertain)
- BPASS population synthesis model and a fit for star formation rate history used to approximate the population of BHNS mergers

Tidal disruption or resonance?

- Tidal disruption is not required for RSFs
- A significantly higher fraction of BHNS binaries may produce RSFs than SGRBs/Kilonovae
 Tidal disruption condition for a 1.4Mo NS

EM signals

(These events are just used as examples of SGRBs, there is no evidence that either had a RSF)

Neill D. et al., 2021, preprint (arXiv:2111.03686)

EM signals

The NS involved in GW170817 likely had dipole fields below $\sim 10^{12}$ G

(These events are just used as examples of SGRBs, there is no evidence that either had a RSF)

Neill D. et al., 2021, preprint (arXiv:2111.03686)

there is no evidence that either had a RSF)

Neill D. et al., 2021, preprint (arXiv:2111.03686)

GRB211211A

- Has a kilonova \rightarrow BHNS or NSNS merger
- Has a precursor

 → properties are consistent
 with our RSF calculations
- Has extended emission \rightarrow post-merger magnetar

Xiao S., et al., The quasi-periodically oscillating precursor of a long gamma-ray burst from a binary neutron star merger, 2022, arXiv:2205.02186

Conclusions

- Multimessenger detection of a RSF and the GW chirp from a BHNS or NSNS inspiral would allow us to measure the i-mode frequency.
- Flare luminosity is dependent on the total surface magnetic field of the NS; magnetars can produce RSFs that are visible up to ~200 Mpc.
- Depending on the rate of NS magnetic field decay, a significant number of RSFs could be visible each year.
- RSF afterglow could be detectable if the SGRB is far off-axis, or if no SGRB is produced.
- If RSFs are precursor flares, we can make inferences of the rate at which NS magnetic fields decay. The lack of a RSF before GRB170817A implies that its progenitors had $B_{surf} < 10^{13}$ G.
 - Tsang D., Read J. S., Hinderer T., Piro A. L., Bondarescu R., 2012, Phys. Rev. Lett., 108, 011102
 - Neill D., Newton W. G., Tsang D., 2021, MNRAS, 504, 1129
 - Neill D., Tsang D., van Eerten H., Ryan G., Newton W. G., 2021, preprint (arXiv:2111.03686)

Crust-core interface mode

Neill D., Newton W. G., Tsang D., 2021, MNRAS, 504, 1129

How does symmetry energy affect the i-mode?

Nuclear symmetry energy

Neill D., et al., in-prep. → Based on: European Physical Journal A, 50, 40

Nuclear symmetry energy

• RSFs provide J-L constraints competitive with collider experiments

• Constraint obtained for free when we get a multimessenger detection

Neill D., et al., in-prep. → Based on: Lattimer J. M., Steiner A. W., 2014, European Physical Journal A, 50, 40

